Sindbad~EG File Manager
% Tarski-Szmielew's axiom system
% T is Tarski's B, non-strict betweenness
% E is equidistance
% Names for the axioms as in SST.
% This file assumes axioms A4, A5, and Satz 3.6, and the definition of IFS, and Satz 4.2, 4.3, definition 4.4, Satz 4.5, 4.6,
% definition 4.10, and proves Satz 4.11
set(hyper_res).
set(para_into).
set(para_from).
% set(ur_res).
% set(binary_res).
% set(unit_deletion).
set(order_history).
assign(report,5400).
assign(max_seconds, 1).
assign(max_mem,840000).
clear(print_kept).
%set(very_verbose).
set(input_sos_first).
assign(max_weight,25).
assign(max_distinct_vars,11).
assign(pick_given_ratio,4).
assign(max_proofs,40).
assign(heat,0).
weight_list(pick_and_purge).
end_of_list.
list(usable).
E(x,y,y,x). % A1 from page 10 of sst
-E(x,y,z,v) | -E(x,y,z2,v2) | E(z,v,z2,v2). % A2
-E(x,y,z,z) | x=y. % A3
T(x,y,ext(x,y,w,v)). % A4, first half
E(y,ext(x,y,w,v),w,v). % A4, second half
-E(x,y,x1,y1) | -E(y,z,y1,z1) | -E(x,v,x1,v1) | -E(y,v,y1,v1)
| -T(x,y,z) | -T(x1,y1,z1) | x=y | E(z,v,z1,v1). % A5
-T(x,y,x) | x=y. % A6
% -T(xa,xp,xc) | -T(xb,xq,xc) | T(xp,ip(xa,xp,xc,xb,xq),xb).
%A7, first part (inner Pasch)
% -T(xa,xp,xc) | -T(xb,xq,xc) | T(xq,ip(xa,xp,xc,xb,xq),xa).
%A7, second part (inner Pasch)
-T(alpha,beta,gamma). %A8, three lines.
-T(beta,gamma,alpha).
-T(gamma,alpha,beta).
E(x,y,x,y). % Satz2-1
-E(xa,xb,xc,xd) | E(xc,xd,xa,xb). % Satz2-2
-E(xa,xb,xc,xd) | E(xb,xa,xc,xd). % Satz2-4
-E(xa,xb,xc,xd) | -E(xc,xd,xe,xf) | E(xa,xb,xe,xf). %Satz2-3
-E(xa,xb,xc,xd) | E(xa,xb,xd,xc). % Satz2-5
E(x,x,y,y). % Satz 2-8
-T(xa,xb,xc) | -T(xa1,xb1,xc1) | -E(xa,xb,xa1,xb1) |
-E(xb,xc,xb1,xc1) | E(xa,xc,xa1,xc1). % Satz 2.11
xq = xa | -T(xq,xa,u) | -E(xa,u,xc,xd) | ext(xq,xa,xc,xd) = u. % Satz 2.12
-E(u,v,x,x) | u=v. % Need to prove this
T(x,y,y). % Satz 3.1
-T(xa,xb,xc) | T(xc,xb,xa). % Satz 3.2.
T(xa,xa,xb). % Satz 3.3
-T(xa,xb,xc) | -T(xb,xa,xc) | xa = xb. % Satz 3.4.
-T(xa,xb,xd) | -T(xb,xc,xd) | T(xa,xb,xc). % Satz 3.51.
-T(xa,xb,xd) | -T(xb,xc,xd) | T(xa,xc,xd). % Satz 3.52.
-T(xa,xb,xc) | -T(xa,xc,xd) | T(xb,xc,xd). % Satz 3.61.
-T(xa,xb,xc) | -T(xa,xc,xd) | T(xa,xb,xd). % Satz 3.62.
-T(xa,xb,xc) | -T(xb,xc,xd) | xb = xc | T(xa,xc,xd). % Satz 3.71
-T(xa,xb,xc) | -T(xb,xc,xd) | xb = xc | T(xa,xb,xd). % Satz 3.72
-IFS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E(xb,xd,xb1,xd1). % Satz 4.2
-T(xa,xb,xc) | -T(xa1,xb1,xc1) | -E(xa,xc,xa1,xc1)
| -E(xb,xc,xb1,xc1) | E(xa,xb,xa1,xb1). % Satz 4.3
alpha != beta. % Satz 3.13
beta != gamma.
alpha != gamma.
T(xa,xb,ext(xa,xb,alpha,gamma)). % Satz 3.14, first half
xb != ext(xa,xb,alpha,gamma). % Satz 3.14, second half
% The following many clauses are Definition 4.1
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | T(xa,xb,xc).
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | T(za,zb,zc).
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xc,za,zc).
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xb,xc,zb,zc).
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xd,za,zd).
-IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xc,xd,zc,zd).
-T(xa,xb,xc) | -T(za,zb,zc) | -E(xa,xc,za,zc) | -E(xb,xc,zb,zc)
| -E(xa,xd,za,zd) | -E(xc,xd,zc,zd) | IFS(xa,xb,xc,xd,za,zb,zc,zd).
% Following 4 are definition 4.4 for n=3
-E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa1,xa2,xb1,xb2).
-E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa1,xa3,xb1,xb3).
-E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa2,xa3,xb2,xb3).
-E(xa1,xa2,xb1,xb2) | -E(xa1,xa3,xb1,xb3) | -E(xa2,xa3,xb2,xb3)
| E3(xa1,xa2,xa3,xb1,xb2,xb3).
% Following three lines are Satz 4.5
-T(xa,xb,xc) | -E(xa,xc,xa1,xc1) | T(xa1,insert(xa,xb,xa1,xc1),xc1).
-T(xa,xb,xc) | -E(xa,xc,xa1,xc1) | E3(xa,xb,xc,xa1,insert(xa,xb,xa1,xc1),xc1).
insert(xa,xb,xa1,xc1) = ext(ext(xc1,xa1,alpha,gamma),xa1,xa,xb).
-T(xa,xb,xc) | -E3(xa,xb,xc,xa1,xb1,xc1) | T(xa1,xb1,xc1). % Satz 4.6
% following is Definition 4.10
-Col(xa,xb,xc) | T(xa,xb,xc) | T(xb,xc,xa) | T(xc,xa,xb).
Col(xa,xb,xc) | -T(xa,xb,xc).
Col(xa,xb,xc) | -T(xb,xc,xa).
Col(xa,xb,xc) | -T(xc,xa,xb).
end_of_list.
list(passive).
end_of_list.
list(sos).
Col(a,b,c).
-Col(b,c,a) | -Col(c,a,b) | -Col(c,b,a) | -Col(b,a,c) | -Col(a,c,b).
end_of_list.
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists