Sindbad~EG File Manager
<div id="pageName0">
<div align="justify">
<h2>Tarski Formalization Project Archives</h2>
<p></p>
<h3>Rays, and comparison of segments</h3>
<p></p>
<p> $sameside(a,b,c)$ means that $a$ and $c$ are on the same side of point $b$, i.e. on the same ray emanating from $b$.
By definition that means $T(b,a,c)\lor T(b,c,a)$.
</p>
<?php
$Chapter = "6";
$descriptions["Satz6.2a"]="\$a\\neq b \\land b\\neq p \\land c\\neq p \\land T(a,p,c) \\land T(b,p,c) \\rightarrow sameside(a,p,b)\$";
$descriptions["Satz6.2b"]="\$ a\\neq b \\land b\\neq p \\land c\\neq p \\land T(a,p,c) \\land sameside(a,p,b)\\rightarrow T(b,p,c) \$";
$descriptions["Satz6.3a"]="\$sameside(a,p,b)\\rightarrow a\\neq p \\land b \\neq p \\land \\exists c(c \\neq p \\land T(a,p,c) \\land T(b,p,c)) \$";
$descriptions["Satz6.3b"]="\$a\\neq p \\land b \\neq p \\land \\exists c(c \\neq p \\land T(a,p,c) \\land T(b,p,c)) \\rightarrow sameside(a,p,b)\$";
$descriptions["Satz6.4a"]="\$ sameside(a,p,b) \\rightarrow Col(a,p,b) \\land\\neg T(a,p,b) \$";
$descriptions["Satz6.4b"]="\$Col(a,p,b) \\land \\neg T(a,p,b) \\rightarrow sameside(a,p,b)\$";
$descriptions["Satz6.5"]="(reflexivity) \$a\\neq p \\rightarrow sameside(a,p,a) \$";
$descriptions["Satz6.6"]="(symmetry) \$sameside(a,p,b) \\rightarrow sameside(b,p,a)\$";
$descriptions["Satz6.7"]="(transitivity) \$sameside(a,p,b) \\land sameside(b,p,c) \\rightarrow sameside(a,p,c)\$";
$descriptions["Satz6.11a"]="\$r\\neq a \\land b\\neq c \\rightarrow \\exists x(sameside(x,a,r) \\land E(a,x,b,c)) \$ ";
$descriptions["Satz6.11b"]="uniqueness of the \$x\$ in 6.11a";
$descriptions["Satz6.13a"]="\$sameside(a,p,b) \\land pa \\le pb \\rightarrow T(p,a,b)\$";
$descriptions["Satz6.13b"]="\$sameside(a,p,b) \\land T(p,a,b) \\rightarrow pa \\le pb \$";
$descriptions["Satz6.15a"]=" \$ p\\neq q \\land p\\neq r \\land T(q,p,r) \\land Col(p,q,a) \\rightarrow sameside(a,p,q) or a=p or sameside(a,p,r)\$";
$descriptions["Satz6.15b"]="\$p\\neq q \\land p\\neq r \\land T(q,p,r) \\land sameside(a,p,q) \\rightarrow Col(p,q,a) \$";
$descriptions["Satz6.15c"]=" \$p\\neq q \\land p\\neq r \\land T(q,p,r) \\land sameside(a,p,r) \\rightarrow Col(p,q,a) \$";
$descriptions["Satz6.15d"]="\$p\\neq q \\land p\\neq r \\land T(q,p,r) \\land a=p \\rightarrow Col(p,q,a) \$ ";
$descriptions["Satz6.16a"]="\$p\\neq q \\land p\\neq r \\land T(q,p,r) \\land a=p \\rightarrow Col(p,q,a) \$ ";
$descriptions["Satz6.16b"]="\$p\\neq q \\land s\\neq p \\land Col(p,q,s) \\land Col(p,q,x) \\rightarrow Col(p,s,x)\$";
$descriptions["Satz6.17a"]=" \$p\\neq q \\rightarrow Col(p,q,p)\$";
$descriptions["Satz6.17b"]="\$ p\\neq q \\land Col(p,q,x) \\rightarrow Col(q,p,x) \$";
$descriptions["Satz6.18"]="\$ a\\neq b \\land p\\neq q \\land Col(p,q,a) \\land Col(p,q,b) \\land Col(p,q,x) \\rightarrow Col(a,b,x)\$.
<br> This is a special case of Satz 6.21, used in proving Satz 6.21.";
$descriptions["Satz6.21"]="If \$Line(p,q)\$ and \$Line(a,b)\$ have two different points in common then they coincide. ";
$descriptions["Satz6.25"]="There exists a point \$x\$ not on \$Line(p,q)\$, that is, such that not \$Col(p,q,x)\$. ";
$descriptions["Satz6.28"]="If \$sameside(a,b,c)\$ and \$sameside(a1,b1,c1)\$, and \$ba\$ and \$bc\$ are respectively
congruent to \$b_1a_1\$ and \$b_1c_1\$, then \$ac\$ is congruent to \$a_1c_1\$. <br>" .
"This is used in Satz 11.4, but is never proved in the book, and belongs in Chapter 6,
so we give it the name Satz 6.28.";
include("DisplayResults.php");
?>
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists