Sindbad~EG File Manager
% This file was mechanically generated
% from the master list in TarskiTheorems.php.
% Tarski-Szmielew's axiom system is used.
% T is Tarski's B, non-strict betweenness.
% E is equidistance.
% Names for the axioms follow the book SST
% by Schwabhäuser, Szmielew, and Tarski.
% This file attempts to prove Satz7.15a.
set(hyper_res).
set(para_into).
set(para_from).
set(binary_res).
set(ur_res).
set(order_history).
assign(max_seconds,120).
assign(max_mem,2000000).
clear(print_kept).
set(input_sos_first).
set(back_sub).
assign(bsub_hint_wt,-1).
set(keep_hint_subsumers).
assign(max_weight,20).
assign(max_distinct_vars,4).
assign(pick_given_ratio,4).
assign(max_proofs,1).
list(usable).
% Following is axiom A1
E(x,y,y,x).
% Following is axiom A2
-E(x,y,z,v) | -E(x,y,z2,v2) | E(z,v,z2,v2).
% Following is axiom A3
-E(x,y,z,z) | x=y.
% Following is axiom A4
T(x,y,ext(x,y,w,v)).
E(y,ext(x,y,w,v),w,v).
% Following is axiom A5
-E(x,y,x1,y1) | -E(y,z,y1,z1) | -E(x,v,x1,v1) | -E(y,v,y1,v1) | -T(x,y,z)
| -T(x1,y1,z1) | x=y | E(z,v,z1,v1).
% Following is axiom A6
-T(x,y,x) | x=y.
% Following is axiom A7
-T(xa,xp,xc) | -T(xb,xq,xc) | T(xp,ip(xa,xp,xc,xb,xq),xb).
-T(xa,xp,xc) | -T(xb,xq,xc) | T(xq,ip(xa,xp,xc,xb,xq),xa).
% Following is axiom A8
-T(alpha,beta,gamma).
-T(beta,gamma,alpha).
-T(gamma,alpha,beta).
% Following is Satz2.1
E(xa,xb,xa,xb).
% Following is Satz2.2
-E(xa,xb,xc,xd) | E(xc,xd,xa,xb).
% Following is Satz2.3
-E(xa,xb,xc,xd) | -E(xc,xd,xe,xf) | E(xa,xb,xe,xf).
% Following is Satz2.4
-E(xa,xb,xc,xd) | E(xb,xa,xc,xd).
% Following is Satz2.5
-E(xa,xb,xc,xd) | E(xa,xb,xd,xc).
% Following is Satz2.8
E(xa,xa,xb,xb).
% Following is Satz2.11
-T(xa,xb,xc) | -T(xa1,xb1,xc1) | -E(xa,xb,xa1,xb1) | -E(xb,xc,xb1,xc1)
| E(xa,xc,xa1,xc1).
% Following is Satz2.12
xq = xa | -T(xq,xa,xd) | -E(xa,xd,xb,xc) | xd = ext(xq,xa,xb,xc).
% Following is Satz2.13
-E(xb,xc,xa,xa) | xb=xc.
% Following is Satz2.14
-E(xa,xb,xc,xd) | E(xb,xa,xd,xc).
% Following is Satz2.15
-T(xa,xb,xc) | -T(xA,xB,xC) | -E(xa,xb,xB,xC)| -E(xb,xc,xA,xB)
| E(xa,xc,xA,xC).
% Following is Satz3.1
T(xa,xb,xb).
% Following is Satz3.2
-T(xa,xb,xc) | T(xc,xb,xa).
% Following is Satz3.3
T(xa1,xa1,xb1).
% Following is Satz3.4
-T(xa,xb,xc) | -T(xb,xa,xc) | xa = xb.
% Following is Satz3.5a
-T(xa,xb,xd) | -T(xb,xc,xd) | T(xa,xb,xc).
% Following is Satz3.6a
-T(xa,xb,xc) | -T(xa,xc,xd) | T(xb,xc,xd).
% Following is Satz3.7a
-T(xa,xb,xc) | -T(xb,xc,xd) | xb = xc | T(xa,xc,xd).
% Following is Satz3.5b
-T(xa,xb,xd) | -T(xb,xc,xd) | T(xa,xc,xd).
% Following is Satz3.6b
-T(xa,xb,xc) | -T(xa,xc,xd) | T(xa,xb,xd).
% Following is Satz3.7b
-T(xa,xb,xc) | -T(xb,xc,xd) | xb = xc | T(xa,xb,xd).
% Following is Satz3.13a
alpha != beta.
% Following is Satz3.13b
beta != gamma.
% Following is Satz3.13a
alpha != gamma.
% Following is Satz3.14a
T(xa,xb,ext(xa,xb,alpha,gamma)).
% Following is Satz3.14b
xb != ext(xa,xb,alpha,gamma).
% Following is Satz3.17
-T(xa,xb,xc) | -T(xa1,xb1,xc) | -T(xa,xp,xa1)
| T(xp,crossbar(xa,xb,xc,xa1,xb1,xp),xc).
-T(xa,xb,xc) | -T(xa1,xb1,xc) | -T(xa,xp,xa1)
| T(xb,crossbar(xa,xb,xc,xa1,xb1,xp),xb1).
% Following is Satz4.2
-IFS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E(xb,xd,xb1,xd1).
% Following is Satz4.3
-T(xa,xb,xc) | -T(xa1,xb1,xc1) | -E(xa,xc,xa1,xc1) | -E(xb,xc,xb1,xc1)
| E(xa,xb,xa1,xb1).
% Following is Satz4.5
-T(xa,xb,xc) | -E(xa,xc,xa1,xc1) | T(xa1,insert(xa,xb,xa1,xc1),xc1).
-T(xa,xb,xc) | -E(xa,xc,xa1,xc1) | E3(xa,xb,xc,xa1,insert(xa,xb,xa1,xc1),xc1).
% Following is Satz4.6
-T(xa,xb,xc) | -E3(xa,xb,xc,xa1,xb1,xc1) | T(xa1,xb1,xc1).
% Following is Satz4.11a
-Col(xa,xb,xc) | Col(xb,xc,xa).
% Following is Satz4.11b
-Col(xa,xb,xc) | Col(xc,xa,xb).
% Following is Satz4.11c
-Col(xa,xb,xc) | Col(xc,xb,xa).
% Following is Satz4.11d
-Col(xa,xb,xc) | Col(xb,xa,xc).
% Following is Satz4.11e
-Col(xa,xb,xc) | Col(xa,xc,xb).
% Following is Satz4.12
Col(xa,xa,xb).
% Following is Satz4.12b
Col(xa,xb,xa).
% Following is Satz4.13
-Col(xa,xb,xc) | - E3(xa,xb,xc,xa1,xb1,xc1) | Col(xa1,xb1,xc1).
% Following is Satz4.14
-Col(xa,xb,xc) | -E(xa,xb,xa1,xb1)
| E3(xa,xb,xc,xa1,xb1,insert5(xa,xb,xc,xa1,xb1)).
% Following is Satz4.16
-FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | xa = xb | E(xc,xd,xc1,xd1).
% Following is Satz4.17
xa = xb | -Col(xa,xb,xc) | -E(xa,xp,xa,xq) | -E(xb,xp,xb,xq) |E(xc,xp,xc,xq).
% Following is Satz4.18
xa = xb | -Col(xa,xb,xc) | -E(xa,xc,xa,xc1) | -E(xb,xc,xb,xc1) | xc = xc1.
% Following is Satz4.19
-T(xa,xc,xb) | -E(xa,xc,xa,xc1) | -E(xb,xc,xb,xc1) | xc = xc1.
% Following is Satz5.1
xa = xb | -T(xa,xb,xc) | -T(xa,xb,xd) | T(xa,xc,xd) | T(xa,xd,xc).
% Following is Satz5.2
xa = xb | -T(xa,xb,xc) | -T(xa,xb,xd)| T(xb,xc,xd) | T(xb,xd,xc).
% Following is Satz5.3
-T(xa,xb,xd) | -T(xa,xc,xd) | T(xa,xb,xc) | T(xa,xc,xb).
% Following is Satz5.5a
-le(xa,xb,xc,xd) | T(xa,xb,ins(xc,xd,xa,xb)).
-le(xa,xb,xc,xd) | E(xa,ins(xc,xd,xa,xb),xc,xd).
-le(xa,xb,xc,xd) | ins(xc,xd,xa,xb) = ext(xa,xb,insert(xa,xb,xc,xd),xd).
% Following is Satz5.5b
le(xa,xb,xc,xd) | -T(xa,xb,xe) | -E(xa,xe,xc,xd).
% Following is Satz5.6
-le(xa,xb,xc,xd) | -E(xa,xb,xa1,xb1) | - E(xc,xd,xc1,xd1)
| le(xa1,xb1,xc1,xd1).
% Following is Satz5.7
le(xa,xb,xa,xb).
% Following is Satz5.8
-le(xa,xb,xc,xd) | - le(xc,xd,xe,xf) | le(xa,xb,xe,xf).
% Following is Satz5.9
-le(xa,xb,xc,xd) | -le(xc,xd,xa,xb) | E(xa,xb,xc,xd).
% Following is Satz5.10
le(xa,xb,xc,xd) | le(xc,xd,xa,xb).
% Following is Satz5.11
le(xa,xa,xc,xd).
% Following is Satz5.12a1
-Col(xa,xb,xc) | -T(xa,xb,xc) | le(xa,xb,xa,xc).
% Following is Satz5.12a2
-Col(xa,xb,xc) | -T(xa,xb,xc) | le(xb,xc,xa,xc).
% Following is NarbouxLemma1
-T(xa,xb,xc) | -E(xa,xc,xa,xb) | xc = xb.
% Following is Satz5.12b
-Col(xa,xb,xc) | T(xa,xb,xc) | -le(xa,xb,xa,xc) | -le(xb,xc,xa,xc).
% Following is Satz6.2a
xa = xp | xb = xp | xc = xp | -T(xa,xp,xc) | -T(xb,xp,xc)
| sameside(xa,xp,xb).
% Following is Satz6.2b
xa = xp | xb = xp | xc = xp | -T(xa,xp,xc) | T(xb,xp,xc)
| -sameside(xa,xp,xb).
% Following is Satz6.3a
-sameside(xa,xp,xb) | xa != xp.
-sameside(xa,xp,xb) | xb != xp.
-sameside(xa,xp,xb) | c63(xa,xp,xb) != xp.
-sameside(xa,xp,xb) | T(xa,xp,c63(xa,xp,xb)).
-sameside(xa,xp,xb) | T(xb,xp,c63(xa,xp,xb)).
% Following is Satz6.3b
sameside(xa,xp,xb) | xa=xp | xb = xp | xc = xp | -T(xa,xp,xc) | -T(xb,xp,xc).
% Following is Satz6.4a
-sameside(xa,xp,xb) | Col(xa,xp,xb).
-sameside(xa,xp,xb) | -T(xa,xp,xb).
% Following is Satz6.4b
sameside(xa,xp,xb) | -Col(xa,xp,xb) | T(xa,xp,xb).
% Following is Satz6.5
xa = xp | sameside(xa,xp,xa).
% Following is Satz6.6
-sameside(xa,xp,xb) | sameside(xb,xp,xa).
% Following is Satz6.7
-sameside(xa,xp,xb) | -sameside(xb,xp,xc) | sameside(xa,xp,xc).
% Following is Satz6.11a
xr = xa | xb = xc | sameside(insert(xb,xc,xa,xr),xa,xr).
xr = xa | xb = xc | E(xa,insert(xb,xc,xa,xr),xb,xc).
% Following is Satz6.11b
xr = xa | xb = xc | -sameside(xp,xa,xr) | -E(xa,xp,xb,xc)
| -sameside(xq,xa,xr) | -E(xa,xq,xb,xc) | xp=xq.
% Following is Satz6.13a
-sameside(xa,xp,xb) | -le(xp,xa,xp,xb) | T(xp,xa,xb).
% Following is Satz6.13b
-sameside(xa,xp,xb) | le(xp,xa,xp,xb) | -T(xp,xa,xb).
% Following is Satz6.15a
xp = xq | xp = xr | -T(xq,xp,xr) | -Col(xa,xp,xq) | xa = xp
| sameside(xa,xp,xq) | sameside(xa,xp,xr).
% Following is Satz6.15b
xp = xq | xp = xr | -T(xq,xp,xr) | -sameside(xa,xp,xq) | Col(xa,xp,xq).
% Following is Satz6.15c
xp = xq | xp = xr | -T(xq,xp,xr) | -sameside(xa,xp,xr) | Col(xa,xp,xq).
% Following is Satz6.15d
xp = xq | xp = xr | -T(xq,xp,xr) | xa != xp | Col(xa,xp,xq).
% Following is Satz6.16a
xa=xb | -T(xc,xa,xb) | -T(xd,xa,xb) | T(xd,xc,xb) | T(xc,xd,xb).
% Following is Satz6.16b
xp = xq | xcs = xp | -Col(xp,xq,xcs) | -Col(xp,xq,xr) | Col(xp,xcs,xr).
% Following is Satz6.17a
xp = xq | Col(xp,xq,xp).
% Following is Satz6.17b
xp = xq | -Col(xp,xq,xr) | Col(xq,xp,xr).
% Following is Satz6.18
xa = xb | xp = xq | -Col(xp,xq,xa) | -Col(xp,xq,xb) | -Col(xp,xq,xr)
| Col(xa,xb,xr).
% Following is Satz6.21
xa = xb | xp = xq | -Col(xa,xb,xc) | -Col(xp,xq,xc) | -Col(xa,xb,xd)
| -Col(xp,xq,xd) | xc=xd | -Col(xa,xb,xe) | Col(xp,xq,xe).
% Following is Satz6.25
xa = xb | -Col(xa,xb,pointOffLine(xa,xb)).
% Following is Satz6.28
-sameside(xa,xb,xc)| -sameside(xa1,xb1,xc1) | -E(xb,xa,xb1,xa1)
| -E(xb,xc,xb1,xc1) | E(xa,xc,xa1,xc1).
% Following is Satz7.2
-M(xa,xm,xb) | M(xb,xm,xa).
% Following is Satz7.3a
-M(xa,xm,xa) | xm = xa.
% Following is Satz7.3b
M(xa,xm,xa) | xm != xa.
% Following is Satz7.4a
M(xp,xa,s(xa,xp)).
% Following is Satz7.4b
-M(xp,xa,xr) | -M(xp,xa,xq) | xr=xq.
% Following is Satz7.6
-M(xp,xa,xq) | xq = s(xa,xp).
% Following is Satz7.7
s(xa,s(xa,xp)) = xp.
% Following is Satz7.8
s(xa,xp) != xr | s(xa,xq) != xr | xp = xq.
% Following is Satz7.9
s(xa,xp) != s(xa,xq) | xp = xq.
% Following is Satz7.10a
s(xa,xp) != xp | xp = xa.
% Following is Satz7.10b
s(xa,xp)=xp | xp != xa.
% Following is Satz7.13
E(xp,xq,s(xa,xp),s(xa,xq)).
% Following defines the function insert
insert(xa,xb,xa1,xc1) = ext(ext(xc1,xa1,alpha,gamma),xa1,xa,xb).
% Following is Defn2.10
-AFS(xa,xb,xc,xd,za,zb,zc,zd) | T(xa,xb,xc).
-AFS(xa,xb,xc,xd,za,zb,zc,zd) | T(za,zb,zc).
-AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xb,za,zb).
-AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xb,xc,zb,zc).
-AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xd,za,zd).
-AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xb,xd,zb,zd).
-T(xa,xb,xc) | -T(za,zb,zc) | -E(xa,xb,za,zb) | -E(xb,xc,zb,zc)
| -E(xa,xd,za,zd) | -E(xb,xd,zb,zd)| AFS(xa,xb,xc,xd,za,zb,zc,zd).
% Following is Defn4.1
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | T(xa,xb,xc).
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | T(za,zb,zc).
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xc,za,zc).
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xb,xc,zb,zc).
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xd,za,zd).
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xc,xd,zc,zd).
-T(xa,xb,xc) | -T(za,zb,zc) | -E(xa,xc,za,zc) | -E(xb,xc,zb,zc)
| -E(xa,xd,za,zd) | -E(xc,xd,zc,zd)| IFS(xa,xb,xc,xd,za,zb,zc,zd).
% Following is Defn4.4
-E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa1,xa2,xb1,xb2).
-E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa1,xa3,xb1,xb3).
-E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa2,xa3,xb2,xb3).
-E(xa1,xa2,xb1,xb2) | -E(xa1,xa3,xb1,xb3) | -E(xa2,xa3,xb2,xb3)
| E3(xa1,xa2,xa3,xb1,xb2,xb3).
% Following is Defn4.10
-Col(xa,xb,xc) | T(xa,xb,xc) | T(xb,xc,xa) | T(xc,xa,xb).
Col(xa,xb,xc) | -T(xa,xb,xc).
Col(xa,xb,xc) | -T(xb,xc,xa).
Col(xa,xb,xc) | -T(xc,xa,xb).
% Following is Defn4.15
-FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | Col(xa,xb,xc).
-FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E3(xa,xb,xc,xa1,xb1,xc1).
-FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E(xa,xd,xa1,xd1).
-FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E(xb,xd,xb1,xd1).
-Col(xa,xb,xc) | -E3(xa,xb,xc,xa1,xb1,xc1) | -E(xa,xd,xa1,xd1)
| -E(xb,xd,xb1,xd1) | FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1).
% Following is Defn5.4
-le(xa,xb,xc,xd) | T(xc,insert(xa,xb,xc,xd),xd).
-le(xa,xb,xc,xd) | E(xa,xb,xc,insert(xa,xb,xc,xd)).
-T(xc,y,xd) | -E(xa,xb,xc,y) | le(xa,xb,xc,xd).
% Following is Defn6.1
-sameside(xa,xp,xb) | xa != xp.
-sameside(xa,xp,xb) | xb != xp.
-sameside(xa,xp,xb) | T(xp,xa,xb) | T(xp,xb,xa).
-T(xp,xa,xb) | xa=xp |xb=xp | sameside(xa,xp,xb).
-T(xp,xb,xa) | xa=xp | xb=xp | sameside(xa,xp,xb).
% Following is Defn7.1
-M(xa,xm,xb) | T(xa,xm,xb).
-M(xa,xm,xb) | E(xm,xa,xm,xb).
-T(xa,xm,xb) | -E(xm,xa,xm,xb) | M(xa,xm,xb).
% Following is Defn7.23
-KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | T(xa1,xc,xa2).
-KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | T(xb1,xc,xb2).
-KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | E(xc,xa1,xc,xb1).
-KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | E(xc,xa2,xc,xb2).
-KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | M(xa1,xm1,xb1).
-KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | M(xa2,xm2,xb2).
-T(xa1,xc,xa2) | -T(xb1,xc,xb2) | -E(xc,xa1,xc,xb1) | -E(xc,xa2,xc,xb2)
| -M(xa1,xm1,xb1) | -M(xa2,xm2,xb2) | KF(xa1,xm1,xb1,xc,xb2,xm2,xa2).
end_of_list.
list(demodulators).
% Following is Satz 7.7, the only theorem in SST that is an equality.
s(xa,s(xa,xp)) = xp.
end_of_list.
list(sos).
% Following is the negated form of Satz7.15a
T(p,q,r).
-T(s(a,p),s(a,q),s(a,r)).
end_of_list.
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists