Sindbad~EG File Manager

Current Path : /usr/home/beeson/Otter-Lambda/yyy/
Upload File :
Current File : /usr/home/beeson/Otter-Lambda/yyy/calc.h

/* prototypes of operators on calculus menus and not on trig or algebra menus */

#define ALGOP(foo)  MEXPORT_ALGEBRA int foo(term, term, term *, char *);
#define OP(foo)  MEXPORT_TRIGCALC int foo(term, term, term *, char *);
                                     /* LIMITS  */
OP(testlimit)   /* experiment numerically */
OP(limdif)  /* lim(u-v) = lim(u)-lim(v) */
OP(limsum)  /* lim(u+v) = lim(u)+lim(v) */
OP(limsum1)  /* factor denominators in sum in limit */
OP(limsum2) /* take common denom when limit of a summand is infinity */
OP(limsum3) /* eliminate negexps in sum inside limit when one limit is infinity */
OP(limsum4) /* rewrite trig functions in sin,cos in limit of sum */
OP(limminus) /* lim(-u) = - lim u */
OP(limconst)  /* lim(x->a,c)=c (c const) */
OP(limident)  /* lim(x->a,x)=a */
OP(limlinear) /* lim(cu)=c lim u (c const) */
OP(limprod)   /* lim(uv)= lim(u) lim(v) */
OP(limrecip)  /* lim (1/v) = 1/(lim v) or lim(c/v)=c/(lim v)     (c constant) */
OP(limquotient) /* lim (u/v)=(lim u)/(lim v) */
OP(limsqrt1)   /* �a/b = �(a/b�)  if b>0 */
OP(limsqrt2)   /* �a/b = -�(a/b�) if b<0 */
OP(limroot1)   /* ��a/b = ��(a/b�) (b>0 or n odd) */
OP(limroot2)   /* ��a/b = -��(a/b�) (b<0, n even) */
OP(limsqrtdenom1)   /* a/�b = �(a�/b)  if a�0 */
OP(limsqrtdenom2)   /*a/�b = -�(a�/b) if a�0 */
OP(limrootdenom1)   /* a/��b = ��(a�/b) (a�0 or n odd) */
OP(limrootdenom2)   /* a/��b = -��(a�/b) (a�0, n even) */
OP(limapartandfactor) /* lim (ab+ac+d)/q = lim a(b+c)/q + lim d/q */


OP(limpower)   /* lim u� = (lim u)� */
OP(limexponent)  /* lim u^v = (lim u) ^ (lim v) */
OP(limexponent2) /* lim c^v = c^lim v */
OP(limoddroot)  /* lim ��u)=��(lim u)       if n is odd */
OP(limevenroot) /* lim ��u)=��(lim u)   if lim u > 0 */
OP(limsqrt)    /* lim �u)=�(lim u) if lim u>0 */
OP(limpoly)    /* lim(x->a,f(x))= f(a)      (polynomial f) */
OP(limabs)     /* lim �u� = �lim u� */
OP(limsin1)    /* (sin x)/x ->1 as x->0 */
OP(limtan1)    /* (tan x)/x ->1 as x->0 */
OP(limcos1)    /* (1-cos x)/x ->0 as x->0 */
OP(limcos2)    /* (1-cos x)/x� -> 1/2 as x->0 */
OP(limsinh1)    /* (sinh x)/x ->1 as x->0 */
OP(limtanh1)    /* (tanh x)/x ->1 as x->0 */
OP(limcosh1)    /* (cosh x -1)/x ->0 as x->0 */
OP(limcosh2)    /* (cosh x -1)/x� -> 1/2 as x->0 */
OP(limln1)     /* lim(x->0, ln(1+x)/x) = 1 */
OP(limexp1)    /* lim(x->0, (e^x-1)/x = 1  */
OP(limexp2)    /* lim(x->0, (e^(-x)-1)/x = 1  */
OP(limosccos)
OP(limoscsin)
OP(limosctan)
OP(liminfcos)
OP(liminfsin)
OP(liminftan)
OP(limcontinuous)
OP(limlogisloglim)
OP(quotientofpowers)
OP(limrationalfunction)
OP(factorunderlimit)
OP(limexptolog)    /*  lim u^v = lim e^(v ln u) */
OP(createcompoundfraction)
OP(isolateln)
OP(isolatelnpower)
OP(exptodenom)
OP(negexptodenom)
OP(trigtodenom)
ALGOP(apartandfactor)
OP(lhopital)
OP(limlog)    /* lim u = e^(lim ln u) */
OP(expundefined)
OP(limundefined)
OP(rationalizefraction)
OP(limvalop)   /* file limval.c */
OP(defnofe)
OP(changelimitvariable)
OP(inflimpower1)
OP(inflimpower2)
OP(squeezetheorem)
OP(pulloutnonzerolimit)
ALGOP(factoroutconstant)
OP(multnumdenom)
OP(divnumdenom)
OP(divnumdenom2)
OP(limpowertimeslnabs)

OP(liminverseevenpower)         /* infinite_limits */
OP(liminverseoddpower)
OP(lim1inverseleft)
OP(lim1inverseright)
OP(limquoinfinite)  /* lim u/v when lim v = 0, lim u !=0 */
OP(limlnsing)
OP(limtansing)
OP(limcotsing)
OP(limsecsing)
OP(limcscsing)
OP(limexpinf)
OP(limexpinf2)
OP(limlnright)
OP(limsqrtinf)
OP(limrootinf)
OP(limarctaninf)
OP(limarccotinf)
OP(limarccotinf2)
OP(limtanhinf)
OP(invertlim)
OP(limthruexp)
OP(limthrusin)
OP(limthrucos)
OP(limthrulog)
OP(infinityovernonzero)
OP(nonzerooverinfinity)
OP(infinitytimesinfinity)
OP(timesinfinity)
OP(addinfinity)
OP(infinityplusinfinity)
OP(infinityminusinfinity)
OP(zerodenom)
OP(zerodenom2)
OP(zerodenom3)
OP(infinityoverzero)
OP(infinityoverzero2)
OP(infinityoverzero3)
OP(infinityoverzerosq)
OP(infinityoverzero2n)
OP(toinfinity1)
OP(toinfinity0)
OP(tominusinfinity1)
OP(tominusinfinity0)
OP(lninfinity)
OP(lnzero)
OP(sqrtinfinity)
OP(rootinfinity)
OP(powerofinfinity)
OP(ataninfinity)
OP(acotinfinity)
OP(acotminusinfinity)
OP(asecinfinity)
OP(acscinfinity)
OP(triginfinity)
OP(coshinfinity)
OP(sinhinfinity)
OP(tanhinfinity)
OP(rationalizesum)        /* �a - b  = (�a-b)(�a+b)/�a+b)  in limit */
OP(limleadingterms)
OP(limleadingterm)
OP(sumleadingterm)
OP(undefinedpart)
OP(limprod2left)
OP(limprod2right)
OP(zerosqdenom)
OP(zerosqdenom2)
OP(zero2ndenom)
OP(zero2ndenom2)

                                    /* DERIVATIVES */
OP(defnofderivative)
OP(difpower)
OP(difpower2)
OP(difidentity)
OP(difpoly)
OP(diflinear)
OP(diflinear2)
OP(difconstant)
OP(difsum)
OP(difminus)
OP(difproduct)
OP(difrecip)
OP(difquotient)
OP(difroots)
OP(difsqrt)
OP(difsqrt2)
OP(difinversepower)
OP(difsin)
OP(difcos)
OP(diftan)
OP(difsec)
OP(difcot)
OP(difcsc)
OP(difatan)
OP(difasin)
OP(difacos)
OP(difexp)
OP(difln)
OP(diflnabs)
OP(diflncos)
OP(diflnsin)
OP(diflncosh)
OP(diflnsinh)
OP(difsin2)
OP(difcos2)
OP(diftan2)
OP(difsec2)
OP(difcsc2)
OP(difcot2)
OP(difln2)
OP(diflnabs2)
OP(difatan2)
OP(difasin2)
OP(difacos2)
OP(difexp2)
OP(difatox)
OP(difatox2)
OP(difexponential)
OP(chainrule)
OP(primerule)
OP(fundamentaltheorem2)
OP(difvector)
OP(difmatrix)
OP(secondderivlinear)
OP(secondderiv)
OP(highderiv)
OP(reversesecondderiv)
OP(derivop)
OP(logdif)  /* logarithmic differentiation */
OP(difabs)
OP(difabs2)
OP(difacot)
OP(difacot2)
OP(difasec)
OP(difasec2)
OP(difacsc)
OP(difacsc2)
OP(difatanh)
OP(difacoth)
OP(difasinh)
OP(difacosh)
OP(difasech)
OP(difacsch)
OP(difeqn)
OP(difdif)
OP(difdifn)

                             /* INTEGRALS */
OP(fundamentaltheorem)
OP(int1)
OP(intconst)
OP(intpoly)
OP(intident)
ALGOP(intlinear)
OP(intlinearity)
ALGOP(intminus)
OP(intsum)
OP(intdif)
OP(intpower)
OP(intinversepower)
OP(intsqrt)
OP(intabs)
OP(intcos)
OP(intsin)
OP(intexponential)
OP(inttoatan)
OP(inttoasin)
OP(intexp1)
OP(intexp2)
OP(intexp3)
OP(intexp4)
OP(intexp5)
OP(intexp6)
OP(intln)
OP(intsinh)
OP(intcosh)
OP(inttanh)
OP(intrecip)
OP(intrecip2)
OP(intrecip3)
OP(inttan)
OP(intcot)
OP(intsec)
OP(intcsc)
OP(intcscsq)
OP(intcotsq)
OP(intsecsq)
OP(inttansq)
OP(inttoerf)
OP(inttoacoth)
OP(inttoatanh)
OP(inttolnratio1)
OP(inttolnratio2)
OP(inttolnratio3)
OP(inttoacos)
OP(intvector)
OP(intmatrix)
OP(integratebyparts)
OP(autointegratebyparts)
OP(transferintegral)
OP(equatetoproblem)
OP(combineconstantsofintegration)
OP(choosesubstitution)
OP(autochoosesubstitution)
OP(difsubstitution)
OP(showcallingproblem)
OP(trysubstitution)
OP(changeintegrationvariable)
OP(simpleint)
OP(trigsubsin)
OP(trigsubsec)
OP(trigsubtan)
OP(trigsubtanh)
OP(trigsubsinh)
OP(trigsubcosh)
OP(yourtrigsub)
OP(intcsch)
OP(intcoth)
OP(intsech)
ALGOP(partialfractionsop)
OP(completethesquare1)
OP(intsinsq)
OP(intcossq)
OP(intsubsin)
OP(intsubcos)
OP(intsubtan)
OP(intsubcot)
OP(intsubsec)
OP(intsubcsc)
OP(weierstrass)
OP(tantosecinint)
OP(cottocscinint)
OP(intsecpower)
OP(intcscpower)
ALGOP(trigrationalizedenom1)
ALGOP(trigrationalizedenom2)
ALGOP(trigrationalizedenom3)
ALGOP(trigrationalizedenom4)
ALGOP(trigrationalizedenom5)
ALGOP(trigrationalizedenom6)
OP(expandintegrand)
OP(multiplyoutintegrand)
OP(inttosec)
OP(inttocsc)
OP(intsin2)
OP(intcos2)
OP(inttan2)
OP(intcot2)
OP(intsec2)
OP(intcsc2)
OP(intsecsq2)
OP(intcscsq2)
OP(inttansq2)
OP(intcotsq2)
OP(inttosec2)
OP(inttocsc2)

                              /* DEFINITE INTEGRATION */
OP(additivity)
OP(switchlimits)
OP(insertpoint)
OP(breakabsint)
OP(evalbar)
OP(evalbarln)
OP(integratenumerically)
OP(pureintegratenumerically)
OP(oddintegrand)
OP(evenintegrand)
OP(integrateemptyinterval)
                              /* SIMPLIFY */
ALGOP(polyvalop)
ALGOP(ratsimpop)
OP(intsub)
OP(autointsub)
ALGOP(factorop)
ALGOP(factordenom)
OP(absorbconstant)

                         /* COMPLEX FUNCTIONS */
ALGOP(complexcos)
ALGOP(complexsin)
ALGOP(complexln)
OP(lnofi)
OP(lnofminusone)
OP(lnofnegative)
ALGOP(complexsqrt)
ALGOP(complexroot)
ALGOP(complexlntopolarform)
ALGOP(complexexponential)
ALGOP(complexexponential2)
ALGOP(etotheipi)
ALGOP(etotheminusipi)
ALGOP(etothei2npi)
ALGOP(etothecoterminal)
ALGOP(complexcosrev)
ALGOP(complexcosrev2)
ALGOP(complexsinrev)
ALGOP(complexsinrev2)
ALGOP(isinh)
ALGOP(icosh)
ALGOP(coshi)
ALGOP(sinhi)
ALGOP(itanh)
ALGOP(icoth)
ALGOP(cothi)
ALGOP(tanhi)

ALGOP(cosisin)
ALGOP(cosminusisin)

                         /* HYPERBOLIC FUNCTIONS */
OP(coshdef)
OP(coshdefrev)
OP(coshdefrev2)
OP(sinhdef)
OP(sinhdefrev)
OP(sinhdefrev2)
OP(tanhdef)
OP(coshsqminussinhsq)
OP(coshsqtosinhsq)
OP(sinhsqtocoshsq)
OP(cosheven)
OP(sinhodd)
OP(sinhsum)
OP(coshsum)
OP(doublesinh)
OP(doublecosh)
OP(coshplussinh)
OP(coshminussinh)
OP(cosh0)
OP(sinh0)
OP(tanhdef)
OP(cothdef)
OP(sechdef)
OP(cschdef)
OP(tanhdefrev)
OP(cothdefrev)
OP(sechdefrev)
OP(cschdefrev)
OP(tanhsqplussechsq)
OP(tanhsqtosechsq)
OP(sechsqtotanhsq)
OP(tanhln)
OP(exptohyper1)
OP(exptohyper2)
OP(sinhsqplus1)
OP(coshsqminus1)
OP(oneminustanhsq)
OP(oneminussechsq)


OP(asinhtoln)
OP(acoshtoln)
OP(atanhtoln)
                      /* MORE_HYPERBOLIC_FUNCTIONS */
OP(difsinh)
OP(difcosh)
OP(diftanh)
OP(difsech)
OP(difcsch)
OP(difcoth)
                          /* BESSEL_FUNCTIONS */
OP(difj0)
OP(difj1)
OP(difjn)
OP(dify0)
OP(dify1)
OP(difyn)

OP(difi0)
OP(difi1)
OP(difin)
OP(difk0)
OP(difk1)
OP(difkn)

/* MAX and MIN */
OP(minmaxexperiment)
OP(addcriticalpoints)
OP(addendpoints)
OP(addundefinedpoints)
OP(rejectpoint)
OP(tabulate)
OP(tabulateexact)
OP(selectmax)
OP(selectmin)
OP(eliminateparameter)
OP(addlimits)
OP(functionisconstant)

/* RELATED_RATES */
OP(eliminatederivative)

/* INTEGRATE ARCTRIG */
OP(intasin)
OP(intacos)
OP(intatan)
OP(intacot)
OP(intacscplus)
OP(intacscminus)
OP(intasecplus)
OP(intasecminus)

/* SG_FUNCTION   */
OP(sgpos)                 /* sg(x) = x if x > 0   */
OP(sgneg)                 /* sg(x) = -x if x < 0  */
OP(sgzero)                /* sg(0) = 0            */
OP(sgodd)                 /* sg(-x) = -sg(x)      */
OP(sgodd2)                /* -sg(x) = sg(-x)      */
OP(sgabs1)                /* sg(x) = abs(x)/x (x nonzero) */
OP(sgabs2)                /* sg(x) = x/abs(x) (x nonzero) */
OP(abssg)                 /* abs(x) = x sg(x)     */
OP(sgevenpower)           /* sg(x)�� = 1, also sg(x)^(even/odd) */
OP(sgoddpower)            /* sg(x)^(2n+1) = sg(x), also sg(x)^odd/odd */
OP(sgrecip)               /* 1/sg(x) = sg(x)      */
OP(difsg)                 /* d/dx sg(x) = 0 (x nonzero) */
OP(intsg)                 /* integral sg(x) = x sg(x) */
OP(sgint)                 /* integral(sg(u)v,x) =
                             sg(u) integral(v,x)  if u is nonzero */
OP(sgassumepos)           /* sg(x) = x and assume x > 0 */
OP(sgassumeneg)           /* sg(x) = -x and assume x < 0 */
OP(sgprod1)               /* sg(ax) = sg(x) if a > 0     */
OP(sgprod2)               /* sg(ax) = -sg(x) if a < 0    */
OP(sgfract1)              /* sg(ax/b) = sg(x) if a/b > 0 */
OP(sgfract2)              /* sg(ax/b) = -sg(x)if a/b < 0 */
OP(sgpower)               /* sg(x^(2n+1)) = sg(x)      */
OP(sgrecip2)               /* sg(1/u) = sg(u) */
OP(sgrecip3)              /* sg(c/u) = sg(u) si c > 0 */
OP(sgtoabs)               /* u sg(u) = |u|    */
OP(abstimessg)            /* |u| sg(u) = u    */
OP(rationalizefraction)    /* called in auto mode only, on limits */

OP(integraltolimit)       /* convert improper integral to limit at infinity */
OP(integraltolimit2)      /* convert impropert integral to limit at minusinfinity */
OP(integraltolimit3)      /* convert improper integral to limit at left endpoint */
OP(integraltolimit4)      /* convert improper integral to limit at right endpoint */
OP(intdivtest1)           /* limit of integrand is not zero at infinity */
OP(intdivtest2)           /* limit of integrand is not zero at infinity */

OP(limtlnt)
OP(limtpowerlnt)
OP(limtlntpower)
OP(limtpowerlntpower)
OP(limlntovert)
OP(limlntpowerovert)
OP(limlntovertpower)
OP(limlntpowerovertpower)
OP(limtoverlnt)
OP(limtoverlntpower)
OP(limtpoweroverlnt)
OP(limtpoweroverlntpower)

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists