Sindbad~EG File Manager

Current Path : /usr/home/beeson/Otter-Lambda/
Upload File :
Current File : /usr/home/beeson/Otter-Lambda/trigineq.o

ELF44(U����E�E�}�<t�}�}t�E���U��E؋B�E܋B�E�U����EȋB�E̋B�E�f�}�%u�U��E؋B�E܋B�E�f�}�t�E���U��EȉD$�ẺD$�EЉD$��D$��D$��D$�$������E��$�E��D$�E��D$����Eă}�t	�E��4�U ����B��B�D$�E$�$����E��E���U����E�E�}�<t�}�}t�E���U��E؋B�E܋B�E�U����EȋB�E̋B�E�f�}�%u�U��E؋B�E܋B�E�f�}�t�E���U��EȉD$�ẺD$�EЉD$��D$��D$��D$�$������E��$�E��D$�E��D$����Eă}�t	�E��4�U ����B��B�D$�E$�$����E��E���U����E�E�}�<t�}�}t�E��]�U��E؋B�E܋B�E�U����EȋB�E̋B�E�f�}�t�E���U��E��B�E��B�E��U��E��D$�E��D$�E��D$��D$��D$��D$�$������E��$�E��D$�E��D$����E��}�t�E���U��EȉD$�ẺD$�EЉD$�E��D$�E��D$�E��D$�$������E��$�E��D$�E��D$����E��}�t	�E��<�U ����B��B�$o����D$�E$�$����E��E���U��WVS����E�E�}�<t�}�}tDž4����F�U��EȋB�E̋B�EЋU����E��B�E��B�E�f�}�tDž4�����U���E��B�E��B�E��]���x�����h�����X�����D$��D$��D$�E��D$�E��D$�E��D$�$�������H�����D$��D$��D$��D$��D$��D$�$�������X����D$��\����D$��`����D$��H����D$��L����D$��P����D$�<$�������h����D$��l����D$��p����D$�4$�������x����D$��|����D$�E��D$��D$��D$��D$�$�������8����E��D$�E��D$�E��D$�EȉD$�ẺD$�EЉD$�$�������8����$��<����D$��@����D$����E��}�tDž4����7�U ����B��B�D$�E$�$���Dž4�����4����e�[^_]�U����E�E�}�<t�}�}t�E���U��E؋B�E܋B�E�U����EȋB�E̋B�E�f�}�%u�E�f�8t�E��f�}�t�E���U��EȉD$�ẺD$�EЉD$��D$��D$��D$�$������E��$�E��D$�E��D$����Eă}�t	�E��4�U ����B��B�D$0�E$�$����E��E���U����E�E�}�<t�}�}t�E��]�U��E؋B�E܋B�E�U����EȋB�E̋B�E�f�}�t�E���U��E��B�E��B�E��U��E��D$�E��D$�E��D$��D$��D$��D$�$������E��$�E��D$�E��D$����E��}�t�E���U��EȉD$�ẺD$�EЉD$�E��D$�E��D$�E��D$�$������E��$�E��D$�E��D$����E��}�t	�E��<�U ����B��B�$p����D$�E$�$����E��E���U����E�E�}�<t�}�}t�E��5�U��E؋B�E܋B�E�U����EȋB�E̋B�E�f�}�t�E���UЋ�E��B�E��B�E��U��E��D$�E��D$�E��D$��D$��D$��D$�$������E��$�E��D$�E��D$����E��}�t�E��w�U���D$��D$��D$�E��D$�E��D$�E��D$�$������E��$�E��D$�E��D$����E��}�t�E���U��E��D$�E��D$�E��D$�E؉D$�E܉D$�E�D$�$������E��$�E��D$�E��D$����E��}�t�E���U��E؉D$�E܉D$�E�D$��D$��D$��D$�$������E��$�E��D$�E��D$����E��}�t	�E��<�U ����B��B�$q����D$�E$�$����E��E���%:;I$>$>:;
:;I8
I!I/	I
:;(
:;

:;I
:;I
8

:;I
8
'II:;
:;I8
&I.?:;'I@
:;I
:;I
4:;I
4:;I?<D"byyy/algebra/trigineq.c/home/beeson/Otter-LambdaGNU C 3.3.5 (Debian 1:3.3.5-13)size_t�x__u_char"�unsigned char__u_short#�short unsigned int__u_int$x__u_long%�long unsigned int__int8_t(signed char__uint8_t)�__int16_t*<short int__uint16_t+�__int32_t,lint__uint32_t-x__int64_t2�long long int__uint64_t3�long long unsigned int__quad_t;�__u_quad_t<�__dev_t��__uid_t�x__gid_t�x__ino_t��__ino64_t��__mode_t�x__nlink_t�x__off_t�rlong int__off64_t��__pid_t�l��__val��#�l�__fsid_t��__clock_t�r__rlim_t��__rlim64_t��__id_t�x__time_t�r__useconds_t�x__suseconds_t�r__daddr_t�l__swblk_t�r__key_t�l__clockid_t�l__timer_t�l__blksize_t�r__blkcnt_t�r__blkcnt64_t��__fsblkcnt_t��__fsblkcnt64_t��__fsfilcnt_t��__fsfilcnt64_t��__ssize_t�l__loff_t�~__qaddr_t�l	�__caddr_t��	�char__intptr_t�l__socklen_t�x
O1_ISupper�_ISlower�_ISalpha�_ISdigit�_ISxdigit� _ISspace��_ISprint��_ISgraph��_ISblank_IScntrl_ISpunct_ISalnumunit[k��digitx�lnx#val�#	kbignumx�signl#n�#d�#bigrat�arg#�-argtag#
t-{
i.r
d/�
b0�u*symbol&�#arity'�#info(�#args)u#	�term*-double#0fractx#varaddx#intexpx#negexpx#ratexpx#rootsx#purex#gcdx#absx#relopx#factorialx#matrix x#inverse"x#functions#x#sums$x#flt%x#complex'x#complexpowers*x#+x
#mod,x#aflag0�� 	
left	{#right	{#line	l
#permanent	l#visible	l#reverse	l#oldeigen		l#defn	
0actualop
�	��l{{��	{3	
men

x#choice
x#operation
	�	b
status
x#choice
x#used
x#inhibited
x#men
x#hashbucket
D	
inh
Aindex
A<#"
B<#kind
D<#link
E
#	�	inhibition
F�	�
,scopex#multorderx#typex#dp�#locus{#"	l#realpart
�#imagpart�# name�
#(�
��varinf$
dldata�#-#	�
dlist�
� #addr�#increment�#indexl#functorx#"l#name �#history!�#	�	parameter##�02varlist&�#nvariables'l#maxvariables(l#eigenvariable)l#currentline*l#parameters+�#nparameters,l#maxparameters-l#varinfo.�# nextdefn/l#$defns0�#(maxdefns1l#,	�	�
	�vardata2�D)factorl#functionl#difl#intlinearl#gcdl#zeropowerl#fractexpl#negexpl#rootproductl# l#$infractionl#(complex!l#,domainflag#l#0ringflag%l#4orderflag&l#8arith'##<hwnd(�#@polyflags)�ba
prop
{#line
l#link
b#	*assumption
*eqnsolver
	�	��l{{��,
$assumptions
�#maxassumptions
<#nextassumption
<#theorems
�#maxtheorems
<#nexttheorem
<#history
�#permhistory
�#maxhistory
x#workspace
�#maxworkspace
�# nextworkspace
!x#$solver
#z#(	�	h	x	�proverdata
$�topicl,,>line<,#nlines=l#(<<�		B�message>
�
numerical_calculation1numerical_calculation2complex_arithmeticsimplify_sumssimplify_productsexpand_menufractionssigned_fractionscompound_fractionscommon_denominators	exponents
expand_powersnegative_exponentssquare_roots
advanced_square_rootsfractional_exponentsnth_rootsroots_of_rootsroots_and_fractionscomplex_numbersfactoringadvanced_factoringsolve_equationsquadratic_equationsnumerical_equationsadvanced_equationscubic_equationslogarithmic_equationscramers_ruleseveral_linear_equationsselection_mode_onlylinear_equations_by_selectionlinear_equations_by_substitution matrix_methods!advanced_matrix_methods"absolute_value#absolute_value_ineq1$absolute_value_ineq2%less_than&greater_than'less_than_or_equals(greater_than_or_equals)square_ineq1*square_ineq2+recip_ineq1,recip_ineq2-root_ineq1.root_ineq2/zero_ineq10zero_ineq21square_ineq32square_ineq43recip_ineq34recip_ineq45root_ineq36root_ineq47zero_ineq38zero_ineq49binomial_theorem:factor_expansion;sigma_notation<advanced_sigma_notation=prove_by_induction>trig_ineq?log_ineq1�log_ineq2�log_ineq3�log_ineq4�logarithms_base10�logarithms�logarithms_base_e�natural_logarithms�reverse_trig�complex_polar_form�logs_to_any_base�change_base�evaluate_trig_function�basic_trig�trig_reciprocals�trig_squares�csc_and_cot_identities�trig_sum�double_angle�multiple_angles�verify_identities�solve_by_30_60_90�solve_by_45_45_90�zeroes_of_trig_functions�inverse_trig_functions�invsimp�adding_arctrig_functions�complementary_trig�complementary_degrees�trig_odd_and_even�trig_periodic�half_angle_identities�product_and_factor_identities�limits�limits_of_quotients�quotients_of_roots�lhopitalmenu�special_limits�hyper_limits�advanced_limits�logarithmic_limits�limits_at_infinity�infinite_limits�infinities�zero_denom�more_infinities�polynomial_derivs�derivatives�dif_trig�dif_explog�dif_inversetrig�chain_rule�minima_and_maxima�implicit_diff�related_rates�simplify�higher_derivatives�basic_integration�trig_integration�trig_integration2�integrate_exp�integrate_by_substitution�integrate_by_parts�fundamental_theorem�definite_integration�improper_integrals�oddandeven�trig_substitutions�trigonometric_integrals�trigrationalize�integrate_rational�integrate_sqrtdenom�integrate_arctrig�simplify_calculus�integrate_hyperbolic�series_geom1�series_geom2�series_geom3�series_geom4�series_geom5�series_ln�series_trig�series_exp�series_atan�series_appearance�series_algebra�series_manipulations�series_convergence_tests�series_convergence2�complex_functions�complex_hyperbolic�hyperbolic_functions�hyperbolic2�more_hyperbolic�inverse_hyperbolic�dif_hyperbolic�dif_inversehyperbolic�sg_function1�sg_function2�bessel_functions�modified_bessel_functions�functions_menu�automode_only�automode_only2�automode_only3�menu_name�V
y	unknownminmaxdamped_oscillationdom_errorbounded_oscillationunbounded_oscillationcomplex_approachapproach��tl�data�{#-��#prev��#	�termlist��dabssinineql#U{�arg{�-�� ��$fx�ta{�Xb{�Herrl�D�abscosineq*l#FU({�arg({�-(�� (��$f*x�ta+{�Xb+{�Herr,l�D�sinineq@lF�U>{�arg>{�->�� >��$f@x�taA{�XbA{�HuA{��errBl��8 coslowerboundXl�RUV{�argV{�-V�� V��$fXx�daY{�HbY{��uY{��leftY{��errZl��� absarctanineqolRvUl{�argl{�-l�� l��$fox�tap{�Xbp{�Herrql�Dc!arctanineq�lv	U�{�arg�{�-��� ���$f�x�ta�{�Xb�{�Hu�{��err�l���!tanineq�l	bU�{�arg�{�-��� ���$f�x�ta�{�Xb�{�Hu�{��err�l��one"{zero"two"true"piover2"	5�
yyy/algebra/usr/lib/gcc-lib/i486-linux/3.3.5/include/usr/include/bits/usr/includeyyytrigineq.cstddef.htypes.hctype.hheap.hbignum.hterms.harith.hdefns.hmodel.hvaux.hpolyval.hproverdl.hglobals.hoperator.hprover.hconstant.h�t��:dr:r�Zd��,rY�t��:dr:r�Zd��,rZ�t��:dr�:Zd�T���rZ�t��:dr�:�`d��,�ٍt��:dr��r�Zd��,rZ�t��:dr�:Zd�Td���rZ�t��:dr�:Zd�Zd�Td�Zd���r$|sin u| � 1$$|cos u| � 1$$1 - u^2/2 � cos u$$|arctan u| � �/2$����|�#A�B
##A�B
F�A�B
��A�B
I���R$A�B
v�A�B
	bA�B
wH"�abssinineqdabscosineq�sinineq�coslowerbound8 absarctanineq� arctanineqc!tanineqbineqcomdenomunsigned intreasonlinenumbernextGCC: (GNU) 3.3.5 (Debian 1:3.3.5-13).symtab.strtab.shstrtab.rel.text.data.bss.debug_abbrev.rel.debug_info.rel.debug_line.rodata.rel.debug_frame.rel.debug_pubnames.rel.debug_aranges.debug_str.note.GNU-stack.comment4b	�: %�+�0�XB�H">	�=�R8/
N	4?^E1Cj�1�f	<?p{L2{w	�?
��2 �	�?��22�3�3&?3��7@	�9��

#$)0##;F�CHP��^bm{���R$��v��	btrigineq.cabssinineqoneleinfertruestrcpyabscosineqsinineqzeroenglishcoslowerboundtwomake_powermake_fractionproducttnegatesumabsarctanineqpiover2arctanineqtanineq������������� +6����]y�����ir{��������*Sv���� +6�!�!�!'AHP[f	'C��������	�	�	�	�	�	!�	!�	!
9
�
�
�
�
�
�
%,4CRy��	�
q�
����$|����
-;�����S W ^ z � � � � !!x!|!�!�!�!B	0	4H	L`	d�	��	��	�

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists