Sindbad~EG File Manager
����; � TeX output 2001.01.10:1505� �����o#f����ܚ�5#f����ܚ��RYu���N� ff cmbx12�A�ffSecond-order�Theorem�Pro���v�er�ffapplied�to�� �� ��Circumscription��"�[�� ʶ��K�`y
cmr10�Mic���hael�UUBeeson���i�� �a>�o��� cmr9�Departmen��9t�Tof�Mathematics�and�Computer�Science�� �� ��ZSan�TJose�State�Univ��9ersit�y��)�����[s��t�: cmbx9�Abstract.��� �&��Circumscription��eis�naturally�expressed�in�second-order�logic,����[s�but���previous�implemen��9tations�all�w�ork�b�y�handling�cases�that�can�b�A�e�re-����[s�duced�9to�rst-order�logic.�Making�use�of�a�new�second-order�unication����[s�algorithm�Džin��9tro�A�duced�in�[2],�w�e�sho�w�ho�w�a�theorem�pro�v�er�can�b�A�e�made����[s�to��nd�pro�A�ofs�in�second-order�logic,�in�particular�pro�ofs�b��9y�circumscrip-����[s�tion.�P8W��:�e�w��9ork�out�a�blo�A�c�ks-w�orld�example�in�complete�detail�and�giv�e�the����[s�output�Tof�an�implemen��9tation,�demonstrating�that�it�w�orks�as�claimed.��"FA���? ���N� cmbx12�1��S@ In�� tro�` duction��e��? �Circumscription�D�w���as�in�tro�Gduced�b�y�John�McCarth�y�[10]�as�a�means�of�formalizing�� ��? \common-sense�Grreasoning"�for�articial�in���telligence.�It�serv�ed�as�the�foundation����? of���his�theory�of�non-monotonic�reasoning.�The�essen���tial�idea�is�to�in�tro�Gduce,����? when�9Laxiomatizing�a�situation,�a�predicate��
�b>