Sindbad~EG File Manager

Current Path : /usr/home/beeson/Otter-Lambda/
Upload File :
Current File : /usr/home/beeson/Otter-Lambda/mtext.o

ELF�T4(U��E��]�U��E��]� I`z���� 4FVl���������-Id I`�������+`��������/?O]ly����)@Yjrz���@���� ?Ra~�������
1KY��������	@	`	�	O�	�	�	 
`
�
�
�
�
�
�
 DYm�]�����(@��
@
f
w
�
�
�
�
'9G��^p���@`���@`~��!9`��!7Q��@_y�����'D]q���� `�� Lh��� C`���@��@�� `�� `��&BKUd�����#;`��@������,G]o�z����  B S d � � �  !`!�!�!�!�!"$"B"O"j"~"�"�"�"�"�" #C#a#}#�#�#$$7$`$�$�$�$�$ %�H%`%�%�%�%�%�	$�% &C&\&��w&�&�&�&�&�& 'N'i'�'�'��'�'�'�'�'(3(P(f(}(�(�(�() )3)L)^)u)�)�)�)**7*�`**�*�*�*�* +A+\+�+�+,",@,`,�,�,�,---J- )Q-h-{-�-�-�)	.`*!.J-6.D.Q.o.�.�.�.�.�.�.
/`* /�.?/`//�/�/�/00-0B0P0^0p0�0�0�0�0�011@1c1}1�1�1�12"2:2O2�2�2�2�23@3c3�3�3�34 414N4�4�4�45%5`5�5�5j"~"�5�5�"�5�"6 6@6�6�6�6�67 767O7�7�7�6�78j"~" 8`8�"�5�"6�8�8�" 9�67`9�9�9:@:�:�:�: ;`;�;�; <`<�<�< =G=�=�=>@>�>�>?`?�?�? @`@�@�@A@A�A�A�A�A�AB@B�B�BC�A�A�A�A@C�C�CD@D�D�D E`E�E�E F�F�FG`G�G�G H`H�H�H I`I�I J`J�JK@K�K�K�K L`L�L�L�L�L�5 M`M�K�M�M N`N�N�N O@O�O�O�O P`P�P�P Q`Q�@�Q�QR@R�R�RS@S�S�ST@T�T�A�A�A�A�A�A�A�A�TU@U�U�UV@V�V�V W`W�W�W X`X�X�X@Y�Y�Y Z`Z�Z�Z [`[�[�[�[�[ \`\�\�\ ]`]�]�] ^`^��^�^�^�^�^_+_H_V_d_r_�_�_�_�_�_ ```�`�`�`�` a`a�a�a�a�a b?b`b�b�b cFcdctc�c�c�c�cd(dDd`d�d�d e`e�e�e�e�e�e�eff9fPfif�f�fgg3gHg_gvg�fg�g�g�g hAh�fg_hth�h�h�h�fg�hi i`i�i�i�i�i�i�i�ij%j=jPjej~j�j�j�j�j�j kBk`k�k�ij�k�k�k�i�k�kl	ll.lAlQlglvllj�l�l�l�l�lm7m`mm�m�m n`n�n�n�n�no@o�o�o�op pSp�p�p�p�pq+q?q\qmq�q�q�q�q�q�qr!r>r�kPrgr�r�r�r�rs!rs1sAsVsks�s�s�s�s�s�s�s t@t_tzt�t�t�tuu0uBuXuju|u�u�u�u�u�u�u
v$v6vHvZvlv~v�v�v�v�v�vw&w>wVw�w�wx@x�x�x�x�xy,yDy`y�y�y z`z�z�z {`{�{�{ |`|�|�| }`}�}�} ~`~�~�~ `�� �`�����$B"�"�"j"~"�"{-��$0�H�e�������@������@������@������@������ �`��������@�������7�O�g������ƈ���9�`���‰ԉ� �`������� �@����:�`������@��y��`y���@������@������@������@������@�_�u���������Ӓ����!�7�M�c�y�������ԓ���5�O�i�������� �`���`~� �`����@����E�`���� �`���� �`���њ� �:�V�e�~���������@��������<�`��������ߝ��@�`������@������@�t�������!�@�b� 
w��������� �5�`������� �`�������ˣ�@�`�v���b���Ȥ� �`���ǥ����'�@������ �`���� �`���� �`�������@�k���� �V�m���`��� �`���Ĭ� �`���ǭ��'�`�����@�_�|����� �:�U�e�|�����İް�� �@�`�����������.�`�������ܲ��@�e�������γ���@�e� �`�����´��@�`�}�γ������˵����@�b�����������5�M�d�������@������@������ �D�_����������1��њN�������ٻ��<�T���l�v�������̼�'l�����l�%�@�`�������ڽl���%�B�`���ƾ۾�$�@����d�u������ �`���� �G�\���������� �>�`��������� �?�`������� �`����� �`����� �H�\�y��������$�@�m���������� ��H�c�����������H�c��� �`����� �`����� �`�����`����� �`����� �`����� �`�̼������ �`����� �`�������@������@��������ڽ����$@������@������$�@������@������@������'@�`�������ڽl���v���� �>�Y�t������@�d�|������@�b�z������@�d�~������@�b�z������@������@������@������@������@������@������@������@������@������@������@������@������@�x����� �`������@������#�:�`�������
�@������@������@�`����� �`����� �`������!�@������)�<�L���������� �H�S�?b������c`a�Dd@��d������� �`������� �?�U�g�~����������� �`���� �@�|��������@����@�e�v����������$�8�L�_�s������@����������$�<�N�a�w�����������!:Sj������
!5Oi��@`��$9Ng����@c���/9IYs������ Pi�����	2@Nb����@au������%:;(
:;I.?:;'I@
:;I
I&I	$>
I!I/4:;I?

4:;I?
!yyy/english/mtext.c/home/beeson/Otter-LambdaGNU C 3.3.5 (Debian 1:3.3.5-13)�
numerical_calculation1numerical_calculation2complex_arithmeticsimplify_sumssimplify_productsexpand_menufractionssigned_fractionscompound_fractionscommon_denominators	exponents
expand_powersnegative_exponentssquare_roots
advanced_square_rootsfractional_exponentsnth_rootsroots_of_rootsroots_and_fractionscomplex_numbersfactoringadvanced_factoringsolve_equationsquadratic_equationsnumerical_equationsadvanced_equationscubic_equationslogarithmic_equationscramers_ruleseveral_linear_equationsselection_mode_onlylinear_equations_by_selectionlinear_equations_by_substitution matrix_methods!advanced_matrix_methods"absolute_value#absolute_value_ineq1$absolute_value_ineq2%less_than&greater_than'less_than_or_equals(greater_than_or_equals)square_ineq1*square_ineq2+recip_ineq1,recip_ineq2-root_ineq1.root_ineq2/zero_ineq10zero_ineq21square_ineq32square_ineq43recip_ineq34recip_ineq45root_ineq36root_ineq47zero_ineq38zero_ineq49binomial_theorem:factor_expansion;sigma_notation<advanced_sigma_notation=prove_by_induction>trig_ineq?log_ineq1�log_ineq2�log_ineq3�log_ineq4�logarithms_base10�logarithms�logarithms_base_e�natural_logarithms�reverse_trig�complex_polar_form�logs_to_any_base�change_base�evaluate_trig_function�basic_trig�trig_reciprocals�trig_squares�csc_and_cot_identities�trig_sum�double_angle�multiple_angles�verify_identities�solve_by_30_60_90�solve_by_45_45_90�zeroes_of_trig_functions�inverse_trig_functions�invsimp�adding_arctrig_functions�complementary_trig�complementary_degrees�trig_odd_and_even�trig_periodic�half_angle_identities�product_and_factor_identities�limits�limits_of_quotients�quotients_of_roots�lhopitalmenu�special_limits�hyper_limits�advanced_limits�logarithmic_limits�limits_at_infinity�infinite_limits�infinities�zero_denom�more_infinities�polynomial_derivs�derivatives�dif_trig�dif_explog�dif_inversetrig�chain_rule�minima_and_maxima�implicit_diff�related_rates�simplify�higher_derivatives�basic_integration�trig_integration�trig_integration2�integrate_exp�integrate_by_substitution�integrate_by_parts�fundamental_theorem�definite_integration�improper_integrals�oddandeven�trig_substitutions�trigonometric_integrals�trigrationalize�integrate_rational�integrate_sqrtdenom�integrate_arctrig�simplify_calculus�integrate_hyperbolic�series_geom1�series_geom2�series_geom3�series_geom4�series_geom5�series_ln�series_trig�series_exp�series_atan�series_appearance�series_algebra�series_manipulations�series_convergence_tests�series_convergence2�complex_functions�complex_hyperbolic�hyperbolic_functions�hyperbolic2�more_hyperbolic�inverse_hyperbolic�dif_hyperbolic�dif_inversehyperbolic�sg_function1�sg_function2�bessel_functions�modified_bessel_functions�functions_menu�automode_only�automode_only2�automode_only3�menu_name�g7
cmdmenuV	7
UiT	P
�=
C
H
	char	int�
menutitleZ	=
UiY	P
�
�
C
�

	unsigned intarithstr1�
�

�
=
�
��
menutext3�

�
�=

menutitles��
T9�
yyy/englishyyymtext.coperator.h�9�.9�arithmeticdecimal calculationcalculate decimal $\sqrt $ or $^n\sqrt $decimal value of $x^n$decimal value of functionfactor integerevaluate numerically at a pointdecimal value of $\pi $decimal value of ecompute function valuefactor polynomial numericallydecimal to fractionexpress as squareexpress as cubeexpress as ?-th powerexpress as power of ?write integer as a^nx = ? + (x-?)$i^2 = -1$i^(4n) = 1i^(4n+1) = ii^(4n+2) = -1i^(4n+3) = -icomplex arithmeticpower of complex numbercomplex arithmetic and powerscomplex decimal calculationinteger factors of integercomplex factors of integerfactor n+mi (n not zero)cancel double minus -(-a)=apush minus in -(a+b) = -a-b-a-b = -(a+b)regroup termsput terms in orderdrop zero terms x+0 = xcancel $\pm $ termscollect $\pm $ terms (once)collect all $\pm $ terms in a suma+b = b+aa(b-c) = -a(c-b)-ab = a(-b)-abc = ab(-c)a(-b)c = ab(-c)$x\times 0 = 0\times x = 0$$x\times 1 = 1\times x = x$a(-b) = -aba(-b-c) = -a(b+c)(-a-b)c = -(a+b)cregroup factorscollect numbersorder factorscollect powersa(b+c)=ab+ac$(a-b)(a+b) = a^2-b^2$$(a + b)^2 = a^2 + 2ab + b^2$$(a - b)^2 = a^2 - 2ab + b^2$$(a-b)(a^2+ab+b^2)=a^3-b^3$$(a+b)(a^2-ab+b^2)=a^3+b^3$ab = bamultiply out product of sumsmultiply out numeratormultiply out denominator$na = a +...+ a$0/a = 0a/1 = aa(1/a) = 1multiply fractions (a/c)(b/d)=ab/cda(b/c) = ab/ccancel  ab/ac = b/cadd fractions $a/c \pm  b/c=(a\pm b)/c$apart  $(a \pm  b)/c = a/c \pm  b/c$apart and cancel $(ac\pm b)/c = a\pm b/c$polynomial divisioncancel by polynomial divisionau/bv=(a/b)(u/v) (integers a,b)a/b = (1/b) aau/b=(a/b)u (real numbers a,b)ab/cd = (a/c)(b/d)ab/c = (a/c) bcancel minus (-a)/(-b) = a/b-(a/b) = (-a)/b-(a/b) = a/(-b)(-a)/b = -(a/b)a/(-b)= -a/b(-a-b)/c = -(a+b)/ca/(-b-c) = -a/(b+c)a/(b-c) = -a/(c-b)-a/(-b-c) = a/(b+c)-a/(b-c) = a/(c-b)-(-a-b)/c = (a+b)/c(a-b)/(c-d) = (b-a)/(d-c)ab/c = a(b/c)(a/c)/(b/c) = a/ba/(b/c)=ac/b (invert and multiply)1/(a/b) = b/a(a/b)/c = a/(bc)(a/b)/c = (a/b)(1/c)(a/b)c/d = ac/bdfactor denominatorcommon denom in fractionfind common denominatorfind common denom (fracts only)multiply fractions (a/b)(c/d)=ac/bdmultiply fractions a(c/d)= ac/dadd fractions $a/c \pm  b/c=(a \pm  b)/c$common denominatorcommon denom (fractions only)common denom and simplify numeratorcommon denom and simp (fracts only)multiply num and denom by ?a^0 = 1  (a not zero)a^1 = a0^b = 0  if b > 01^b = 1$(-1)^n = \pm 1$ (n even or odd)(a^b)^c = a^(bc) if a>0 or $c\in Z$$(-a)^n = (-1)^na^n$$(a/b)^n = a^n/b^n$$(ab)^n = a^nb^n$$(a+b)^2 = a^2+2ab+b^2$expand by binomial theorema^(b+c) = a^b a^c$a^n/b^n = (a/b)^n$b^n/b^m = b^(n-m)ab^n/b^m = a/b^(m-n)a^2 = aaa^3 = aaaa^n = aaa...(n times)a^n = a^?a^(n-?)$(a \pm  b)^2 = a^2 \pm  2ab + b^2$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3a^(bc) = (a^b)^c if $a>0$ or $c\in Z$a^(bc) = (a^c)^b if $a>0$ or $c\in Z$a^(b?) = (a^b)^?1/a^n = (1/a)^na^(-n) = $1/a^n$ (n constant)$a^(-n)/b = 1/(a^nb)$ (n constant)a^(-1) = 1/a$a^(-n) = 1/a^n$$a^(-n)/b = 1/(a^nb)$a/b^(-n) = ab^n$a/b^n = ab^(-n)$a/b = ab^(-1)$(a/b)^(-n) = (b/a)^n$a^(b-c) = a^b/a^c$\sqrt x\sqrt y = \sqrt (xy)$$\sqrt (xy) = \sqrt x\sqrt y$$\sqrt (x^2y) = x\sqrt y$ or $|x|\sqrt y$$\sqrt (x^2)=x$ if $x\ge 0$$\sqrt (x^2)=|x|$factor integer x in $\sqrt x$$\sqrt (x/y) = \sqrt x/\sqrt y$$\sqrt (x/y) = \sqrt |x|/\sqrt |y|$$\sqrt x/\sqrt y = \sqrt (x/y)$$x/\sqrt x = \sqrt x$$\sqrt x/x = 1/\sqrt x$$(\sqrt x)^2^n = x^n$ if $x\ge 0$$(\sqrt x)^(2n+1) = x^n\sqrt x$evaluate $\sqrt $ to rationalevaluate $\sqrt $ to decimalsimple arithmeticshow common factor in $\sqrt u/\sqrt v$factor polynomial under $\sqrt $rationalize denominatorrationalize numerator$\sqrt (x^2)=|x|$ or $\sqrt (x^2^n)=|x|^n$cancel $\sqrt $:  $\sqrt (xy)/\sqrt y = \sqrt x$multiply out under $\sqrt $$a^2-b = (a-\sqrt b)(a+\sqrt b)$$^2\sqrt u = \sqrt u$$\sqrt u = ^2^n\sqrt u^n$$\sqrt u = (^2^n\sqrt u)^n$$\sqrt (u^2^n) = u^n$ if $u^n\ge 0$$\sqrt (u^(2n+1)) = u^n\sqrt u$ if $u^n\ge 0$$a\sqrt b = \sqrt (a^2b)$ if $a\ge 0$rationalize denom and simplify$a ^ \onehalf  = \sqrt a$$a^(n/2) = \sqrt (a^n)$$a^(b/n) = ^n\sqrt (a^b)$$\sqrt a = a ^ \onehalf $$^n\sqrt a = a^(1/n)$$^n\sqrt (a^m) = a^(m/n)$$(^n\sqrt a)^m = a^(m/n)$$(\sqrt a)^m = a^(m/2)$$1/\sqrt a = a^(-\onehalf )$$1/^n\sqrt a = a^(-1/n)$evaluate (-1)^(p/q)factor integer a in a^(p/q)a/b^(p/q) = (a^q/b^p)^(1/q)a^(p/q)/b = (a^p/b^q)^1/q)arithmetic$^n\sqrt x^n\sqrt y = ^n\sqrt (xy)$$^n\sqrt (xy) = ^n\sqrt x ^n\sqrt y$$^n\sqrt x^m = (^n\sqrt x)^m$ if $x\ge 0$ or n odd$^n\sqrt (x^ny) = x ^n\sqrt y$ or $|x|^n\sqrt y$$^n\sqrt (x^n) = x$ if $x\ge 0$ or n odd$^n\sqrt (x^(nm))=x^m$ if $x\ge 0$ or n odd$^2^n\sqrt (x^n) = \sqrt x$$^m^n\sqrt x^m) = ^n\sqrt x$$(^n\sqrt x)^n = x$$(^n\sqrt a)^m = ^n\sqrt (a^m)$$(^n\sqrt a)^(qn+r) = a^q ^n\sqrt (a^r)$factor integer x in $^n\sqrt x$$^n\sqrt (-a) = -^n\sqrt a$, n oddevaluate to rationalfactor polynomial under $^n\sqrt $multiply out under $^n\sqrt $$\sqrt (\sqrt x) = ^4\sqrt x$$\sqrt (^n\sqrt x) = ^2^n\sqrt x$$^n\sqrt (\sqrt x) = ^2^n\sqrt x$$^n\sqrt (^m\sqrt x) = ^n^m\sqrt x$$^n\sqrt (x/y) = ^n\sqrt x/^n\sqrt y$$^n\sqrt x/^n\sqrt y = ^n\sqrt (x/y)$$x/^n\sqrt x = (^n\sqrt x)^(n-1)$$^n\sqrt x/x = 1/(^n\sqrt x)^(n-1)$cancel under $^n\sqrt : ^n\sqrt (ab)/^n\sqrt (bc)=^n\sqrt a/^n\sqrt b$cancel $^n\sqrt $:  $^n\sqrt (xy)/^n\sqrt y = ^n\sqrt x$show common factor in $^n\sqrt u/^n\sqrt v$$a(^n\sqrt b) = ^n\sqrt (a^nb)$ if n odd$a(^n\sqrt b) = ^n\sqrt (a^nb)$ if $a\ge 0$$-^n\sqrt a = ^n\sqrt (-a)$ if n odd$a/^n\sqrt b = ^n\sqrt (a^n/b)$ (n odd or $a\ge 0$)$^n\sqrt a/b = ^n\sqrt (a/b^n)$ (n odd or $b>0$)$\sqrt a/b = \sqrt (a/b^2)$ if $b>0$$a/\sqrt b = \sqrt (a^2/b)$ if $a\ge 0$$(^m^n\sqrt a)^n = ^m\sqrt a$$(^2^n\sqrt a)^n = \sqrt a$1/i = -ia/i = -aia/(bi) = -ai/b$\sqrt (-1) = i$$\sqrt (-a) = i\sqrt a$ if $a\ge 0$clear denominator of i$(a-bi)(a+bi) = a^2+b^2$$a^2+b^2 = (a-bi)(a+bi)$$|u + vi|^2 = u^2 + v^2$$|u + vi| = \sqrt (u^2+v^2)$(u+vi)/w = u/w + (v/w)iwrite in form u+vi$\sqrt(bi)= \sqrt(b/2)+\sqrt(b/2)i$, if b >= 0$\sqrt(-bi)= \sqrt(b/2)-\sqrt(b/2)i$, if b >= 0$\sqrt(a+bi)= \sqrt((a+c)/2)+\sqrt((a-c)/2)i$, if b \ge 0 and $c^2=a^2+b^2$$\sqrt(a-bi)= \sqrt((a+c)/2)-\sqrt((a-c)/2)i$, if b \ge 0 and $c^2=a^2+b^2$factor out numberclear numerical denominatorsab + ac = a(b+c)factor out highest power$a^2+2ab+b^2 = (a+b)^2$$a^2-2ab+b^2 = (a-b)^2$$a^2-b^2 = (a-b)(a+b)$factor quadratic trinomialuse quadratic formula$a^2^n = (a^n)^2$$a^nb^n = (ab)^n$factor integer coefficientsmake a substitution, u = ?eliminate defined variableregard a variable as constantwrite it as a function of ?write it as a function of ? and ?a^(3n) = (a^n)^3a^(?n) = (a^n)^?a^3 - b^3 = (a-b)(a^2+ab+b^2)a^3 + b^3 = (a+b)(a^2-ab+b^2)$a^n-b^n = (a-b)(a^(n-1)+...+b^(n-1))$$a^n-b^n = (a+b)(a^(n-1)-...-b^(n-1))$ (n even)$a^n+b^n=(a+b)(a^(n-1)-...+b^(n-1))$ (n odd)$x^4+a^4=(x^2-\sqrt 2ax+a^2)(x^2+\sqrt 2ax+a^2)$$x^4+(2p-q^2)x^2+p^2=(x^2-qx+p)(x^2+qx+p)$computer makes a substitutionguess a factorsearch for linear factorfactor by groupingwrite it as a polynomial in ?switch sideschange signs of both sidesadd ? to both sidessubtract ? from both sidestransfer ? left to righttransfer ? right to leftmultiply both sides by ?divide both sides by ?square both sidescancel $\pm $ term from both sidescancel common factor of sidessubtract to put in form u=0equation is identically truea=-b becomes $a^2=-b^2$ if $a,b\ge 0$a=-b becomes a=0 if $a,b\ge 0$a=-b becomes b=0 if $a,b\ge 0$if ab=0 then a=0 or b=0quadratic formula$x = -b/2a \pm  \sqrt (b^2-4ac)/2a$complete the squaretake square root of both sidescross multiply$b^2-4ac < 0 implies no real roots$[p=a,p=-a] becomes p=|a| (for $p\ge 0$)solve numericallycross multiply (a/b=c/d => ad=bc)if u=v then $u^n=v^n$take $\sqrt $ of both sidestake $^n\sqrt $  of both sidesapply function ? to both sidesif ab=ac then a=0 or b=cdisplay only the selected equationshow all equations againcollect multiple solutionsreject unsolvable equationcheck root(s) in original eqnsolve linear equation at onceu=x+b/3 in ax^3+bx^2+cx+d=0compute discriminantshow cubic equation againVieta's substitution x=y-a/3cy in cx^3+ax+b=0cubic formula, 1 real rootcubic formula, 3 real rootscubic formula, complex rootssubstitute x = f(u)substitute n = ?-kevaluate roots exactlysimplifyif u=v then a^u = a^vif ln u = v then u = e^vif log u = v then u = 10^vif log(b,u) = v then u = b^vif a^u = a^v then u=vtake log of both sidestake ln of both sidesreject eqn--impossible log or lnCramer's ruleevaluate determinantvariables left, constants rightcollect like termsline up variables nicelyadd two equationssubtract two equationsmultiply equation ? by ?divide equation ? by ?add multiple of eqn ? to eqn ?subtract multiple of eqn ? from eqn ?swap two equationsput solved equations in orderdrop identitycontradiction at hand: no solna|b| = |ab| if $0 \le  a$|b|/c = |b/c| if 0 < ca|b|/c = |ab/c| if 0 <a/csolve for ?add selected equation to equation ?subtract selected eqn from eqn ?multiply selected eqn by ?divide selected eqn by ?add multiple of selected eqn to eqn ?subtract multiple of selected eqn from eqn ?swap selected equation with eqn ?solve selected equation for ?add selected row to row ?subtract selected row from row ?multiply selected row by ?divide selected row by ?add multiple of selected row to row ?subtract multiple of selected row from row ?swap selected row with row ?A = IAsolve equation ? for ?simplify equationscancel term from both sidesadd ? to both sides of equation ?subtract ? from both sides of equation ?substitute for variablewrite in matrix formswap two rowsadd two rowssubtract one row from anothermultiply row by constantdivide row by constantadd multiple of row to anothersub mult of row from anothermultiply matricesdrop zero columndrop zero rowdrop duplicate rowconvert to system of equationsAX = B  becomes  X = A^(-1)Buse formula for 2 by 2 inversecompute exact matrix inversecompute decimal matrix inverse|u| = u  if $u\ge 0$Assume $u\ge 0$ and set |u| = u|u| = -u if $u\le 0$|cu| = c|u| if $c\ge 0$|u/c| = |u|/c if c>0|u||v| = |uv||uv| = |u||v||u/v| = |u| / |v||u| / |v| = |u/v|$|u|^2^n=u^2^n$ if u is real$|u^n|=|u|^n$ if n is real$|\sqrt u| = \sqrt |u|$$|^n\sqrt u| = ^n\sqrt |u|$|ab|/|ac| = |b|/|c||ab|/|a| = |b|show common factor in |u|/|v||u|=c iff u=c or u = -c ($c\ge 0$)|u|/u = c iff c = $\pm $1|u| < v iff -v < u < v$|u| \le  v$ iff $-v \le  u \le  v$u < |v| iff v < -u or u < v$u \le  |v|$ iff $v \le  -u$ or $u \le  v$|u| = u iff $0 \le  u$|u| = -u iff $u \le  0$$0 \le  |u|$ is true|u| < 0  is false$-c \le  |u|$ is true ($c\ge 0$)-c < |u| is true (c>0)|u| < -c is false ($c\ge 0$)$|u| \le  -c$ is false (c>0)$|u| \le  -c$ iff u=0 assuming $c\ge 0$|u| = -c iff u=0 assuming $c\ge 0$v > |u| iff -v < u < v$v \ge  |u|$ iff $-v \le  u \le  v$|v| > u iff  v < -u or v > u$|v| \ge  u$ iff $v \le  -u$ or $v \ge  u$$|u| \ge  0$ is true0 > |u| is false-c > |u| is false ($c\ge 0$)$-c \ge  |u|$ is false (c>0)$-c \ge  |u|$ iff u=0 assuming c=0|u| > -c is true (c>0)$|u| \ge  -c$ is true ($c\ge 0$)$-v \le  u \le  v$ iff $|u| \le  v$ v < -u or u < v iff u < |v| $u^(2n) = |u|^(2n)$ if u is real$|u|^n =  |u^n|$ if n is realchange u < v to v > uchange -u < -v to  v < uchange -u < -v to  u > vmultiply both sides by ?^2evaluate numerical inequality$a < x^2^n$ is true if $a < 0$$x^2^n < a$ is false if $a \le  0$square both (non-negative) sidessquare, if one side is $\ge $ 0u < v or u = v iff $u \le  v$combine intervalsuse assumptionschange x > y to y < xchange -u > -v to  u < vchange -u > -v to  v > u$x^2^n > a$ is true if $a < 0$$a > x^2^n$ is false if $a \le  0$u > v or u = v iff $u \ge  v$change $x \le  y$ to $y \ge  x$change $-u \le  -v$ to $v \le  u$change $-u \le  -v$ to $u \ge  v$$a \le  x^2^n$ is true if $a \le  0$$x^2^n \le  a$ is false if $a < 0$$u \le  v$ iff $u^2 \le  v^2$ or $u \le  0$ provided $0 \le  v$change $x \ge  y$ to $y \le  x$change $-u \ge  -v$ to $u \le  v$change $-u \ge  -v$ to $v \ge  u$$x^2^n \ge  a$ is true if $a \le  0$$a \ge  x^2^n$ is false if $a < 0$$v \ge  u$ iff $v^2 \ge  u^2$ or $u \le  0$ provided $0 \le  v$$u^2 < a$ iff $|u| < \sqrt a$$u^2 < a$ iff $-\sqrt a < u < \sqrt a$$a < v^2$ iff $\sqrt a < |v|$ provided $0\le a$$a < u^2$ iff $u < -\sqrt a$ or $\sqrt a < u$$a < u^2 < b$ iff $-\sqrt b<u<-\sqrt a$ or $\sqrt a<u<\sqrt b$$-a < u^2 < b$ iff $u^2 < b$ provided 0<a$-a < u^2 \le  b$ iff $u^2 \le  b$ provided 0<a$\sqrt u < v$ iff $0 \le  u < v^2$$0 \le  a\sqrt u < v$ iff $0 \le  a^2u < v^2$$a < \sqrt v$ iff $a^2 < v$ provided $0\le a$$0 \le  u < v$ iff $\sqrt u < \sqrt v$$a < x^2$  is true if $a < 0$$x^2 < a$ is false if $a \le  0$$a < \sqrt u$  iff $0 \le  u$ provided $a < 0$$u^2 \le  a$ iff $|u| \le  \sqrt a$$u^2 \le  a$ iff $-\sqrt a \le  u \le  \sqrt a$$a \le  v^2$ iff $\sqrt a \le  |v|$ provided $0\le a$$a \le  u^2$ iff $u \le  -\sqrt a$ or $\sqrt a \le  u$$a \le  u^2 \le  b$ iff $-\sqrt b\le u\le -\sqrt a$ or $\sqrt a\le u\le \sqrt b$$-a \le  u^2 \le  b$ iff $u^2 \le  b$ provided $0\le a$$-a \le  u^2 < b$ iff $u^2 < b$ provided $0\le a$$\sqrt u \le  v$ iff $0 \le  u \le  v^2$$0 \le  a\sqrt u \le  v$ iff $0 \le  a^2u \le  v^2$$a \le  \sqrt v$ iff $a^2 \le  v$ provided $0\le a$$0 \le  u \le  v$ iff $\sqrt u \le  \sqrt v$$x^2 > a$ is true if $a < 0$$a > x^2$ is false if $a \le  0$$a \le  \sqrt u$ iff $0 \le  u$ provided $a \le  0$Take the reciprocal of both sidesa < 1/x < b iff 1/b < x < 1/a, for a,b > 0$a < 1/x \le  b$ iff $1/b \le  x < 1/a$, for a,b > 0-a < 1/x < -b iff -1/b < x < -1/a, for a,b > 0$-a < 1/x \le  -b$ iff $-1/b \le  x < -1/a$, for a,b > 0-a < 1/x < b iff x < - 1/a or 1/b < x, for a,b > 0$-a < 1/x \le  b$ iff x < -1/a or $1/b \le  x$, for a,b > 0$a \le  1/x < b$ iff $1/b < x \le  1/a$, for a,b > 0$a \le  1/x \le  b$ iff $1/b \le  x < 1/a$, for a,b > 0$-a \le  1/x < -b$ iff $-1/b < x \le  -1/a$, for a,b > 0$-a \le  1/x \le  -b$ iff $-1/b \le  x \le  -1/a$, for a,b > 0$-a \le  1/x < b$ iff $x \le  - 1/a$ or 1/b < x, for a,b > 0$-a \le  1/x \le  b$ iff $x \le  -1/a$ or $1/b \le  x$, for a,b > 0u < v iff $^n\sqrt u < ^n\sqrt v$ (n odd)$u^2^n < a$ iff $|u| < ^2^n\sqrt a$$u^2^n < a$ iff $-^2^n\sqrt a < u < ^2^n\sqrt a$$0 \le  a < u^2^n$ iff $^2^n\sqrt a < |u|$$a < u^2^n$ iff $u < -^2^n\sqrt a$  or $^2^n\sqrt a < u$$a<u^2^n<b$ iff $-^2^n\sqrt b<u<-^2^n\sqrt a$ or $^2^n\sqrt a<u<^2^n\sqrt b$$^2^n\sqrt u < v$ iff $0 \le  u < v^2^n$$^n\sqrt u < v$ iff $u < v^n$ (n odd or $u\ge 0$)$a(^n\sqrt u) < v$ iff $a^nu < v^n$ provided $0 \le  a(^n\sqrt u)$$u < ^n\sqrt v$ iff $u^n < v$  provided $0 \le  u$$u < v$ iff $u^n < v^n$ (n odd, n>0)u < v iff $u^n < v^n$ (n > 0 and $0 \le  u$)$a < ^2^n\sqrt u$ iff $0 \le  u$ provided $a < 0$$u \le  v$ iff $^n\sqrt u \le  ^n\sqrt v$ (n odd)$u^2^n \le  a$ iff $|u| \le  ^2^n\sqrt a$$u^2^n \le  a$ iff $-^2^n\sqrt a \le  u \le  ^2^n\sqrt a$$0 \le  a \le  u^2^n$ iff $^2^n\sqrt a \le  |u|$$a \le  u^2^n$ iff $u \le  -^2^n\sqrt a$  or $^2^n\sqrt a \le  u$$a\le u^2^n\le b$ iff $-^2^n\sqrt b\le u\le -^2^n\sqrt a$ or $^2^n\sqrt a\le u\le ^2^n\sqrt b$$^2^n\sqrt u \le  v$ iff $0 \le  u \le  v^2^n$$^n\sqrt u \le  v$ iff $u \le  v^n$ (n odd or $u\ge 0$)$a(^n\sqrt u) \le  v$ iff $a^nu \le  v^n$ provided $0 \le  a(^n\sqrt u)$$u \le  ^n\sqrt v$ iff $u^n \le  v$ provided $0 \le  u$$u \le  v$ iff $u^n \le  v^n$ (n odd, $n \ge  0$)$u \le  v$ iff $u^n \le  v^n$ (n > 0 and $0 \le  u$)$a \le  ^2^n\sqrt u$ iff $0 \le  u$   provided $a \le  0$drop positive factors0 < u/v iff 0 < v provided u > 0change $0 < u/\sqrt v$ to 0 < uv0 < u/v iff 0 < uvchange $u/\sqrt v < 0$ to uv < 0u/v < 0 iff uv < 0$ax \pm  b < 0$ iff $a(x\pm b/a) < 0$(x-a)(x-b) < 0 iff a<x<b  (where a<b)0 < (x-a)(x-b) iff x<a or b<x (where a<b)$0 \le  u/v$ iff $0 \le  v$ provided $u \ge  0$$0 \le  u/\sqrt v$ iff $0 \le  uv$$0 \le  u/v$ iff 0 < uv or u = 0$u/\sqrt v \le  0$ iff $uv \le  0$$u/v \le  0$ iff uv < 0 or u = 0$ax \pm  b \le  0$ iff $a(x\pm b/a) \le  0$change $u \le  v$ to $v \ge  u$$(x-a)(x-b) \le  0$ iff $a\le x\le b$ (where $a\le b$)$0\le (x-a)(x-b)$ iff $x\le a$ or $b\le x$ (where $a\le b$)$a > u^2$ iff $\sqrt a > |u|$$a > u^2$ iff $-\sqrt a < u < \sqrt a$$v^2 > a$ iff $|v| > \sqrt a$ provided $a\ge 0$$u^2 > a$ iff $u < -\sqrt a$  or $u > \sqrt a$$v > \sqrt u$ iff $0 \le  u < v^2$$v>a\sqrt u$ iff $0\le a^2u<v^2$ provided $0\le a$$\sqrt v > a$ iff $v > a^2$ provided $0\le a$v > u  iff $\sqrt v > \sqrt u$ provided $u\ge 0$$a > x^2$ is false if $a <= 0$$\sqrt u > a$  iff $u \ge  0$ provided $a < 0$$a \ge  u^2$ iff $6\sqrt a \ge  |u|$$a \ge  u^2$ iff $-\sqrt a \le  u \le  \sqrt a$$v^2 \ge  a$ iff $|v| \ge  \sqrt a$ provided $0\le a$$u^2 \ge  a$ iff $u \le  -\sqrt a$ or $\sqrt a \le  u$$v \ge  \sqrt u$ iff $60 \le  u \le  v^2$$v \ge  a\sqrt u$ iff $0\le a^2u\le v^2$ provided $0\le a$$\sqrt v \ge  a$ iff $v \ge  a^2$ provided $0\le a$$v \ge  u$ iff $\sqrt v \ge  \sqrt u$ provided $u\ge 0$$x^2 \ge  a$ is true if $a \le  0$$a \ge  x^2$ is false if $a < 0$$\sqrt u \ge  a$  iff $u \ge  0$ provided $a \le  0$$u > v$ iff $^n\sqrt u > ^n\sqrt v$ (n odd)$a > u^2^n$ iff $^2^n\sqrt a > |u|$$a > u^2^n$ iff $-^2^n\sqrt a < u < ^2^n\sqrt a$$u^2^n > a$ iff $|u| > ^2^n\sqrt a$  provided $a\ge 0$$u^2^n > a$ iff $u < -^2^n\sqrt a$  or $u > ^2^n\sqrt a$$v > ^2^n\sqrt u$  iff $0 \le  u < v^2^n$$v > ^n\sqrt u$ iff $v^n> u$ (n odd or $u\ge 0$)$v > a(^n\sqrt u)$ iff $v^n > a^nu$ provided $0 \le  a(^n\sqrt u)$$^n\sqrt v > a$ iff $v > a^n$ provided $a\ge 0$u > v iff $u^n > v^n$ (n odd, n>0)u > v iff $u^n > v^n$ (n > 0 and $0 \le  u$)$^2^n\sqrt u > a$ iff $u \ge  0$ provided $a < 0$$u \ge  v$ iff $^n\sqrt u \ge  ^n\sqrt v$ (n odd)$a \ge  u^2^n$ iff $^2^n\sqrt a \ge  |u|$$a \ge  u^2^n$ iff $-^2^n\sqrt a \le  u \le  ^2^n\sqrt a$$u^2^n \ge  a$ iff $|u| \ge  ^2^n\sqrt a$ provided $a\ge 0$$u^2^n \ge  a$ iff $u \le  -^2^n\sqrt a$  or $u \ge  ^2^n\sqrt a$$v \ge  ^2^n\sqrt u$ iff $0 \le  u \le  v^2^n$$v \ge  ^n\sqrt u$ iff $v^n \ge  u$ (n odd or $u\ge 0$)$v \ge  a(^n\sqrt u)$ iff $v^n \ge  a^nu$ provided $0 \le  a(^n\sqrt u)$$^n\sqrt v \ge  a$ iff $a^n \le  v$ provided $a \ge  0$$u \ge  v$ iff $u^n \ge  v^n$ (n odd, $n \ge  0$)$u \ge  v$ iff $u^n \ge  v^n$ (n > 0 and $0 \le  u$)$^2^n\sqrt u \ge  a$ iff $u \ge  0$  provided $a \le  0$u/v > 0 iff v > 0 provided u > 0change $u/\sqrt v > 0$ to uv > 0 u/v > 0 iff uv > 0change $0 > u/\sqrt v$ to 0 > uv0 > u/v iff 0 > uv$0 > ax \pm  b$ iff $0 > a(x\pm b/a)$0 > (x-a)(x-b) iff a<x<b  (where a<b)(x-a)(x-b) > 0 iff x<a or x>b (where a<b)$u/v \ge  0$ iff $v \ge  0$ provided $u \ge  0$$u/\sqrt v \ge  0$ iff $uv \ge  0$$u/v \ge  0$ iff uv > 0 or u = 0$0 \ge  u/\sqrt v$ iff $0 \ge  uv$$0 \ge  u/v$ iff 0 > uv or u = 0$0 \ge  ax \pm  b$ iff $0 \ge  a(x\pm b/a)$$0 \ge  (x-a)(x-b)$ iff $a\le x\le b$ (where $a\le b$)$(x-a)(x-b)\ge 0$ iff $x\le a$ or $b\le x$ (where $a\le b$)binomial theorem with (n k)(n k) = n!/((n-k)!k!)n! = n(n-1)(n-2)...1compute factorialevaluate binomial coefficientexpand $\sum $ notationevaluate $\sum $ to rationaln! = n (n-1)!n!/n = (n-1)!n!/(n-1)! = nn!/k! = n(n-1)...(n-k+1)n/n! = 1/(n-1)!(n-1)!/n! = 1/nk!/n! =1/(n(n-1)...(n-k+1))a^3+3a^2b+3ab^2+b^3 = (a+b)^3a^3-3a^2b+3ab^2-b^3 = (a-b)^3a^4+4a^3b+6a^2b^2+4ab^3+b^4 = (a+b)^4a^4-4a^3b+6a^2b^2-4ab^3+b^4 = (a-b)^4a^n+na^(n-1)b+...b^n = (a+b)^na^n-na^(n-1)b+...b^n = (a-b)^n$\sum $ 1 = number of terms$\sum $ -u = -$\sum $ u$\sum $ cu = c$\sum $ u (c const)$\sum (u\pm v) = \sum u \pm  \sum v$$\sum (u-v) = \sum u - \sum v$expand $\sum $ using +1+2+..+n = n(n+1)/2$1^2+..+n^2 = n(n+1)(2n+1)/6$$1+x+..+x^n=(1-x^(n+1))/(1-x)$split off first few termsevaluate $\sum $ with parameter to rationalevaluate $\sum $ with parameter to decimalevaluate numerical $\sum $ to rationalevaluate numerical $\sum $ to decimalexpress summand as polynomialtelescoping sumshift sum limitsrename index variable$(\sum u)(\sum v) = \sum  \sum  uv$split off last term$1^3+..+n^3 = n^2(n+1)^2/4$$1^4+..+n^4=n(n+1)(2n+1)(3n^2+2n-1)/30$$d/dx \sum u = \sum  du/dx$$\sum  du/dx = d/dx \sum u$$\int  \sum u dx = \sum  \int u dx$$\sum  \int u dx = \int  \sum u dx$c$\sum $ u = $\sum $ cu (c constant)$$sum(t,i,a,b)=sum(t,i,0,b)-sum(t,i,0,a-1)$$$$sum(t,i,a,b)=sum(t,i,c,b)-sum(t,i,c,a-1)$$select induction variablestart basis casestart induction stepuse induction hypothesistherefore as desired$|sin u| \le  1$$|cos u| \le  1$$sin u \le  u$  if $u\ge 0$$1 - u^2/2 \le  cos u$$|arctan u| \le  \pi /2$$arctan u \le  u$ if $u\ge 0$$u \le  tan u$  if $0\le u\le \pi /2$Take the natural log of both sidesTake the log of both sidesu < ln v iff e^u < vln u < v iff u < e^vu < log v iff 10^u < vlog u < v iff u < 10^vu < v iff ?^u < ?^v$u \le  ln v$ iff $e^u \le  v$$ln u \le  v$ iff $u \le  e^v$$u \le  log v$ iff $10^u \le  v$$log u \le  v$ iff $u \le  10^v$$u \le  v$ iff $?^u \le  ?^v$ln u > v iff u > e^vu > ln v iff e^u > vlog u > v iff u > 10^vu > log v iff 10^u > vu > v iff ?^u > ?^v$ln u \ge  v$ iff $u \ge  e^v$$u \ge  ln v$ iff $e^u \ge  v$$log u \ge  v$ iff $u \ge  10^v$$u \ge  log v$ iff $10^u \ge  v$$u \ge  v$ iff $?^u \ge  ?^v$$10^(log a) = a$$log 10^n = n$  ($n$ real)log 1 = 0log 10 = 1$log a = (ln a)/(ln 10)$u^v = 10^(v log u)factor number completelyfactor out powers of 1010^(n log a) = a^nlog(a/b) = -log(b/a)log(b,a/c) = -log(b,c/a)$log a^n = n log a$$log ab = log a + log b$$log 1/a = -log a$$log a/b = log a - log b$$log a + log b = log ab$$log a - log b = log a/b$$log a + log b - log c =log ab/c$$n log a = log a^n (n real)$$log \sqrt a = \onehalf  log a$$log ^n\sqrt a = (1/n) log a$factor out powers of base$log u = (1/?) log u^?$evaluate logs numericallye^(ln a) = aln e = 1ln 1 = 0ln e^n = n (n real)u^v = e^(v ln u)e^((ln c) a) = c^aln a^n = n ln a$ln ab = ln a + ln b$ln 1/a = -ln a$ln a/b = ln a - ln b$$ln a + ln b = ln ab$$ln a - ln b = ln a/b$$ln a + ln b - ln c = ln (ab/c)$$n ln a = ln a^n  (n real)$$ln \sqrt a = \onehalf  ln a$$ln ^n\sqrt a = (1/n) ln a$ln u = (1/?) ln u^?evaluate logarithm numericallyln(a/b) = -ln(b/a)sin u cos v + cos u sin v = sin(u+v)sin u cos v - cos u sin v = sin(u-v)cos u cos v - sin u sin v = cos(u+v)cos u cos v + sin u sin v = cos(u-v)(sin u)/(1+cos u) = tan(u/2)(1-cos u)/sin u = tan(u/2)(1+cos u)/(sin u) = cot(u/2)sin u/(1-cos u) = cot(u/2)(tan u+tan v)/(1-tan u tan v) = tan(u+v)(tan u-tan v)/(1+tan u tan v) = tan(u-v)(cot u cot v-1)/(cot u+cot v) = cot(u+v)(1+cot u cot v)/(cot v-cot u) = cot(u-v)1-cos u = 2 sin^2(u/2)polar form$r e^(i\theta ) = r (cos \theta  + i sin \theta )$$|e^(i\theta )| = 1$$|Re^(i\theta )|=R$ if $R\ge 0$$|Re^(i\theta )| = |R|$$-a = ae^(\pi i)$$^n\sqrt (-a) = e^(\pi  i/n) ^n\sqrt a if a\ge 0$a/(ce^(ti)) = ae^(-ti)/cde Moivre's theoremsubstitute specific integersb^(log(b,a)) = ab^(n log(b,a)) = a^nlog(b,b) = 1log(b,b^n) = nlog xy = log x + log ylog (1/x) = -log xlog x/y = log x-log ylog(b,1) = 0factor base: log(4,x)=log(2^2,x)log(b^n,x) = (1/n) log (b,x)log x^n = n log xlog x + log y = log xylog x - log y = log x/ylog x + log y - log z =log xy/zn log x = log x^n (n real)log(b,x) = ln x / ln blog(b,x) = log x / log blog(b,x) = log(a,x) / log(a,b)log(10,x) = log xlog(e,x) = ln xlog x = ln x / ln 10ln x = log x / log eu^v = b^(v log(b,u))sin 0 = 0cos 0 = 1tan 0 = 0$sin k\pi  = 0$$cos 2k\pi   = 1$$tan k\pi  = 0$find coterminal angle < $360\deg $find coterminal angle < $2\pi $angle is multiple of $90\deg $use 1-2-$\sqrt 3$ triangleuse 1-1-$\sqrt 2$ trianglechange radians to degreeschange degrees to radiansangle = $a 30\deg  + b 45\deg $ etc.evaluate numericallytan u = sin u / cos ucot u = 1 / tan ucot u = cos u / sin usec u = 1 / cos ucsc u = 1 / sin usin u / cos u = tan ucos u / sin u = cot u1 / sin u = csc u1 / cos u = sec u1 / tan u = cot u1 / tan u = cos u / sin u1 / cot u = tan u1 / cot u = sin u / cos u1 / sec u = cos u1 / csc u = sin usin u = 1 / csc ucos u = 1 / sec utan u = 1 / cot u$sin^2 u + cos^2 u = 1$$1 - sin^2 u = cos^2 u$$1 - cos^2 u = sin^2 u$$sin^2 u = 1 - cos^2 u$$cos^2 u = 1 - sin^2 u$$sec^2 u - tan^2 u = 1$$tan^2 u + 1 = sec^2 u$$sec^2 u - 1 = tan^2 u$$sec^2 u = tan^2 u + 1$$tan^2 u = sec^2 u - 1$$sin^(2n+1) u = sin u (1-cos^2 u)^n$$cos^(2n+1) u = cos u (1-sin^2 u)^n$$tan^(2n+1) u = tan u (sec^2 u-1)^n$$sec^(2n+1) u = sec u (tan^2 u+1)^n$(1-cos t)^n(1+cos t)^n = sin^(2n) t(1-sin t)^n(1+sin t)^n = cos^(2n) t$csc^2 u - cot^2 u = 1$$cot^2 u + 1 = csc^2 u$$csc^2 u - 1 = cot^2 u$$csc^2 u = cot^2 u + 1$$cot^2 u = csc^2 u - 1$$csc(\pi /2-\theta ) = sec \theta $$cot(\pi /2-\theta ) = tan \theta $$cot^(2n+1) u = cot u (csc^2 u-1)^n$$csc^(2n+1) u = csc u (cot^2 u+1)^n$sin(u+v)= sin u cos v + cos u sin vsin(u-v)= sin u cos v - cos u sin vcos(u+v)= cos u cos v - sin u sin vcos(u-v)= cos u cos v + sin u sin vtan(u+v)=(tan u+tan v)/(1-tan u tan v)tan(u-v)=(tan u-tan v)/(1+tan u tan v)cot(u+v)=(cot u cot v-1)/(cot u+cot v)cot(u-v)=(1+cot u cot v)/(cot v-cot u)$sin 2\theta  = 2 sin \theta  cos \theta $$cos 2\theta  = cos^2 \theta  - sin^2 \theta $$cos 2\theta  = 1 - 2 sin^2 \theta $$cos 2\theta  = 2 cos^2 \theta  - 1$$cos 2\theta  + 1 = 2cos^2 \theta $$cos 2\theta  - 1 = - 2 sin^2 \theta $$tan 2\theta  = 2 tan \theta /(1 - tan^2 \theta )$$cot 2\theta  = (cot^2 \theta  -1) / (2 cot \theta )$$sin \theta  cos \theta  = \onehalf  sin 2\theta $$2 sin \theta  cos \theta  =  sin 2\theta $$cos^2 \theta  - sin^2 \theta  = cos 2\theta  $$1 - 2 sin^2 \theta  = cos 2\theta $$2 cos^2 \theta  - 1 = cos 2\theta $$n\theta  = (n-1)\theta  + \theta $$n\theta  = ?\theta +(n-?)\theta $$sin 3\theta  = 3 sin \theta  - 4 sin^3 \theta $$cos 3\theta  = -3 cos \theta  + 4 cos^3 \theta $expand $sin n\theta $ in $sin \theta $, $cos \theta $expand $cos n\theta $ in $sin \theta $, $cos \theta $raise both sides to powertake root of both sidesapply function to both sidescheck numerically$sin(u)=1/2$ iff $u=\pi /6$ or $5\pi /6+2n\pi $$sin(u)=-1/2$ iff $u=-\pi /6$ or $-5\pi /6+2n\pi $$sin(u)=\sqrt 3/2$ iff $u=\pi /3$ or $2\pi /3+2n\pi $$sin(u)=-\sqrt 3/2$ iff $4u=-\pi /3$ or $-2\pi /3+2n\pi $$cos(u)=\sqrt 3/2$ iff $u=\pm \pi /6 + 2n\pi $$cos(u)=-\sqrt 3/2$ iff $u=\pm 5\pi /6 + 2n\pi $$cos(u)=1/2$ iff $u=\pm \pi /3+2n\pi $$cos(u)=-1/2$ iff $u=\pm  2\pi /3+2n\pi $$tan(u)=1/\sqrt 3$ iff $u= \pi /6 + n\pi $$tan(u)=-1/\sqrt 3$ iff $u= -\pi /6 + n\pi $$tan(u)=\sqrt 3$ iff $u= \pi /3 + n\pi $$tan(u)=-\sqrt 3$ iff $u= 2\pi /3 + n\pi $$sin u = 1/\sqrt 2$ if $u=\pi /4$ or $3\pi /4 + 2n\pi $$sin u=-1/\sqrt 2$ if $u=5\pi /4$ or $7\pi /4 + 2n\pi $2$cos u = 1/\sqrt 2$ if $u=\pi /4$ or $7\pi /4 + 2n\pi $$cos u=-1/\sqrt 2$ if $u=3\pi /4$ or $5\pi /4 + 2n\pi $tan u = 1 if $u= \pi /4$ or $5\pi /4 + 2n\pi $tan u = -1 if $u=3\pi /4$ or $7\pi /4 + 2n\pi $sin u = 0 iff $u = n\pi $sin u = 1 iff $u = \pi /2+2n\pi $sin u = -1 iff $u = 3\pi /2+2n\pi $cos u = 0 iff $u = (2n+1)\pi /2$cos u = 1 iff $u = 2n\pi $cos u = -1 iff $u = (2n+1)\pi $tan u = 0 iff sin u = 0cot u = 0 iff cos u = 0sin u=c iff $u= (-1)^narcsin c+n\pi $sin u=c iff $u=arcsin(c)+2n\pi $ or $2n\pi +\pi -arcsin(c)$cos u=c iff $u=\pm arccos c+2n\pi $tan u=c iff $u=arctan c+n\pi $evaluate arcsin exactlyevaluate arccos exactlyevaluate arctan exactlyarccot x = arctan (1/x)arcsec x = arccos (1/x)arccsc x = arcsin (1/x)arcsin(-x) = -arcsin x$arccos(-x) = \pi -arccos x$arctan(-x) = -arctan xput solutions in periodic formreject sin u = c if |c|>1reject cos u = c if |c|>1$tan(arcsin x) = x/\sqrt (1-x^2)$$tan(arccos x) = \sqrt (1-x^2)/x$tan(arctan x) = xsin(arcsin x) = x$sin(arccos x) = \sqrt (1-x^2)$$sin(arctan x) = x/\sqrt (x^2+1)$$cos(arcsin x) = \sqrt (1-x^2)$cos(arccos x) = x$cos(arctan x) = 1/\sqrt (x^2+1)$$sec(arcsin x) = 1/\sqrt (1-x^2)$$sec(arccos x) = 1/x$$sec(arctan x) = \sqrt (x^2+1)$$arctan(tan \theta ) = \theta $6 if $-\pi /2\le \theta \le \pi /2$$arcsin(sin \theta ) = \theta $ if $-\pi /2\le \theta \le \pi /2$$arccos(cos \theta ) = \theta $ if $0\le \theta \le \pi $arctan(tan x) = x + c1arcsin x + arccos x = $\pi /2$$arctan x + arctan 1/x = \pi x/2|x|$$sin(\pi /2-\theta ) = cos \theta $$cos(\pi /2-\theta ) = sin \theta $$tan(\pi /2-\theta ) = cot \theta $$sec(\pi /2-\theta ) = csc \theta $$sin \theta  = cos(\pi /2-\theta )$$cos \theta  = sin(\pi /2-\theta )$$tan \theta  = cot(\pi /2-\theta )$$cot \theta  = tan(\pi /2-\theta )$$sec \theta  = csc(\pi /2-\theta )$$csc \theta  = sec(\pi /2-\theta )$$sin(90\deg -\theta ) = cos \theta $$cos(90\deg -\theta ) = sin \theta $$tan(90\deg -\theta ) = cot \theta $$cot(90\deg -\theta ) = tan \theta $$sec(90\deg -\theta ) = csc \theta $$csc(90\deg -\theta ) = sec \theta $$sin \theta  = cos(90\deg -\theta )$$cos \theta  = sin(90\deg -\theta )$$tan \theta  = cot(90\deg -\theta )$$cot \theta  = tan(90\deg -\theta )$$sec \theta  = csc(90\deg -\theta )$$csc \theta  = sec(90\deg -\theta )$$a\deg  + b\deg  = (a+b)\deg $$ca\deg  = (ca)\deg $$a\deg /c = (a/c)\deg $sin(-u) = - sin ucos(-u) = cos utan(-u) = - tan ucot(-u) = - cot usec(-u) = sec ucsc(-u) = - csc u$sin^2(-u) = sin^2 u$$cos^2(-u) = cos^2 u$$tan^2(-u) = tan^2 u$$cot^2(-u) = cot^2 u$$sec^2(-u) = sec^2 u$$csc^2(-u) = csc^2 u$$sin(u+2\pi ) = sin u$$cos(u+2\pi ) = cos u$$tan(u+\pi ) = tan u$$sec(u+2\pi ) = sec u$$csc(u+2\pi ) = csc u$$cot(u+\pi ) = cot u$$sin^2(u+\pi ) = sin^2 u$$cos^2(u+\pi ) = cos^2 u$$sec^2(u+\pi ) = sec^2 u$$csc^2(u+\pi ) = csc^2 u$$sin u = -sin(u-\pi )$$sin u = sin(\pi -u)$$cos u = -cos(u-\pi )$$cos u = -cos(\pi -u)$$sin^2(\theta /2) = (1-cos \theta )/2$$cos^2(\theta /2) = (1+cos \theta )/2$$sin^2(\theta ) = (1-cos 2\theta )/2$$cos^2(\theta ) = (1+cos 2\theta )/2$$tan(\theta /2) = (sin \theta )/(1+cos \theta )$$tan(\theta /2) = (1-cos \theta )/sin \theta $$cot(\theta /2) = (1+cos \theta )/(sin \theta )$$cot(\theta /2) = sin \theta /(1-cos \theta )$$sin(\theta /2) = \sqrt ((1-cos \theta )/2) if sin(\theta /2)\ge 0$$sin(\theta /2) = -\sqrt ((1-cos \theta )/2) if sin(\theta /2)\le 0$$cos(\theta /2) = \sqrt ((1+cos \theta )/2) if cos(\theta /2)\ge 0$$cos(\theta /2) = -\sqrt ((1+cos \theta )/2) if cos(\theta /2)\le 0$$\theta  = 2(\theta /2)$$sin x cos x = \onehalf  sin 2x$$sin x cos y = \onehalf [sin(x+y)+sin(x-y)]$$cos x sin y = \onehalf [sin(x+y)-sin(x-y)]$$sin x sin y = \onehalf [cos(x-y)-cos(x+y)]$$cos x cos y = \onehalf [cos(x+y)+cos(x-y)]$$sin x + sin y = 2 sin \onehalf (x+y) cos \onehalf (x-y)$$sin x - sin y = 2 sin \onehalf (x-y) cos \onehalf (x+y)$$cos x + cos y = 2 cos \onehalf (x+y) cos \onehalf (x-y)$$cos x - cos y = -2 sin \onehalf (x+y) sin \onehalf (x-y)$substitute u,v for expressions in trig functionsexperiment numerically$lim u\pm v = lim u \pm  lim v$$lim u-v = lim u - lim v$lim(ta,c) = c (c constant)lim(ta,t) = alim cu=c lim u (c const)lim -u = -lim ulim uv = lim u lim v$lim u^n = (lim u)^n$lim c^v=c^(lim v) (c constant > 0)lim u^v=(lim u)^(lim v)$lim \sqrt u=\sqrt (lim u)$ if lim u>0$lim ^n\sqrt u = ^n\sqrt (lim u)$ if n is odd$lim ^n\sqrt u = ^n\sqrt (lim u)$ if lim u > 0lim(ta,f(t))=f(a) (polynomial f)lim |u| = |lim u|lim cu/v = c lim u/v (c const)lim c/v  = c/lim v (c const)lim u/v = lim u/lim vfactor out (x-a)^n in limit as xalimit of rational functionrationalize fractionpull out nonzero finite limitsfactor out constantmult num and denom by ?divide num and denom by ?lim u/v = lim (u/?) / lim (v/?)(ab+ac+d)/q = a(b+c)/q + d/q$\sqrt a/b = \sqrt (a/b^2)$  if b>0$\sqrt a/b = -\sqrt (a/b^2)$ if b<0$^n\sqrt a/b = ^n\sqrt (a/b^n)$ (b>0 or n odd)$^n\sqrt a/b = -^n\sqrt (a/b^n)$ (b<0, n even)$a/\sqrt b = \sqrt (a^2/b)$  if $a\ge 0$$a/\sqrt b = -\sqrt (a^2/b)$ if $a\le 0$$a/^n\sqrt b = ^n\sqrt (a^n/b)$ ($a\ge 0$ or n odd)$a/^n\sqrt b = -^n\sqrt (a^n/b)$ ($a\le 0$, n even)L'Hospital's ruleevaluate derivative in one steplim u ln v = lim (ln v)/(1/u)$lim u (ln v)^n = lim (ln v)^n/(1/u)$$lim x^(-n) u = lim u/x^n$lim u e^x = lim u/e^(-x)move trig function to denominatorlim ?v = lim v/(1/?)(sin t)/t  1 as t0(tan t)/t  1 as t0(1-cos t)/t  0 as t0$(1-cos t)/t^2\onehalf $ as t0lim(t0,(1+t)^(1/t)) = e$(ln(1\pm t))/t  \pm 1$ as t0(e^t-1)/t  1 as t0(e^(-t)-1)/t  -1 as t0$lim(t0,t^nln |t|)=0 (n > 0)$lim(t0,cos(1/t))=undefinedlim(t0,sin(1/t))=undefinedlim(t0,tan(1/t))=undefinedlim(t$\pm \infty $,cos t)=undefinedlim(t$\pm \infty $,sin t)=undefinedlim(t$\pm \infty $,tan t)=undefined(sinh t)/t  1 as t0(tanh t)/t  1 as t0(cosh t - 1)/t  0 as t0(cosh t - 1)/t^21/2 as t0lim ln u=ln lim u (if lim u > 0)lim f(u)=f(lim u), f continuouschange limit variableevaluate limit in one steplim u^v = lim e^(v ln u)limit undefined due to domainlim u = e^(lim ln u)squeeze theorem: uv0 if v0 & $|u|\le c$$lim \sqrt u-v=lim (\sqrt u-v)(\sqrt u+v)/(\sqrt u+v)$lim u/v = limit of leading termsleading term: lim(u+a)=lim(u) if a/u0replace sum by leading termf(undefined) = undefinedlim(e^u) = e^(lim u)lim(ln u) = ln(lim u)$lim(t0+,t ln t) = 0$$lim(t0+,t^n ln t) = 0 if n\ge 1$$lim(t0+,t (ln t)^n) = 0 if n\ge 1$$lim(t0+,t^k (ln t)^n) = 0 if k,n\ge 1$$lim(t\infty ,ln(t)/t) = 0$$lim(t\infty ,ln(t)^n/t) = 0 if n\ge 1$$lim(t\infty ,ln(t)/t^n) = 0 if n\ge 1$$lim(t\infty ,ln(t)^k/t^n) = 0 if k,n\ge 1$$lim(t\infty ,t/ln(t)) = \infty $$lim(t\infty ,t/ln(t)^n) = \infty  if n\ge 1$$lim(t\infty ,t^n/ln(t)) = \infty  if n\ge 1$$lim(t\infty ,t^n/ln(t)^k) = \infty  if k,n\ge 1$$lim(t\infty ,1/t^n) = 0 if n\ge 1$$lim(t\infty ,t^n) = \infty  if n\ge 1$$lim(t\infty ,e^t) = \infty $$lim(t-\infty ,e^t) = 0$$lim(t\infty ,ln t) = \infty $$lim(t\infty ,\sqrt t) = \infty $$lim(t\infty ,^n\sqrt t) = \infty $$lim(t\pm \infty ,arctan t) = \pm \pi /2$$lim(t\infty ,arccot t) = 0$$lim(t-\infty ,arccot t) = \pi $$lim(t\pm \infty ,tanh t) = \pm 1$$lim \sqrt u-v=lim (\sqrt u-v)(\sqrt u+v)/\sqrt u+v)$lim sin u = sin(lim u)lim cos u = cos(lim u)change limit at $\infty $ to limit at 0$lim(1/u^2^n) = \infty $ if u0lim(1/u^n) undef if u0, n oddlim(ta+,1/u^n) = $\infty $ if u0lim(ta-,1/u^n)=-$\infty $, u0, n oddlim u/v undef if lim v =0, lim u #0lim(t0+,ln t) = -$\infty $$lim(t(2n+1)\pi /2\pm ,tan t) = \pm \infty $$lim(tn\pi \pm ,cot t) = \pm \infty $$lim(t(2n+1)\pi /2\pm ,sec t) = \pm \infty $$lim(tn\pi \pm ,csc t) = \pm \infty $lim(uv) = lim(u/?) lim(?v)lim(uv) = lim(?u) lim(v/?)$\pm \infty $/positive = $\pm \infty $nonzero/$\pm \infty $ = 0positive$\times \pm \infty  = \pm \infty $$\pm \infty \times \infty  = \pm \infty $$\pm \infty $ + finite = $\pm \infty $$\infty  + \infty  = \infty $$u^\infty  = \infty $ if u > 1$u^\infty  = 0$ if 0 < u < 1$u^(-\infty ) = 0$ if u > 1$u^(-\infty ) = \infty $ if 0 < u < 1$\infty ^n = \infty $ if n > 0$\infty  - \infty  =$ undefined$a/0+ = \infty $ if $a>0$$a/0- = -\infty $ if $a>0$a/0 = undefined$\infty /0+ = \infty $$\infty /0- = -\infty $$\infty /0$ = undefined$\infty /0^2 = \infty $$\infty /0^2^n = \infty $$a/0^2 = \infty $ if $a > 0$$a/0^2 = -\infty $ if $a < 0$$a/0^2^n = \infty $ if $a > 0$$a/0^2^n = -\infty $ if $a < 0$$ln \infty  = log \infty  = \infty $$\sqrt \infty  = \infty $$^n\sqrt \infty  = \infty $$arctan \pm \infty  = \pm \pi /2$$arccot \infty  = 0$$arccot -\infty  = \pi $$arcsec \pm \infty  = \pi /2$$arccsc \pm \infty  = 0$trig limits at $\infty $ undefined$cosh \pm \infty  = \infty $$sinh \pm \infty  = \pm \infty $$tanh \pm \infty  = \pm 1$$ln 0 = -\infty $dc/dx=0 (c not dependent on x)dx/dx = 1$d/dx (u \pm  v) = du/dx \pm  dv/dx$d/dx (-u) = -du/dxd/dx(cu)=c du/dx (c indep of x)d/dx x^n = n x^(n-1)differentiate polynomialf'(x) = d/dx f(x)$$diff(f,x) = lim(h->0,(f(x+h)-f(x))/h)$$d/dx (cu) = c du/dx (c indep of x)d/dx (u/c)=(1/c)du/dx (c ind of x)d/dx (uv) = u (dv/dx) + v (du/dx)d/dx (1/v) = -(dv/dx)/v^2d/dx (u/v)=[v(du/dx)-u(dv/dx)]/v^2$d/dx \sqrt x = 1/(2\sqrt x)$$d/dx ^n\sqrt x = d/dx x^(1/n)$$d/dx (c/x^n) = -nc/x^(n+1)$d/dx |x| = x/|x|d/dx sin x = cos xd/dx cos x = - sin xd/dx tan x = sec^2 xd/dx sec x = sec x tan xd/dx cot x = - csc^2 xd/dx csc x = - csc x cot xd/dx e^x = e^xd/dx c^x = (ln c) c^x, c constantd/dx u^v=  (d/dx) e^(v ln u)d/dx ln x = 1/xd/dx ln |x| = 1/xdy/dx = y (d/dx) ln yd/dx e^u = e^u du/dxd/dx c^u=(ln c)c^u du/dx, c constd/dx ln u = (1/u)(du/dx)d/dx ln |u| = (1/u) du/dxd/dx ln(cos x) = -tan xd/dx ln(sin x) = cot x$d/dx arctan x = 1/(1+x^2)$$d/dx arcsin x = 1/\sqrt (1-x^2)$$d/dx arccos x = -1/\sqrt (1-x^2)$$d/dx arccot x = -1/(1+x^2)$$d/dx arcsec x = 1/(|x|\sqrt (x^2-1))$$d/dx arccsc x = -1/(|x|\sqrt (x^2-1))$$d/dx arctan u = (du/dx)/(1+u^2)$$d/dx arcsin u = (du/dx)/\sqrt (1-u^2)$$d/dx arccos u = -(du/dx)/\sqrt (1-u^2)$$d/dx arccot u = -(du/dx)/(1+u^2)$$d/dx arcsec u=(du/dx)/(|u|\sqrt (u^2-1))$$d/dx arccsc u=-(du/dx)/(|u|\sqrt (u^2-1))$d/dx u^n = nu^(n-1) du/dx$d/dx \sqrt u = (du/dx)/(2\sqrt u)$d/dx sin u = (cos u) du/dxd/dx cos u = -(sin u) du/dx$d/dx tan u = (sec^2 u) du/dx$d/dx sec u=(sec u tan u) du/dx$d/dx cot u = -(csc^2 u) du/dx$d/dx csc u=-(csc u cot u) du/dxd/dx |u| = (u du/dx)/|u|d/dx f(u) = f'(u) du/dxmake a substitution, $u = ?$consider points where f'(x)=0consider endpoints of intervalpoints where f'(x) undefinedconsider limits at open endsreject point outside intervalmake table of decimal y-valuesmake table of exact y-valueschoose maximum value(s)choose minimum value(s)solve simple equationeliminate integer parameterfunction is constanteliminate open endpointsevaluate derivativedifferentiate the equationeliminate derivative by substitutionsimplify sums and productseliminate compound fractionscommon denominator and simplifyfactor out common termfactor expression (not integer)multiply out and simplifyshow common factor in u/vwrite as polynomial (in ?)express as polynomialmake the leading coeffient 1$x^(1/2) = \sqrt x$convert fractional exponents to rootsconvert roots to fractional exponentsu=v => du/dx = dv/dx$d^2u/dx^2 = (d/dx)(du/dx)$$d^nu/dx^n= d/dx d^(n-1)u/dx^(n-1)$$d/dx du/dx = d^2u/dx^2$$d/dx d^nu/dx^n = d^(n+1)/dx^(n+1)$$\int  1 dt = t$$\int c dt = ct$ (c constant)$\int  t dt = t^2/2$$\int cu dt = c\int u dt$ (c constant)$\int (-u)dt = -\int u dt$$\int u+v dt = \int u dt + \int v dt$$\int u-v dt = \int u dt - \int v dt$$\int au\pm bv dt = a\int u dt \pm  b\int v dt$$\int t^n dt=t^(n+1)/(n+1) (n # -1)$$\int 1/t^(n+1) dt= -1/(nt^n) (n # 0)$integrate polynomial$\int (1/t) dt = ln |t|$$\int 1/(t\pm a) dt = ln |t\pm a|$multiply out integrandexpand $(a+b)^n$ in integrand$\int |t| dt = t|t|/2$$\int sin t dt = -cos t$$\int cos t dt = sin t$$\int tan t dt = -ln |cos t|$$\int cot t dt = ln |sin t|$$\int sec t dt = ln |sec t + tan t|$$\int csc t dt = ln |csc t - cot t|$$\int sec^2 t dt = tan t$$\int csc^2 t dt = -cot t$$\int tan^2 t dt = tan t - t$$\int cot^2 t dt = -cot t - t$$\int sec t tan t dt = sec t$$\int csc t cot t dt = -csc t$$\int sin ct dt = -(1/c) cos ct$$\int cos ct dt = (1/c) sin ct$$\int tan ct dt = -(1/c) ln |cos ct|$$\int cot ct dt = (1/c) ln |sin ct|$$\int sec ct dt = (1/c) ln |sec ct + tan ct|$$\int csc ct dt = (1/c) ln |csc ct - cot ct|$$\int sec^2 ct dt = (1/c) tan ct$$\int csc^2 ct dt = -(1/c) cot ct$$\int tan^2 ct dt = (1/c) tan ct - t$$\int cot^2 ct dt = -(1/c) cot ct - t$$\int sec ct tan ct dt = (1/c) sec ct$$\int csc ct cot ct dt = -(1/c) csc ct$$\int e^t dt = e^t$$\int e^ct dt =(1/c) e^(ct)$$\int e^(-t)dt = -e^(-t)$$\int e^(-ct)dt = -(1/c) e^(-ct)$$\int e^(t/c)dt = c e^(t/c)$$\int c^t dt = (1/ln c) c^t$$\int u^v dt = \int (e^(v ln u) dt$$\int ln t = t ln t - t$$$integral(e^(-t^2),t) = sqrt(pi)/2 Erf(t)$$select substitution u = ?computer selects substitution ushow integral againintegrand = $f(u) \times  du/dx$$\int  f(u) (du/dx) dx = \int  f(u) du$integrate by subst (u = ?)integrate by substitution$\int u dv = uv - \int v du  (u = ?)$$\int u dv = uv - \int v du$set current line = originaloriginal integral to left sideevaluate simple integral$$integral(f'(x),x,a,b)=f(b)-f(a)$$$$diff(integral(f(t),t,a,x),x) = f(x)$$$$eval(f(t),t,a,b) = f(b) - f(a)$$$$eval(ln f(t),t,a,b) = ln(f(b)/f(a))$$$$integral(u,t,a,b) = - integral(u,t,b,a)$$$$integral(u,t,a,b) + integral(u,t,b,c) = integral(u,t,a,c)$$$$integral(u,t,a,c) = integral(u,t,a,?) + integral(u,t,?,c)$$break $\int |f(t)| dt$ at zeroes of fcalculate integral with parameter numericallycalculate integral numerically$$integral(u,t,a,a) = 0$$$$integral(u,x,a,infinity) = lim(t->infinity,integral(u,x,a,t))$$$$integral(u,x,-infinity,b) = lim(t->-infinity,integral(u,x,t,b))$$$$integral(u,x,a,b) = lim(t->a+,integral(u,x,t,b))$$$$integral(u,x,a,b) = lim(t->b-,integral(u,x,a,t))$$limit of integrand is not zero at $\infty $limit of integrand is not zero at $-\infty $$$integral(u,t,-a,a) = 0$$ (u odd)$$integral(u,t,-a,a) = 2 integral(u,t,0,a)$$ (u even)$x = a sin \theta  {for \sqrt (a^2-x^2)}$$x = a tan \theta  {for \sqrt (a^2+x^2)}$$x = a sec \theta  {for \sqrt (x^2-a^2)}$$x = a sinh \theta  {for \sqrt (a^2+x^2)}$$x = a cosh \theta  {for \sqrt (x^2-a^2)}$$x = a tanh \theta  {for \sqrt (a^2-x^2)}$define inverse substitution x = ?simple integral in one step$sin^2 t = (1-cos 2t)/2$ in integral$cos^2 t = (1+cos 2t)/2$ in integralu=cos x after using $sin^2=1-cos^2$u=sin x after using $cos^2=1-sin^2$u=tan x after using $sec^2=1+tan^2$u=cot x after using $csc^2=1+cot^2$u=sec x after using $tan^2=sec^2-1$u=csc x after using $cot^2=csc^2-1$$tan^2 x = sec^2 x - 1$ in integrand$2cot^2 x = csc^2 x - 1$ in integrandreduce $\int sec^n x dx$reduce $\int csc^n x dx$u = tan(x/2) (Weierstrass subst.)multiply num and denom by 1+cos xmultiply num and denom by 1-cos xmultiply num and denom by 1+sin xmultiply num and denom by 1-sin xmult num and denom by sin x+cos xmult num and denom by cos x-sin xfactor denominator (if easy)square-free factorizationexpand in partial fractions$\int 1/(ct\pm b) dt = (1/c) ln |ct\pm b|$$\int 1/(ct\pm b)^(n+1) dt = -1/nc(ct\pm b)^n$$\int 1/(t^2+a^2)dt=(1/a)arctan(t/a)$$\int 1/(t^2-a^2)dt=(1/a)arccoth(t/a)$$\int 1/(t^2-a^2)dt=(1/2a)ln|(t-a)/(t+a)|$$\int 1/(a^2-t^2)dt=(1/a)arctanh(t/a)$$\int 1/(a^2-t^2)dt=(1/2a)ln|(t+a)/(a-t)|$$\int 1/\sqrt (a^2-t^2)dt = arcsin(t/a)$$\int 1/\sqrt (t^2\pm a^2)dt)=ln|t+\sqrt (t^2\pm a^2)|$$\int 1/(t\sqrt (t^2-a^2))dt=(1/a)arccos(t/a)$make a rationalizing substitution$\int arcsin z dz = z arcsin z + \sqrt (1-z^2)$$\int arccos z dz = z arccos z - \sqrt (1-z^2)$$\int arctan z dz = z arctan z - (1/2)ln(1+z^2)$$\int arccot z dz = z arccot z + (1/2)ln(1+z^2)$$\int arccsc z dz = z arccsc z+ln(z + \sqrt (z^2-1)) (z>0)$$\int arccsc z dz = z arccsc z-ln(z + \sqrt (z^2-1)) (z<0)$$\int arcsec z dz = z arcsec z-ln(z + \sqrt (z^2-1)) (z>0)$$\int arcsec z dz = z arcsec z+ln(z + \sqrt (z^2-1)) (z<0)$change integral by substitutionabsorb number in const of int$\int  sinh u du = cosh u$$\int  cosh u du = sinh u$$\int  tanh u du = ln cosh u$$\int  coth u du = ln sinh u$$\int  csch u du = ln tanh(u/2)$$\int  sech u du = arctan (sinh u)$$$1/(1-x) = sum(x^n,n,0,infinity)$$$1/(1-x) = 1+x+x^2+...$$1/(1-x) = 1+x+x^2+...x^n...$$$1/(1+x) = sum((-1)^n x^n,n,0,infinity)$$$1/(1+x) = 1-x+x^2+...$$1/(1+x) = 1-x+x^2+...(-1)^nx^n...$$$sum(x^n,n,0,infinity)=1/(1-x)$$$1+x+x^2+... = 1/(1-x)$$1+x+x^2+...x^n...= 1/(1-x)$$$sum((-1)^n x^n,n,0,infinity) = 1/(1+x)$$$1-x+x^2+... = 1/(1+x)$$1-x+x^2+...(-1)^nx^n... = 1/(1+x)$$$x/(1-x) = sum(x^n,n,1,infinity)$$$x/(1-x) = x+x^2+x^3+...$$x/(1-x) = x+x^2+...x^n...$$$x/(1+x) = sum((-1)^(n+1) x^n,n,1,infinity)$$$x/(1+x) = x-x^2+x^3+...$$x/(1+x) = x-x^2+...(-1)^(n+1)x^n...$$$sum(x^n,n,1,infinity)=x/(1-x)$$$x+x^2+x^3+...=x/(1-x)$$x+x^2+...x^n...=x/(1-x)$$$sum((-1)^(n+1) x^n,n,1,infinity)=x/(1+x) $$$x-x^2+x^3+...=x/(1+x) $$x-x^2+...(-1)^(n+1)x^n...=x/(1+x) $$$1/(1-x^k) = sum(x^(kn),n,0,infinity)$$$$1/(1-x^k) =  sum(x^(kn),n,0,infinity,-3)$$$$1/(1-x^k) =  sum(x^(kn),n,0,infinity,2)$$$$x^m/(1-x^k) = sum(x^(kn+m),n,0,infinity)$$$$x^m/(1-x^k) =  sum(x^(kn+m),n,0,infinity,-3)$$$$x^m/(1-x^k) =  sum(x^(kn+m),n,0,infinity,2)$$$$sum(x^(kn),n,0,infinity)=1/(1-x^k)$$$$sum(x^(kn),n,0,infinity,-3)=1/(1-x^k)$$$$sum(x^(kn),n,0,infinity,2)=1/(1-x^k)$$$$sum(x^(m+kn),n,0,infinity)=x^m/(1-x^k)$$$$sum(x^(m+kn),n,0,infinity,-3)=x^m/(1-x^k)$$$$sum(x^(m+kn),n,0,infinity,2)=x^m/(1-x^k)$$$$1/(1+x^k) = sum((-1)^n x^(kn),n,0,infinity)$$$$1/(1+x^k) = sum((-1)^n x^(kn),n,0,infinity,-3)$$$$1/(1+x^k) = sum((-1)^n x^(kn),n,0,infinity,2)$$$$x^m/(1+x^k) = sum((-1)^n x^(kn+m),n,0,infinity)$$$$x^m/(1+x^k) = sum((-1)^n x^(kn+m),n,0,infinity,-3)$$$$x^m/(1+x^k) =  sum((-1)^n x^(kn+m),n,0,infinity,2)$$$$sum((-1)^nx^(kn),n,0,infinity)=1/(1+x^k)$$$$sum((-1)^nx^(kn),n,0,infinity,-3)=1/(1+x^k)$$$$sum((-1)^nx^(kn),n,0,infinity,2)=1/(1+x^k)$$$$sum((-1)^nx^(m+kn),n,0,infinity)=x^m/(1+x^k)$$$$sum((-1)^nx^(m+kn),n,0,infinity,-3)=x^m/(1+x^k)$$$$sum((-1)^nx^(m+kn),n,0,infinity,2)=x^m/(1+x^k)$$$$x^k/(1-x) = sum(x^n,n,k,infinity)$$$$x^k/(1-x) = sum(x^n,n,k,infinity,-3)$$$$x^k/(1-x) = sum(x^n,n,k,infinity,2)$$$$x^k/(1+x) = sum((-1)^nx^n,n,k,infinity)$$$$x^k/(1+x) = sum((-1)^nx^n,n,k,infinity,-3)$$$$x^k/(1+x) = sum((-1)^nx^n,n,k,infinity,2)$$$$sum(x^n,n,k,infinity) = x^k/(1-x)$$$$sum(x^n,n,k,infinity,-3) = x^k/(1-x)$$$$sum(x^n,n,k,infinity,2) = x^k/(1-x)$$$$sum((-1)^nx^n,n,k,infinity) = x^k/(1+x)$$$$sum((-1)^nx^n,n,k,infinity,-3) = x^k/(1+x)$$$$sum((-1)^nx^n,n,k,infinity,2) = x^k/(1+x)$$$$ln(1-x) = sum(x^n/n,n,1,infinity)$$$$ln(1-x) = sum(x^n/n,n,1,infinity,-3)$$$$ln(1-x) = sum(x^n/n,n,1,infinity,2)$$$$ln(1+x) = sum((-1)^(n+1) x^n/n,n,1,infinity)$$$$ln(1+x) = sum((-1)^(n+1) x^n/n,n,1,infinity,-3)$$$$ln(1+x) = sum((-1)^(n+1) x^n/n,n,1,infinity,2)$$$$sum(x^n/n,n,1,infinity) = ln(1-x)$$$$sum(x^n/n,n,1,infinity,-3)=ln(1-x)$$$$sum(x^n/n,n,1,infinity,2)=ln(1-x)$$$$sum((-1)^(n+1) x^n/n,n,1,infinity)=ln(1+x)$$$$sum((-1)^(n+1) x^n/n,n,1,infinity,-3)=ln(1+x)$$$$sum((-1)^(n+1) x^n/n,n,1,infinity,2)=ln(1+x)$$$$ sin x = sum( (-1)^n x^(2n+1)/(2n+1)!,n,0,infinity)$$$sin x = x-x^3/3!+x^5/5!+...$$sin x = x-x^3/3!+x^5/5!+...+ (-1)^nx^(2n+1)/(2n+1)!+...$$$cos x = sum( (-1)^n x^(2n)/(2n)!,n,0,infinity)$$$cos x = 1-\onehalf x^2+x^4/4! + ...$$cos x = 1-\onehalf x^2+...+(-1)^nx^(2n)/(2n)!+...$$$sum((-1)^n x^(2n+1)/(2n+1)!,n,0,infinity) =  sin x$$$x-x^3/3!+x^5/5!+... = sin x$$x-x^3/3!+x^5/5!+...+ (-1)^nx^(2n+1)/(2n+1)!+... =  sin x$$$sum( (-1)^n x^(2n)/(2n)!,n,0,infinity) = cos x$$$1-\onehalf x^2+x^4/4! + ... = cos x$$1-\onehalf x^2+...+(-1)^nx^(2n)/(2n)!+... = cos x$$$e^x = sum(x^n/n!,n,0,infinity)$$$e^x = 1+x+x^2/2!+...$$e^x = 1+x+...+x^n/n!...$$$sum(x^n/n!,n,0,infinity)= e^x$$$1+x+x^2/2!+ x^3/3!+... = e^x$$1+x+...+x^n/n!... = e^x$$$e^(-x) = sum((-x)^n x^n/n!,n,0,infinity)$$$e^(-x) = 1-x+x^2/2!+...$$e^(-x) = 1-x+...(-1)^nx^n/n!...$$$sum((-1)^nx^n/n!,n,0,infinity)= e^(-x)$$$1-x+x^2/2!+ x^3/3!+... = e^(-x)$$1-x+...+(-1)^nx^n/n!... = e^(-x)$$$arctan x = sum(x^(2n+1)/(2n+1),n,0,infinity)$$$arctan x = x -x^3/3 + x^5/5 ...$$arctan x = x -x^3/3 +...+ x^(2n+1)/(2n+1)+...$$$sum(x^(2n+1)/(2n+1),n,0,infinity) = arctan x$$$x -x^3/3 + x^5/5 ...=arctan x$$x -x^3/3 +...+ x^(2n+1)/(2n+1)+...=arctan x$$$(1+x)^alpha = sum(binomial(alpha,n) x^n,n,0,infinity)$$$$(1+x)^alpha = sum(binomial(alpha,n) x^n,n,0,infinity,-3)$$$$(1+x)^alpha = sum(binomial(alpha,n) x^n,n,0,infinity,2)$$$$sum(binomial(alpha,n) x^n,n,0,infinity)= (1+x)^alpha$$$$sum(binomial(alpha,n) x^n,n,0,infinity,-3)= (1+x)^alpha$$$$sum(binomial(alpha,n) x^n,n,0,infinity,2)= (1+x)^alpha$$express series as $a_0 + a_1 + ...$express series as $a_0 + a_1 + a_2 + ... $express series using ... and general termexpress series using sigma notationshow another term before ...show ? more terms before ...show terms with factorials evaluateddo not evaluate factorials in termsshow the coefficients in decimal formdo not use decimal form for coefficientstelescoping seriesmultiply seriesmultiply power seriesdivide power series by polynomialdivide polynomial by power seriesdivide power seriessquare seriessquare power seriesexpress $(\sum  a_k x^k)^n$ as a seriesadd seriessubtract seriesdecrease lower limit by subtracting termsadd ? to index variablesubtract ? from index variabledifferentiate power series term by termintegrate power series term by termcalculate sum of first few terms$$u = integral(diff(u,x),x)$$$$u = integral(diff(u,t),t,0,x) + u0$$$$u = diff(integral(u,x),x)$$solve for constant of integration$\sum  a_k = \sum a_(2k) + \sum a_(2k+1)$$\sum u$ diverges if $lim u$ is not zerointegral testratio testroot testcomparison test for convergencecomparison test for divergencelimit comparison testcondensation testfinish divergence testfinish integral testfinish ratio testfinish root testfinish comparison testfinish limit comparison testfinish condensation testpositive result of comparison testnegative result of comparison test$$sum(1/k,k,1,infinity) = infinity$$$$sum(1/k^2,k,1,infinity) = pi^2/6$$$ln(u+iv) = ln(re^(i\theta ))$$ln(re^(i\theta ))=ln r + i\theta  (-\pi <\theta \le \pi )$$ln i = i\pi /2$$ln(-1) = i\pi $$ln(-a) = ln a + i\pi  (a > 0)$$cos \theta  = [e^(i\theta ) + e^(-i\theta )]/2$$sin \theta  = [e^(i\theta ) - e^(-i\theta )]/2i$$$sqrt(re^(i theta))=sqrt(r) e^(i theta/2)$$ $  (-\pi < \theta \le \pi )$$$root(n,re^(i theta))=root(n,r) e^(i theta/n)$$ $  (-\pi < \theta \le \pi )$$e^(i\theta ) = cos \theta  + i sin \theta $$e^(x+iy) = e^x cos y + i e^x sin y$$e^(i\pi ) = -1$$e^(-i\pi ) = -1$$e^(2n\pi i) = 1$$e^((2n\pi  + \theta )i) = e^(i\theta )$$u^v = e^(v ln u)$sin(it) = i sinh tcos(it) = cosh tcosh(it) = cos tsinh(it) = i sin ttan(it) =  i tanh tcot(it) = -i coth ttanh(it) = i tan tcoth(it) = -i cot tcos t + i sin t = e^(it)cos t - i sin t = e^(-it)$[e^(i\theta ) + e^(-i\theta )]/2 = cos \theta $$[e^(i\theta ) - e^(-i\theta )]/2i = sin \theta $$e^(i\theta ) + e^(-i\theta ) = 2 cos \theta $$e^(i\theta ) - e^(-i\theta ) = 2i sin \theta $cosh u = (e^u+e^(-u))/2e^u + e^-u = 2 cosh usinh u = (e^u-e^(-u))/2e^u-e^(-u) = 2 sinh u[e^u + e^-u]/2 = cosh u[e^u-e^(-u)]/2 = sinh ucosh(-u) = cosh usinh(-u) = -sinh ucosh u + sinh u = e^ucosh u - sinh u = e^(-u)cosh 0 = 1sinh 0 = 0e^x = cosh x + sinh xe^(-x) = cosh x - sinh x$sinh^2u + 1 = cosh^2 u$$cosh^2 u - 1 = sinh^2u $$cosh^2 u - sinh^2u = 1$$cosh^2 u = sinh^2u + 1$$sinh^2u = cosh^2 u - 1$$1 - tan^2u = sech^2u$$1 - sech^2u = tan^2u$tanh u = sinh u / cosh usinh u / cosh u = tanh ucoth u = cosh u / sinh ucosh u / sinh u = coth usech u = 1 / cosh u1 / cosh u = sech ucsch u = 1 / sinh u1 / sinh u = csch u$tanh^2 u + sech^2 u = 1$$tanh^2 u = 1 - sech^2 u$$sech^2 u = 1 - tanh^2 u $$sinh(u\pm v)=sinh u cosh v \pm  cosh u sinh v$$cosh(u\pm v)=cosh u cosh v \pm  sinh u sinh v$sinh 2u = 2 sinh u cosh u$cosh 2u = cosh^2 u + sinh^2 u$$tanh(ln u) = (1-u^2)/(1+u^2)$$arcsinh x = ln(x + \sqrt (x^2+1))$$arccosh x = ln(x + \sqrt (x^2-1))$$arctanh x = (1/2) ln((1+x)/(1-x))$d/du sinh u = cosh ud/du cosh u = sinh u$d/du tanh u = sech^2 u$$d/du coth u = -csch^2 u$d/du sech u = -sech u tanh ud/du csch u = -csch u coth ud/du ln sinh u = coth ud/du ln cosh u = tanh u$d/du arcsinh u = 1/\sqrt (u^2+1)$$d/du arccosh u = 1/\sqrt (u^2-1)$$d/du arctanh u = 1/(1-u^2)$$d/du arccoth u = 1/(1-u^2)$$d/du arcsech u= -1/(u\sqrt (1-u^2))$$d/du arccsch u= -1/(|u|\sqrt (u^2+1))$sg(x) = 1 if x > 0sg(x) = -1 if x < 0sg(0) = 0sg(-x) = -sg(x)-sg(x) = sg(-x)sg(x) = |x|/x (x nonzero)sg(x) = x/|x| (x nonzero)abs(x) = x sg(x)$sg(x)^(2n) = 1$sg(x)^(2n+1) = sg(x)1/sg(x) = sg(x)d/dx sg(u) = 0 (u nonzero)$\int  sg(x) = x sg(x)$$\int  sg(u)v dx = sg(u)\int  v dx$ (u nonzero)sg(x) = 1 assuming x > 0sg(x) = -1 assuming x < 0$sg(au) = sg(u)$ if $a > 0$$sg(au) = -sg(u)$ if a < 0sg(au/b) = sg(u) if a/b > 0sg(au/b) = - sg(u) if a/b < 0sg(x^(2n+1)) = sg(x)sg(1/u) = sg(u)sg(c/u) = sg(u) if c > 0u sg(u) = |u||u| sg(u) = ud/dx J0(x) = -J1(x)d/dx J1(x) = J0(x) - J1(x)/xd/dx J(n,x)=J(n-1,x)-(n/x)J(n,x)d/dx Y0(x) = -Y1(x)d/dx Y1(x) = Y0(x) - Y1(x)/xd/dx Y(n,x)=Y(n-1,x)-(n/x)Y(n,x)d/dx I0(x) = -I1(x)d/dx I1(x) = I0(x) - I1(x)/xd/dx I(n,x)=I(n-1,x)-(n/x)I(n,x)d/dx K0(x) = -K1(x)d/dx K1(x) = -K0(x) - K1(x)/xd/dx K(n,x)= -K(n-1,x)-(n/x)K(n,x)expandmultiply if cancelscancel square rootsNumerical CalculationExpress Number in Different FormComplex ArithmeticSimplify SumsSimplify ProductsExpandFractionsSigned FractionsCompound FractionsCommon DenominatorsExponentsExpand PowersNegative ExponentsSquare RootsAdvanced Square RootsFractional ExponentsN-th RootsRoots of RootsRoots and FractionsComplex NumbersFactoringAdvanced FactoringSolve EquationsQuadratic EquationsStudy Equations NumericallyAdvanced EquationsCubic EquationsLog Or Exponential EquationsCramer's RuleSeveral Linear EquationsSelection Mode OnlyLinear Equations by Term SelectionEquations by SubstitutionMatrix MethodsAdvanced Matrix MethodsAbsolute ValueAbsolute Value InequalitiesStrict InequalitiesInequalitiesInequalities involving SquaresInequalities involving ReciprocalsRoot and Power InequalitiesInequalities--One Side ZeroBinomial TheoremFactoring Binomial ExpansionsSigma NotationAdvanced Sigma NotationProve by InductionTrig InequalitiesLog and Power InequalitiesLogarithms Base 10LogarithmsNatural Logarithms and eNatural LogarithmsReverse Trig Sum FormulasComplex Polar FormLogarithms to any BaseChange Base of LogarithmsEvaluate Trig FunctionsBasic TrigTrig ReciprocalsTrig Square IdentitiesCsc and Cot IdentitiesTrig Sum FormulasDouble Angle FormulasExpand sin nx or cos nxVerify IdentitiesSolve by 30-60-90Solve by 45-45-90Zeroes of Trig FunctionsInverse Trig FunctionsSimplify Inverse TrigAdding Inverse Trig FunctionsComplementary Trig FunctionsComplementary Angles in DegreesOdd and Even Trig FunctionsPeriodicity of Trig FunctionsHalf-Angle IdentitiesProduct and Factor IdentitiesLimitsLimits of QuotientsLimits of Quotients of RootsL'Hospital's RuleSpecial LimitsLimits of Hyperbolic FunctionsAdvanced LimitsLogarithmic LimitsLimits at InfinityInfinite LimitsInfinityZero DenominatorFunctions at InfinityDifferentiate PolynomialsDerivativesDifferentiate Trig FunctionsDifferentiate Exp and LogDiff Inverse Trig FunctionsChain RuleMinima and MaximaImplicit DifferentiationRelated RatesSimplifyHigher DerivativesBasic IntegrationIntegrate Trig FunctionsIntegrate Trig Functions of ctIntegrate Exponentials and LnIntegrate by SubstitutionIntegrate by PartsFundamental TheoremDefinite IntegrationImproper IntegralsOdd and Even IntegrandsInverse SubstitutionsTrigonometric IntegralsSimplify Trig IntegrandIntegrate Rational FunctionsIntegrate Square Root In DenomIntegrate Inverse Trig FunctionsIntegrate Hyperbolic FunctionsGeometric SeriesGeometric Series 2Geometric Series 3Geometric Series 4Geometric Series 5Infinite Series for the LogarithmInfinite Series for sin and cosInfinite Series for the Exponential FunctionInfinite series for arctanAppearance of SeriesAlgebraic Operations on SeriesManipulating Infinite SeriesConvergence TestsFinish Convergence TestsComplex FunctionsComplex Function IdentitiesHyperbolic Sine and CosineHyperbolic Trig IdentitiesHyperbolic FunctionsInverse Hyperbolic FunctionsDifferentiate HyperbolicsDifferentiate Inverse HyperbolicsSg FunctionSimplify Sg FunctionBessel FunctionsModified Bessel FunctionsUser-Defined FunctionsInvisibleInvisible Tooand This Too� 	A	T	b	t	{	�	�	�	�	�	�	�	�	
 
+
:
N
^
h
{
�
�
�
�
�
�
	"@c}��������  CC__  CC__{���������
$
/
H
[
u
�
�
�
�
�
�
-C[m����� @\z������ ?Obu�������.9Kdr{�����*>Sf~��� r`����� @m�����5Pk�����.EO]����|�A�B
A�B
Q%	
cmdmenuW
menutitle�
arithstr�
menutextmenutitlesGCC: (GNU) 3.3.5 (Debian 1:3.3.5-13).symtab.strtab.shstrtab.rel.text.rel.data.bss.debug_abbrev.rel.debug_info.rel.debug_line.rel.rodata.rel.debug_frame.rel.debug_pubnames.rel.debug_aranges.note.GNU-stack.comment4	�Y)`@* %	�Y�8/�*4�*�FN+%B	��XVs9XR	ܒ	f�9$ b	�HrSDn	,� 
�HSU	L���S �	T���S��S&�S�dX0	�Y8�	
	@*��&.mtext.carithstrmenutextmenutitlescmdmenumenutitle
 $(@DHLPTX������������������������������� $(,048<@DHL�����������������������������@DHLPTX\`dhl��������������������������� $(,@DHLPTX\`dhlptx|������������������������������ $(,048<@DHL�������������������������������� $(,048<@DHLPTX\`dhlptx|�������������������������@DHLPTX\`dhlptx|���������������������@DHLPTX\`dhlpt�������������������� @DHLPTX\`dhlptx���������������������								 	$	(	,	0	4	8	<	@	D	H	L	P	T	X	\	`	d	h	l	p	t	x	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	







 
$
(
,
0
4
8
@
D
H
L
P
T
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
 $@DHLPTX\`d�������������������������� $@DHLPTX\`d����������������������



@
D
H
L
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
@DHLPTX\���������������������� $(,048<@DHLPTX\`dhlp������������@DHLPTX�������������� $(@DHLPTX\`dhlptx|��������������������� $(,0@DHLPTX\`d������������������������� $(,048@DHLPTX��������������������������� @DHLPTX\������������������� $(,048@DHLPTX\`dhl�������������� $(,048<@DHLPTX\`dhlptx|�������������� $(,048@DHLPTX\`dhl���������������������������� $@DHLPTX\`dhlptx|��������������������� @DHLPTX\`dhlptx�������������������� $(,@DHLPTX\`dhlptx|������������������������ $(,@DHLPTX\`dhlp�����������������������@DHLPTX\`dhl������������������������ $(,048<@DH������������������@DHLPTX\`dhlptx|������������������������ @DHLPTX\`d����������          @ D H L P T � � � � � � � � � � � !!!!!!!! !$!(!,!0!@!D!H!L!P!T!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!""""""""@"D"H"L"P"T"X"\"`"d"h"l"p"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"######## #$#(#,#@#D#H#L#P#T#X#\#`#d#h#l#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#$$$$$$$$ $$$($,$@$D$H$L$P$T$X$\$`$d$h$l$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$%%%%%%%% %$%@%D%H%L%P%T%X%\%`%d%h%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%&&&&@&D&H&L&P&T&X&\&`&d&h&l&p&t&x&|&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&'''''''@'D'H'L'P'T'X'\'`'d'h'l'p't'x'|'�'�'�'�'�'�'�'�'�'�'�'((((((@(D(H(L(P(T(X(\(`(d(h(l(p(t(x(|(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�())))))@)�)�)�)*
#
o
s
�
�
F�������������������������������� $(,048<@DHLPTX\`dhlptx|�������������������������������� $(,048<@DHLPTX\`dhlptx|�������������������������������� 	0	4

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists