Sindbad~EG File Manager
<div id="pageName0">
<div align="justify">
<h2>Tarski Formalization Project Archives</h2>
<p>The posted input files are now all mechanically generated from a master list of theorems.
For more information about our methodology see the <a href="http://www.michaelbeeson.com/research/FormalTarski/index.php"> top page of this project</a>.
</p>
<table width="650" border="1">
<tr>
<th width="104" scope="col">Input File</th>
<th width="123" scope="col">Proof</th>
<th width="315" scope="col">Commentary</th>
</tr>
<tr>
<td><a href="InputFiles/Satz2.1.in">Satz 2.1</a></td>
<td><a href="Proofs/Satz2.1.prf">Satz2.1.prf </a><br>1 step </td>
<td> (reflexivity) E(a,b,a,b)</td>
</tr>
<tr>
<td><a href="InputFiles/Satz2.2.in">Satz 2.2</a></td>
<td><a href="Proofs/Satz2.2.prf">Satz2.2.prf </a><br>2 steps</td>
<td> (symmetry) E(a,b,c,d) -> E(c,d,a,b)</td>
</tr>
<tr>
<td><a href="InputFiles/Satz2.3.in">Satz 2.3</a></td>
<td><a href="Proofs/Satz2.3.prf">Satz2.3.prf </a><br>3 steps</td>
<td> (transitivity) E(a,b,c,d) and E(c,d,e,f) -> E(a,b,e,f)</td>
</tr>
<tr>
<td><a href="InputFiles/Satz2.4.in">Satz 2.4</a></td>
<td><a href="Proofs/Satz2.4.prf">Satz2.4.prf </a><br>1 step</td>
<td> E(a,b,c,d) -> E(b,a,c,d)</td>
</tr>
<tr>
<td><a href="InputFiles/Satz2.5.in">Satz 2.5</a></td>
<td><a href="Proofs/Satz2.5.prf">Satz2.5.prf </a><br>3 steps</td>
<td> E(a,b,c,d) -> E(a,b,d,c)</td>
</tr>
<tr>
<td><a href="InputFiles/Satz2.8.in">Satz 2.8</a></td>
<td><a href="Proofs/Satz2.8.prf">Satz2.8.prf </a><br>5 steps</td>
<td> E(a,a,b,b) (all null segments are congruent)</td>
</tr>
<tr>
<td><a href="InputFiles/Satz2.11.in">Satz 2.11</a></td>
<td><a href="Proofs/Satz2.11.prf">Satz2.11.prf </a><br>14 steps</td>
<td>T(a,b,c,) and T(a1,b1,c1) and <br> E(a,b,a1,b1) and E(b,c,b1,c1) -> E(a,c,a1,c1)</td>
</tr>
<tr>
<td><a href="InputFiles/Satz2.12.in">Satz 2.12</a></td>
<td><a href="Proofs/Satz2.12.prf">Satz2.12.prf /a><br>5 steps<</td>
<td> (uniqueness of segment extension)
<br> q!=a and T(q,a,x) and E(a,x,b,c) and <br> T(q,a,y) and E(a,y,b,c) -> x=y</td>
</tr>
<tr>
<td><a href="InputFiles/Satz2.13.in">Satz 2.13</a></td>
<td><a href="Proofs/Satz2.13.prf">Satz2.13.prf </a><br>2 steps</td>
<td> E(x,y,u,u) -> x=y. Anything congruent to a null segment is a null segment.
<br> This theorem does not occur in the book, and we don't actually need it, but
it seems pretty basic.
</td>
</tr>
<tr>
<td><a href="InputFiles/Satz2.14.in">Satz 2.14</a></td>
<td><a href="Proofs/Satz2.14.prf">Satz2.14.prf </a><br>1 step</td>
<td> E(x,y,u,v) -> E(y,x,v,u)
<br> This theorem does not occur in the book, but we need it in Satz 10.12a and Satz 11.15b
</td>
</tr>
<tr>
<td><a href="InputFiles/Satz2.15.in">Satz 2.15</a></td>
<td><a href="Proofs/Satz2.14.prf">Satz2.15.prf </a><br>13 steps</td>
<td> T(a,b,c) and T(A,B,C) and E(a,b,B,C) and E(b,c,A,B) implies E(a,c,A,C).
<br> This theorem, very similar to 2.11, does not occur in the book, but we need it in Satz 11.15b.
It can be proved very easily using Satz 3.1, but here we prove it without Satz 3.1.
</td>
</tr>
</table>
<p><a href="index.php?include=archive">Back to top of archive</a></p>
</div>
</div>
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists