Sindbad~EG File Manager
% This file was mechanically generated
% from the master list in TarskiTheorems.php.
% Tarski-Szmielew's axiom system is used.
% T is Tarski's B, non-strict betweenness.
% E is equidistance.
% Names for the axioms follow the book SST
% by Schwabhäuser, Szmielew, and Tarski.
% This file attempts to prove Satz2.3.
set(hyper_res).
set(para_into).
set(para_from).
set(binary_res).
set(ur_res).
set(order_history).
assign(max_seconds,120).
assign(max_mem,2000000).
clear(print_kept).
set(input_sos_first).
set(back_sub).
assign(bsub_hint_wt,-1).
set(keep_hint_subsumers).
assign(max_weight,20).
assign(max_distinct_vars,3).
assign(pick_given_ratio,4).
assign(max_proofs,1).
list(usable).
% Following is axiom A1
E(x,y,y,x).
% Following is axiom A2
-E(x,y,z,v) | -E(x,y,z2,v2) | E(z,v,z2,v2).
% Following is axiom A3
-E(x,y,z,z) | x=y.
% Following is axiom A4
T(x,y,ext(x,y,w,v)).
E(y,ext(x,y,w,v),w,v).
% Following is axiom A5
-E(x,y,x1,y1) | -E(y,z,y1,z1) | -E(x,v,x1,v1) | -E(y,v,y1,v1) | -T(x,y,z)
| -T(x1,y1,z1) | x=y | E(z,v,z1,v1).
% Following is Satz2.1
E(xa,xb,xa,xb).
% Following is Satz2.2
-E(xa,xb,xc,xd) | E(xc,xd,xa,xb).
end_of_list.
list(sos).
% Following is the negated form of Satz2.3
E(a,b,c,d).
E(c,d,e,f).
-E(a,b,e,f).
end_of_list.
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists