Sindbad~EG File Manager
����; � TeX output 2009.05.26:0833� �����header=pstricks.pro�header=pst-dots.pro�s���������G�color push gray 0����� color pop���[(���G�����color push gray 0�4 ���� ����color push gray 0� color pop��� ����4src:195 ConstructiveGeometryFinalPreprintVersion.tex�D��t G� G� cmr17�Constructiv��qe�7tGeometry�� ������ ��X�Q cmr12�Mic��rhael��Beeson������fj�� �`�Ma��ry��26,�2009��$ ���� �p��color push gray 0� color pop��� �p��4src:202 ConstructiveGeometryFinalPreprintVersion.tex�t�: cmbx9�Abstract���э���
��color push gray 0� � color pop���&��o��� cmr9�Euclidean���geometry��:�,��as�presen��9ted�b�y���Euclid,��consists�of�straigh��9tedge-and-compass�construc-�� �� tions��and�rigorous�reasoning�ab�A�out�the�results�of�those�constructions.���A���consideration�of�the���� relation�i�of�i�the�Euclidean�\constructions"�to�\constructiv��9e�mathematics"�leads�to�the�dev��9elop-���� men��9t�[�of�[�a�rst-order�theory��ECG��of�the�\Euclidean�Constructiv��9e�Geometry",���whic�h�can�[�serv�e�as���� an�V�axiomatization�V�of�Euclid�rather�close�in�spirit�to�the���j�� cmti9�Elements��of�Euclid.����ECG��is�axiomatized���� in�e�a�e�quan��9tier-free,�y�disjunction-free�w�a�y��:�.�
+Unlik�e�e�previous�in�tuitionistic�e�geometries,�y�it�do�A�es�e�not���� ha��9v�e���apartness.��>Unlik�e�previous�algebraic���theories�of�geometric�constructions,���it�do�A�es�not�ha��9v�e�a���� test-for-equalit��9y��construction.���W��:�e�sho�w��~that��ECG��is�a�go�A�o�d��geometric�theory��:�,���in�the�sense�that���� with�uqclassical�logic�upit�is�equiv��|ralen��9t�to�textb�A�o�ok�uqtheories,��xand�its�mo�A�dels�are�(in��9tuitionistically)���� planes�e4o��9v�er�Euclidean�elds.�W��:�e�then�e5apply�the�metho�A�ds�of�mo�dern�metamathematics�to�this���� theory��:�,��sho��9wing��lthat��kif��ECG��pro�v�es�an�existen�tial��ktheorem,��then�the�ob� ��ject�pro�v�ed��kto�exist�can���� b�A�e��Wconstructed�from�parameters,�Řusing�the�basic�constructions��Xof��ECG��(whic��9h�corresp�ond�to���� the���Euclidean���straigh��9tedge-and-compass�constructions).���In�particular,��aob� ��jects�pro�v�ed���to�exist���� in�l��ECG��dep�A�end�l�con��9tin�uously�l�on�parameters.�#fW��:�e�also�study�the�formal�relationships�b�A�et��9w�een���� sev��9eral�E�v�ersions�of�Euclid's�parallel�p�A�ostulate,���and�sho�w�E�that�eac�h�corresp�A�onds�to�a�natural���� axiom�Tsystem�for�Euclidean�elds.����-=��Aa� cmr6�1��������� ���N� ff cmbx12�1��1L�In���tro�s3duction��阍� �4src:217 ConstructiveGeometryFinalPreprintVersion.tex�Euclid's��geometry��:�,�T�written�do��9wn��ab�A�out�300�BCE,�has�b�A�een�extraordinarily�in
uen��9tial�in�the���� dev��9elopmen�t�zof�mathematics,��)and�prior�to�the�t��9w�en�tieth�zcen�tury�zw�as�regarded�as�a�paradigmatic���� example��:of��9pure�reasoning.��!But�during�those�2300�y��9ears,� �most�p�A�eople�though�t��9that�Euclid's���� theory�%�w��9as�ab�A�out�something.�NWhat�w�as�it�ab�A�out?�NSome�ma�y�ha�v�e�answ�ered�that�it�w�as�ab�A�out���� p�A�oin��9ts,��lines,��and�_�planes,�and�their�relationships.��$Others�ma��9y�ha�v�e�_�said�that�it�w�as�ab�A�out���� metho�A�ds�Tefor�constructing�Tfp�oin��9ts,�d)lines,�d*and�planes�with�certain�sp�ecied�Tfrelationships�to�giv��9en���� p�A�oin��9ts,�lines,�and��planes,�for�example,�constructing��an�equilateral�triangle�with�a�giv��9en�side.���� In�&these�'t��9w�o�answ�ers,�[w�e�see�the�'viewp�A�oin�ts�of�pure�'(classical)�mathematics�and�of�algorithmic���� mathematics�Qrepresen��9ted.���Hilb�A�ert's�1899�rew�orking�of�the�theory�Q [�11�� ?�]�ga�v�e�another�answ�er,���� surprising�;at�the�time:�?Euclid's�theories�w��9ere��not�6�ab��out�anything�at�6�al�x�l�.�&Instead�;of�\p�A�oin�ts,���� lines,���and��Uplanes",���one�should�b�A�e�able��Tto�read�\tables,�c��9hairs,���and�b�A�eer�m�ugs."��pAll�the�reasoning���� should�:�still�b�A�e�v��|ralid.�ӠThe�names�of�the�\en��9tities"�w�ere�just�place�holders.�ӠThat�w�as�the�viewp�A�oin�t���� of�Tt��9w�en�tieth-cen�tury�axiomatics.����&��4src:229 ConstructiveGeometryFinalPreprintVersion.texIn��vthe�late�t��9w�en�tieth��vcen�tury��:�,�$�con�temp�A�oraneously�with�the�
o�w�ering�of�computer�science,���� there��w��9as�a�new��surge�of�vigor�in�algorithmic,�&9or�constructiv�e,�&8mathematics,�&9b�A�eginning�with���� Bishop's�z�b�A�o�ok�z�[�4����].�L�In�algorithmic�mathematics,��one�tries�to�reduce�ev��9ery�\existence�theorem"���� to��Pan��Qassertion�that�a�certain�algorithm�has�a�certain�result.��eIn�the�terminology�of�computer��
� �color push gray 0��ff� ff �r� J=�����"5��-:�1����L��|{Y cmr8�W��J�e���w�Îould���lik�e�to���thank�Jerem�y�Avigad���and�F��J�reek�Wiedijk�for�pro�<rductiv�Îe�and�in�Îteresting�discussions,���and�for�� � �careful��Xreading�and�useful�suggestions.��ٛ� color pop�� ��G�color push gray 0�� �O\�K�`y
cmr10�1������ color pop���� *�s���������G�color push gray 0����� color pop���[(��������+I�science,�|�existence�htheorems�hshould�b�A�ecome�correctness�pro�ofs�of�algorithms.��The�pro�of�theory�� ��+Iof��darithmetic�has�pro��9vided�man�y�b�A�eautiful��etheorems�to�sho�w�that�indeed,��.existence�theorems�in����+In��9um�b�A�er�\�theory�(when�\�constructiv��9ely�pro�v�ed)�con�tain�algorithms�that�can�\�b�A�e�\extracted"�from����+Ithe��pro�A�ofs.�In�particular�w��9e�men�tion�the�tec�hniques��of�recursiv�e�realizabilit�y��:�,�TZthe�Dialectica����+Iin��9terpretation���of��G��`odel,�2�and�the�extraction�of�algorithms�from�cut-free�pro�A�ofs�as�w��9ell-kno�wn����+Iexamples�Tof�the�phenomenon.����8�C�4src:237 ConstructiveGeometryFinalPreprintVersion.texIn�(�this�pap�A�er,�-Mw��9e�re-examine�(�Euclidean�geometry�from�the�viewp�oin��9t�(�of�constructiv�e�math-����+Iematics.��The��phrase�\constructiv��9e�geometry"�suggests,��/on�the�one�hand,�that�\constructiv��9e"����+Irefers�~;to�geometrical�constructions�~:with�straigh��9tedge�and�compass.��On�the�other�hand,��sthe�w�ord����+I\constructiv��9e"��~ma�y�suggest�the�use�of�in�tuitionistic��}logic.���W��:�e�in�v�estigate�the�connections�b�A�e-����+It��9w�een��these��t�w�o�meanings��of�the�w�ord.���Our��metho�A�d�is�to�pro�A�ceed�b��9y�analogy�with�the�extensiv��9e����+Ib�A�o�dy���of���w��9ork�that�has�b�A�een�done�on�n��9um�b�A�er�theory���and�analysis,���applying�the�relev��|ran��9t�metho�A�d-����+Iologies��Gto��Hthe�w��9eak�er��Gtheories�of�geometry��:�.��JThe�basis�for�the�w��9ork�describ�A�ed�here�is�the�idea����+Ithat�D�in�geometry��:�,�P�w��9e�can�tak�e�\algorithm"�in�the�restricted�sense�of�\geometric�construction."����+IThat�Tis,�w��9e�pursue�the�analogy����8�C�4src:245 ConstructiveGeometryFinalPreprintVersion.tex��
������-ꍒ ��formal�Tn��9um�b�A�er�theory��w���H� fe wϞ�'m��TT��:�uring�computable�functions����� �Q�=�����-ꍑ�pin��9tuitionistic�Tgeometry�����H� fe _��'m�geometric�Tconstructions������
��
\���8�C�4src:248 ConstructiveGeometryFinalPreprintVersion.texT��:�o�8�carry�8�out�this�program,��mw��9e�need�a�suitable�formal�theory�for�in��9tuitionistic�geometry��:�.����+IIt��qshould�b�A�e�a�theory�with�terms�for�the��rgeometric�constructions,���so�that�there�will�b�e�terms����+Ia��9v��|railable���to�denote�the�means���of�constructing�things�that�ha�v�e�b�A�een�pro�v�ed�to���exist.�
�This�leads����+Ius���to�lo�A�ok�for�a�quan��9tier-free�axiomatization.�+5In�form�ulating�a�suitable�theory�of�geometry��:�,����+Ianother���imp�A�ortan��9t�consideration���w�as�the�principle�that�\constructiv�e�pro�A�of���implies�con�tin�uit�y�in����+Iparameters".���This�tprinciple�is�familiar�to�those�who�ha��9v�e�tstudied�constructiv��9e�mathematics;��but����+Iit��is�easy�to�understand�on�an�in��9tuitiv�e��basis.��If�w��9e�wish�to�allo�w�an�in�terpretation�of�geometry����+Iin�%swhic��9h�%rp�A�oin�ts�are�giv�en�%rb�y�appro�ximations�(as�%raccurate�as�one�ma��9y�demand),�)zfor�example,�if����+Ithey��Aare�giv��9en�as�pairs�of�real�n�um�b�A�ers�(�5��"