Sindbad~EG File Manager

Current Path : /usr/home/beeson/Otter-Lambda/
Upload File :
Current File : /usr/home/beeson/Otter-Lambda/intparts.o

ELFlm4(U����Ef�E�f�}
ul�E�D$�E�D$�E�D$�U��$�B�D$�B�D$�����t8f�}�#t%f�}�$tf�}�tf�}�tf�}�t	f�}�t��E��hf�}�t	f�}�t�L�Ef�8%uC�E�D$�E�D$�E�D$�E�P��$�B�D$�B�D$�����t�E���U�E�D$�E�D$�E�D$�E�D$�E�D$�E�D$�$�����f�}�-u�U��E�B�E�B�E�f�}�/uM�U��$�B�D$�B�D$�����t.�U����$�B�D$�B�D$�����t�E��ef�}�/uC�E�D$�E�D$�E�D$�U����$�B�D$�B�D$�����t�E��f�}�/uQ�E��D$�E��D$�E�D$�E�D$�E�D$�U����$�B�D$�B�D$�����t�E����Uء�D$��D$��D$�E�D$�E�D$�E�D$�$������EȉD$$�E�D$�E�D$�E�D$ �E؉D$�E܉D$�E�D$��$��D$��D$����E�D$�Eȉ$�ẺD$�EЉD$�����u	�E���E��E���U���(f�E@f�E�E$�D$�E �D$�E�D$�E�D$�E�D$�E�$�E�D$�E�D$�����U��WVS��lDž,���Dž(���Dž$���f�}�tDž����r�E%��t+�$X	����D$�$���Dž����:�U��E��B�E��B�E��U����E؋B�E܋B�E�f�}@�Wf�}=u!�Ef�xu�U����E�B�E�B�E�E؉D$�E�$�E�D$�E�D$�����u+�$�	����D$�$���Dž�����E��D$(�EȉD$$�E�D$�E�D$�E�D$ �E؉D$�E܉D$�E�D$�E��$�E��D$�E��D$�I��0�����0���u+�$����D$�$���Dž������0������$����D$�$����$����D$�$���Dž����f�}�*�Z�E�f�����fDž"�����"���f;����r���"������Ѝ��U��
�E�D
�E�D
�Ef�}��f�}uf�}���Ef�����f�����#tf�����^���Ef�8#t��E��D$��x����D$�E�D$�E�D$�E�D$�E��$�E��D$�E��D$����EȉD$�E؉D$�E܉D$�E�D$�E��$�E��D$�E��D$�����0�����0���u���,����f�����^u7�E؉D$�U����$�B�D$�B�D$�����t
��(�����f�����^u
�E�f�����f�����vf�����w
��$�����mf�����#tcf�����$tYf�����"tOf������tDf�����/t:f�����*t0f�����+t&f�����-tf�����^tf�����%t��(������"���@f��"��������,���tDž����b��(���u��$���uDž����AfDž"�����"���f;����r�&��"������Ѝ��U��
�E�D
�E�D
�E�E؉D$�E�$�E�D$�E�D$�����u��E؉D$�E܉D$�E�D$�E�$�E�D$�E�D$�����u��$���u�}��$���tf�}�if�}�^�E��D$��x����D$�E�D$�E�D$�E�D$�E��$�E��D$�E��D$�����0�����0�����E�D$�E�D$�E�D$��x����$��|����D$�E��D$�����u���EȉD$�E؉D$�E܉D$�E�D$�E��$�E��D$�E��D$�����0�����0���u�7fDž ����� ���f;����r�~�� ���f;�"���t\�� ������Ѝ��E�f�|t=�� ������Ѝ��E�f�<u2�� ������Ѝ��E�f�|u�� ���@f�� ����q����� ���f;����r$�D$�D$��D$�$)����� ������Ѝ��E��D��4����� ������Ѝ��M���4��������D�P���X����B��\����B��`����E؉D$�E܉D$�E�D$��X����$��\����D$��`����D$��������h����D$��x����D$��X����D$��\����D$��`����D$�E�$�E�D$�E�D$�����0�����0���t����h����E��l����E��p����E�E��D$��x����D$�E�D$�E�D$�E�D$�E��$�E��D$�E��D$�����0�����0���t�]�EȉD$�E؉D$�E܉D$�E�D$�E��$�E��D$�E��D$�����0�����0���u���"���@f��"�������fDž"�����"���f;����r���"������Ѝ��U��
�E��D
�E��D
�E��E؉D$�E��$�E��D$�E��D$�����u�f�}�^���D$��D$��D$�U���$�B�D$�B�D$�����u���E�D$��x����D$�E��D$�E��D$�E��D$�E��$�E��D$�E��D$�����0�����0������E��D$�E��D$�E��D$��x����$��|����D$�E��D$�����u�I�EȉD$�E؉D$�E܉D$�E�D$�E��$�E��D$�E��D$�����0�����0���u���"���@f��"����c���Dž����Hf�}�^� �E؉D$�U�����$�B�D$�B�D$�����tDž�����E���f�8/t�E���f�8-u �E����@f�8/t�Dž������U�����$�B�D$�B�D$�����tDž������D$��D$��D$�U�����$�B�D$�B�D$�����t�U���E�B�E�B�E���������D$��D$��D$�U�����D$�B�D$�B�D$�$�����������D$�������$�������D$������D$����M������D$������D$������D$�U���D$�B�D$�B�D$�$������E��D$(�EȉD$$�E�D$�E�D$�E�D$ �E؉D$�E܉D$�E�D$�E��$�E��D$�E��D$�M��0�����0�����Dž����f�}�/���U����H����B��L����B��P����U������8����B��<����B��@�����H���f�����f�����^���E؉D$��P�������$�B�D$�B�D$�����tDž����~
��H����E��L����E��P����E��P����f�����f�����#��f�����$��Dž����(
f�����#tf�����$t� ��H����E��L����E��P����E�]f�����*��f��J���uzfDž"���f��"���v�H��"������Ѝ���P����
�E�D
�E�D
�Ef�}#u���"���@f��"����f��"�����Dž����`�E؉D$�E܉D$�E�D$��H����$��L����D$��P����D$�����tL��H����E��L����E��P����E�U���8����D$��<����D$��@����D$�$������Df�����tf�����t���P���f�8#t��P���f�8$t��E؉D$�E܉D$�E�D$��P����P��$�B�D$�B�D$�������f��8���^���E؉D$�E܉D$�E�D$��@�����$�B�D$�B�D$�����t|��@������@����uh��@�����f�8uY��@�����f�xuI��H����E��L����E��P����E�U���8����D$��<����D$��@����D$�$������Dž����
�E��D$(�EȉD$$�E�D$�E�D$�E�D$ �E؉D$�E܉D$�E�D$�E��$�E��D$�E��D$�R
��0�����0�����Dž����"
�E��E�E��E�E��E�E؉D$�E܉D$�E�D$�E�$�E�D$�E�D$�����tDž�����	�E��D$(�EȉD$$�E�D$�E�D$�E�D$ �E؉D$�E܉D$�E�D$�E��$�E��D$�E��D$�	��0�����0���tDž����`	�E�D$�E�D$�E�D$�E��$�E��D$�E��D$�������f�}
���] ��������������������������E؉D$�E܉D$�E�D$�E�D$�E�D$�E�D$�$������������D$�������D$�������D$�E؉D$�E܉D$�E�D$������$������E؉D$�E܉D$�E�D$������D$������D$������D$�<$�����������D$������D$�����D$�4$������������E�D$�E�D$�E�D$�E؉D$�E܉D$�E�D$�$����������D$�����D$����D$�������D$�������D$�������D$�$������/�] ��������������x����������h����E؉D$�E܉D$�E�D$�E�D$�E�D$�E�D$�$�������h����D$��l����D$��p����D$�E؉D$�E܉D$�E�D$������$������U��$��D$(�B�D$,�B�D$0�U����D$�B�D$ �B�D$$�E؉D$�E܉D$�E�D$��x����D$��|����D$�������D$�<$������������D$�������D$�������D$�4$�������X�����H����E�D$�E�D$�E�D$�E؉D$�E܉D$�E�D$�$������U��$��D$(�B�D$,�B�D$0�U����D$�B�D$ �B�D$$�E؉D$�E܉D$�E�D$��H����D$��L����D$��P����D$�4$������������D$�������D$�������D$��X����D$��\����D$��`����D$�$������U �E �@
���f�B�D$-�E$�$���Dž����3��������Eȉ$�����8����D$�D$u�$�������(����D$�D$v�$��������������������������E؉D$�E܉D$�E�D$�E��D$�E��D$�E��D$�$������EȉD$�ẺD$�EЉD$�����D$�����D$����D$�<$������������D$�������D$������D$��(����D$��,����D$��0����D$�4$�����������E�D$�E�D$�E�D$��8����D$��<����D$��@����D$�$�����������D$������D$������D$������D$������D$�����D$�$�����������$������D$�� ����D$�����0�����0���tDž����<�U��EȉD$�ẺD$�EЉD$�E�D$�E�D$�E�D$�$������E؉D$�E܉D$�E�D$�E�$�E�D$�E�D$�����t�EȉE��ẺE��EЉE��|�]�������E؉D$�E܉D$�E�D$�E�D$�E�D$�E�D$�$�����������D$������D$�����D$�EȉD$�ẺD$�EЉD$�$�����f�}
���] �����������E؉D$�E܉D$�E�D$�E��D$�E��D$�E��D$�$������������D$�������D$������D$�4$����������D$�����D$����D$�E��D$�E��D$�E��D$�$������W�] �����������U��$��D$(�B�D$,�B�D$0�U����D$�B�D$ �B�D$$�E؉D$�E܉D$�E�D$�E��D$�E��D$�E��D$�$�����������D$������D$�� ����D$�4$�������(����U��$��D$(�B�D$,�B�D$0�U����D$�B�D$ �B�D$$�E؉D$�E܉D$�E�D$�E��D$�E��D$�E��D$�$�����������D$������D$������D$��(����D$��,����D$��0����D$�$������U �E �@
���f�B�D$B�E$�$���Dž���������e�[^_]�U���X�E �D$�E$�D$�E(�D$�E�$�E�D$�E�D$�����t:�U,�E��E�B�E�B�U0����B��B�E���E�Ẽ}�/���}�/�}�*t�$�}�^t��E0�D$�E�D$�E �D$�E$�D$�E(�D$�E�$�E�D$�E�D$����Eԃ}�u6�E �D$�E$�D$�E(�D$�E�$�E�D$�E�D$��������E����E؉D$�E�D$�E �D$�E$�D$�E(�D$�U��$�B�D$�B�D$����Eԃ}�t�E���M0�U����D$�B�D$�B�D$�E؉D$�E܉D$�E�D$�$������	�E��P�E,�D$�E�D$�E�D$�E�D$�U0��$�B�D$�B�D$����Eԃ}�t	�E���E��E���U��S��d<����E��}�lt�����u�Dž����>����E��E��Eč�����$�����x���������E��U�E��D$�$�����f�}�=uDž�������}���Eč�������<~u�Eč�������|u�E���}�~u�}�~o������E�H�D$�$������E�D$�E�D$�E�D$������$������D$������D$���t�U؋E�H�D$�$�������E��>����}�u�����uDž�����}�~�U؋E�H�D$�$�������E��D$�$������E�D$�E�D$�E�D$�E؉$�E܉D$�E�D$�
��uDž���������������E�D$�E�D$�E�D$�$�����������D$������D$������D$�E؉D$�E܉D$�E�D$�$������EȉD$������$������D$������D$����D$��Eȉ$�ẺD$�EЉD$�����uDž������U �E�D$�E�D$�E�D$�E؉D$�E܉D$�E�D$�$������U �E �@
���f�B�$����D$�E$�$����U ��$�B�D$�B�D$�W�E �P���E �@���@
�f�B�$�����D$�$���Dž���������]���U���Xf�}=t�E���U��E�B�E�B�E�f�}�t�E���U����E؋B�E܋B�E�f�}�+t�E����E�f�E�f�E��E�f;E�r��U։��Ѝ��U�
�E�D
�E�D
�E�E�D$�E�D$�E�D$�E�$�E�D$�E�D$�����tA�E$�D$�E �D$�E�D$�E�D$�E�D$�E�$�E�D$�E�D$����E���E�@f�E��H����E��E���U���(�Ef�E�f�}��u �U�E��E�B�E�B�E���f�}
tf�}uf�}
t��E����E
f�E�f�}�u�U��E�B�E�B�E��E��E��E�9E�|�L�D$��U����Ѝ��U�
�$�D
�D$�D
�D$�����t�E��E��E�E��멃}�t	�E��,�U���Ѝ��U�
�E�D
�E�D
�E����E���U���Xf�}-u �Ef�8-u�E�P��E�B�E�B�Ef�}-u �Ef�8-u�E�P��E�B�E�B�Ef�}-u/f�}-u(�U��E�B�E�B�E�U��E�B�E�B�E�E�D$�E�$�E�D$�E�D$�4����Eԃ}�t�E����E؉D$�E�$�E�D$�E�D$����Eԃ}�t�E���E؉D$�E܉D$�E�D$�E�$�E�D$�E�D$�����u	�E��t�E�D$�E�D$�E�D$�E�$�E�D$�E�D$�����t;�E�D$�E�D$�E�D$�E�$�E�D$�E�D$�����t	�E���E��E���U���f�}
tsf�}uf�}
tef�}�u�E
�f�E�O�E
f�E��E��E�9E�|�5�U����Ѝ��U�
�$�D
�D$�D
�D$����E�����%:;I$>$>:;
:;I8
I!I/	I
:;(
:;

:;I
:;I
8

:;I
8
'II:;
:;I8
&I:;!I/(
.:;'I@
:;I
4:;I
.?:;'I@
:;I

:;4:;I
 !4:;I
"#.:;'I@
$:;I
%4:;I
&.?:;'I@
':;I
(.:;'@
)4:;I?<�;(yyy/trigcalc/intparts.c/home/beeson/Otter-LambdaGNU C 3.3.5 (Debian 1:3.3.5-13)size_t�yO__u_char"�unsigned char__u_short#�short unsigned int__u_int$y__u_long%�long unsigned int__int8_t(signed char__uint8_t)�__int16_t*=short int__uint16_t+�__int32_t,mint__uint32_t-y__int64_t2�long long int__uint64_t3�long long unsigned int__quad_t;�__u_quad_t<�__dev_t��__uid_t�y__gid_t�y__ino_t��__ino64_t��__mode_t�y__nlink_t�y__off_t�slong int__off64_t��__pid_t�m��__val��#�m�O__fsid_t��__clock_t�s__rlim_t��__rlim64_t��__id_t�y__time_t�s__useconds_t�y__suseconds_t�s__daddr_t�m__swblk_t�s__key_t�m__clockid_t�m__timer_t�m__blksize_t�s__blkcnt_t�s__blkcnt64_t��__fsblkcnt_t��__fsblkcnt64_t��__fsfilcnt_t��__fsfilcnt64_t��__ssize_t�m__loff_t�__qaddr_t�m	�__caddr_t��	�char__intptr_t�m__socklen_t�y
P1_ISupper�_ISlower�_ISalpha�_ISdigit�_ISxdigit� _ISspace��_ISprint��_ISgraph��_ISblank_IScntrl_ISpunct_ISalnumunit\l��digity�lny#val�#	lbignumy�signm#n�#d�#bigrat�arg#�.argtag#
t-|
i.s
d/�
b0�v*symbol&�#arity'�#info(�#args)v#	�term*.double$0fracty#varaddy#intexpy#negexpy#ratexpy#rootsy#purey#gcdy#absy#relopy#factorialy#matrix y#inverse"y#functions#y#sums$y#flt%y#complex'y#complexpowers*y#&+y
#mod,y#aflag0�� 	
left	|#right	|#line	m
#permanent	m#visible	m#reverse	m#oldeigen		m#defn	
1actualop
�	�	m||	�	|4	
men

y#choice
y#operation
	�	b
status
y#choice
y#used
y#inhibited
y#men
y#hashbucket
E	
inh
A
A=#o
B=#kind
D=#link
E
#	�	inhibition
F�	�
,scopey#multordery#typey#dp�#locus|#o	m#realpart
�#imagpart�# name�
#(�
��varinf#
dldata�#next#	�
dlist�
� #addr�#increment�#m#functory#om#name �#history!�#	�	parameter##�02varlist&	#nvariables'm#maxvariables(m#eigenvariable)m#/*m#�+�#,m#maxparameters-m#varinfo.�# nextdefn/m#$defns0�#(maxdefns1m#,	�	�
	�vardata2��
D)factorm#m#difm#intlinearm#gcdm#zeropowerm#fractexpm#negexpm#rootproductm# &m#$infractionm#(complex!m#,domainflag#m#0ringflag%m#4orderflag&m#8arith'$#<hwnd(�#@polyflags)�Da
prop
|#line
m#link
D#	assumption
eqnsolver
	m	s�m||	�,
$assumptions
�#maxassumptions
=#nextassumption
=#theorems
	#maxtheorems
=#nexttheorem
=#history
	#permhistory
�#maxhistory
y#workspace
�#maxworkspace
�# nextworkspace
!y#$solver
#\#(	�	J	y	�proverdata
$�topicm,>line<#;=m#(�		!�message>�;gr8

m#��#color1�#color2�#color3�#ncolorsm#;m#spacingPointsm#thickness1m# thickness2m#$titlebackgroundcolor�#(�#,��#0z�#4GraphPaper 5@�graphtype*m#numberofpoints,m#linewidth-�#graphcolor.�#�/�#fillcolor0�#border1�#�2�# z3�#$4�#(ticks5y#,labels7y#,savezooms<y#,saveparams=y#,grid>y#,showtitles?y#,tool@y#,whichgraphBm#0F|#4fprimeG|#@gprimeH|#LxfunctionI|#XyfunctionJ|#dindependent_variableK|#pdependent_variableN|#|rvariableP�#�xvariableQ�#�yvariableR�#�tminS�#�tmaxS�#�tselectedU�#�xminV�#�xmaxV�#�yminV�#�ymaxV�#�slistW	#�dimslist[m#�jumplist\	#�dimjumplist]m#�openlist^	#�dimopen_m#�closedlist`	#�dimclosedam#�srestrictionsb	#�dimsrestrictionsdm#�jumprestrictionse	#�dimjumprestrictionsgm#�elisth	#�dimelistkm#�singularitiesl�#�nsingularitiesmm#�initial_valuesn#�jumpsp�#�njumpsqm#�dxminr�#�dyminr�#�dxmaxs�#�dymaxs�#�pxmintm#�pxmaxtm#�pyminwm#�pymaxwm#�titlex|#�txminz�#�tyminz�#�txmaxz�#�tymaxz�#�xminsym{|#�xmaxsym{|#�yminsym{|#�ymaxsym{|#�selectedx~�#�selectedy~�#�pencil_left�#�pencil_top�#�pencil_right�#�pencil_bottom�#�whichparams�#����#�newaxes�y#�erase�y#�crosshairsflag�y#�rectangle_flag�y#�dfield�m#�dfield_applicable�y#�update�y#��y#�riemannflag�y#�root_xcoords�#�root_ycoords�#�nroots�m#�nintervals�|#�left��#�right��#�area��#�spot�y#�zoom_disabled�m#�tempsing�m#�grpaper�;#�zvariable��#�independent_variable2�|#�zfunction�|#�zmin��#�zmax��#�umin��#�umax��#�vmin��#�vmax��#�rendermode�m#�camera�#�camera_rotation��#�focus�#�lamp1�#�lamp2�#�lamp1flag�m#�lamp2flag�m#�lamp1color��#�lamp2color��#�points�,#��,#�normals�,#�npoints�m#�nindex�m#�	�m�	m,��graph�Mcoord=i,x*;#y+;#YPAIR,H�1formula.i#reasonrect/i#comment0i#line1v+4OcxChar4m#cyChar5m#width7=#height8=#
top:=#left;=#right<=#bottom==#clientRight@=#clientBottomA=#leftmarginB=#rightmarginC=#topmarginE=#bottommarginF=#reasonsH=# linesI+#$;J=#(selectedK,#,selectedlineMm#0	�PapyrusO��\hX�#commentY�#controlflagsZ�#eigenindex[�#
	�linedata\@� �;�mathmode`y#display_onay#memoryflagby#complex_frozency#checksolutionsflagdy#substitutionflagey#logcollectflagfy#comdenomflaggy#linebreakshy#nfailedopsiy#radicalflagjm#finishedflagky#assumptions_visiblely#definitions_visiblemy
#expandflagnm#trigexpandflagom#factorflagpm#selected_equationqm#\rm#Bsm#minmax_intervalt|#pendingu�#(modelv� #,inhibitionsw� #�vsuccessivefailuresxm#�vlocalfailureszm#�vautosteps{m#�vopseq|� #�wfailedops}� #�wlinedatahistory~!#�wnlinedatay#�wplan�!#�whwnd��#�wshowstepflag�m#�w� �	��	
	4	!��	�!4	�controldata��
%l=�kind�y#problemsource�y#docnumber�m#\�m#B�m#originaltopic�m#version�m#hwnd��#papyrus�
%#brotherdoc��# progresshwnd��#$magnification�m#(backgroundcolor��#,textcolor��#0highlightcolor��#4reasoncolor��#8selectioncolor��#<backgroundpattern�m#@textweight�y#Dinitialized�y#Djustsaved�y#Dproblemready�y#Dsaveas��#HDocControlData�!#LDocPolyData��
#�xanddisplay�y#�xordisplay�y#�xfalsedisplay�y#�xbreakcol�;#�xmaxfract�;#�xheap�%#�xheapsize�y#�xDocVarData��#�xhomework�%#�yproblemnumbers�%#�yDocProverData��#�zmainchoice�m#�zactive_parameter�m#�z�|#�zgraphs�&%#�zdisplay3d�s#�zviewport3d�s#�zngraphs�m#�znuserfunctions�m#�zdefns�<%#�z	1	P&%m�6%6%�	.	�DOCDATA�.!PDOCDATA�a%	B%
(
dummyanytermpair_of_termsvariablevariablesnotzeronotzerodivnotzeromulnotzeropowernotzerobase	notzerodenom
indexpair
realnonzerorealpositive_realtworealsindex_and_termterm_and_indexindex_and_varindex_and_nonzero_termposnonnegnegnonposintervalpositive_integerspecific_positive_integermsubstrevsubstrelrates_subtlist term_and_indexpair!positiveoddinteger"nonnegativeoddinteger#prod$reallist%trigsubst&functiondefn'functionredefn(absolutelyanyterm)notzeroinlimit*relrates1+relrates2,twoprompts-twoprompts1.integer/constant_condition0nonzero_constant1condition@g%
�4
numerical_calculation1numerical_calculation2complex_arithmeticsimplify_sumssimplify_productsexpand_menufractionssigned_fractionscompound_fractionscommon_denominators	exponents
expand_powersnegative_exponentssquare_roots
advanced_square_rootsfractional_exponentsnth_rootsroots_of_rootsroots_and_fractionscomplex_numbersfactoringadvanced_factoringsolve_equationsquadratic_equationsnumerical_equationsadvanced_equationscubic_equationslogarithmic_equationscramers_ruleseveral_linear_equationsselection_mode_onlylinear_equations_by_selectionlinear_equations_by_substitution matrix_methods!advanced_matrix_methods"absolute_value#absolute_value_ineq1$absolute_value_ineq2%less_than&greater_than'less_than_or_equals(greater_than_or_equals)square_ineq1*square_ineq2+recip_ineq1,recip_ineq2-root_ineq1.root_ineq2/zero_ineq10zero_ineq21square_ineq32square_ineq43recip_ineq34recip_ineq45root_ineq36root_ineq47zero_ineq38zero_ineq49binomial_theorem:factor_expansion;sigma_notation<advanced_sigma_notation=prove_by_induction>trig_ineq?log_ineq1�log_ineq2�log_ineq3�log_ineq4�logarithms_base10�logarithms�logarithms_base_e�natural_logarithms�reverse_trig�complex_polar_form�logs_to_any_base�change_base�evaluate_trig_function�basic_trig�trig_reciprocals�trig_squares�csc_and_cot_identities�trig_sum�double_angle�multiple_angles�verify_identities�solve_by_30_60_90�solve_by_45_45_90�zeroes_of_trig_functions�inverse_trig_functions�invsimp�adding_arctrig_functions�complementary_trig�complementary_degrees�trig_odd_and_even�trig_periodic�half_angle_identities�product_and_factor_identities�limits�limits_of_quotients�quotients_of_roots�lhopitalmenu�special_limits�hyper_limits�advanced_limits�logarithmic_limits�limits_at_infinity�infinite_limits�infinities�zero_denom�more_infinities�polynomial_derivs�derivatives�dif_trig�dif_explog�dif_inversetrig�chain_rule�minima_and_maxima�implicit_diff�related_rates�simplify�higher_derivatives�basic_integration�trig_integration�trig_integration2�integrate_exp�integrate_by_substitution�integrate_by_parts�fundamental_theorem�definite_integration�improper_integrals�oddandeven�trig_substitutions�trigonometric_integrals�trigrationalize�integrate_rational�integrate_sqrtdenom�integrate_arctrig�simplify_calculus�integrate_hyperbolic�series_geom1�series_geom2�series_geom3�series_geom4�series_geom5�series_ln�series_trig�series_exp�series_atan�series_appearance�series_algebra�series_manipulations�series_convergence_tests�series_convergence2�complex_functions�complex_hyperbolic�hyperbolic_functions�hyperbolic2�more_hyperbolic�inverse_hyperbolic�dif_hyperbolic�dif_inversehyperbolic�sg_function1�sg_function2�bessel_functions�modified_bessel_functions�functions_menu�automode_only�automode_only2�automode_only3�menu_name�*(POLYnomial|g5rejectparts3m�Uu-|�x-|�du3|�hxsq3|�Xv3|�Ha3|��b3|��f4����5autointegratebypartsRm�@UtP|�argP|�nextP	� hP��$�7integratebypartsem@UtW|�uW|�nextW	� hW��$finish[�xe|�Xve|�Hdve|��uve|��udve|��vdue|���e|��~tempe|��~we|��~nume|��~denome|��~mfm��~errfm��~logflaggm��~transcendentalflaghm��~arctrigflagim��~ij���~jj���~nj���~gj���~ �7�c!temp|��~"��!uatomi|��|!vatomi|��|#N8tryparts�m U$udv�|�$x�|�$u�|� $v�	�,$dv�	�0%��|�h!temp�|�X!err�m�T&N9equatetoproblem�m �#U$t�|�$arg�|�$next�	� 'h���$done��!!new�|�h!old�|�X!temp�|�H!i�m�D!count�m�@%/�m��%\�m��!cd�!���!opseq�� ��&�9transferintegral�m�#�$U$eqn�|�$arg�|�$next�	� 'h���$!t�|�h!rhs�|�X!i���V!n���T#�:extract_integral	m�$�%U$u|�$ans	�start�$!n	��~!f	��|!i
m�x!count
m�t!flagm�p#;equal_integrals,m�%�'U$u&|�$v&|�!uIntegral,|�h!vIntegral,|�X!err-m�T(N;protect_integralsH�'(U$tF|�!nH��~!iIm�x)one[;|)two[;)minusone[;)eulere[;)var0[;�b�
yyy/trigcalc/usr/lib/gcc-lib/i486-linux/3.3.5/include/usr/include/bits/usr/includeyyyintparts.cstddef.htypes.hctype.hheap.hbignum.hterms.harith.hdefns.hmodel.hvaux.hpolyval.hproverdl.hglobals.hgraphstr.hdocument.hcheckarg.hoperator.hpolynoms.hconstant.h2�rg�P�8r:H�>�L�>P%�rZc�<+���������:d��e%��W���������+��&?;�V�4�W��:�eh9����+%V;V�EEV;�X�k/3�G?Q�V�E�,;�]U&9�+%VEVEE,;�uU
9�*�)���=�rCW������-�����V�sH.r(��;�1��.�W�� 2�W��6���,,�Ǭ�����82;|���,,�	�e2:��-?<�Ad�=,�:d�r	U����dԸrHr�-V`VW���ds\2��%�8,������er�:��dr��H(2A�r[gr�:�d��r:-r:V`wd�'V]g�d�d�:;#d�#d�2�d�rZeI��-�.sintegratebypartsyyy/trigcalc/intparts.cj<n$�u dv = uv - �v du$$�u dv = uv - � v du$����|��A�B
�PA�B
@�A�B
I���A�B
 {A�B
G��#=A�B
�$"A�B
�%�A�B
�'�A�B
e�;g5autointegratebyparts�5integratebypartsN8equatetoproblemN9transferintegral(nparametersfunctionindextitlecolorcomdenomcurrentlinenlinescurrenttopicunsigned intproblemtypereasonlinenumberaxeslabelcolorparameterscancelledbackgroundaxescolorGCC: (GNU) 3.3.5 (Debian 1:3.3.5-13).symtab.strtab.shstrtab.rel.text.data.bss.debug_abbrev.rel.debug_info.rel.debug_line.rodata.rel.debug_frame.rel.debug_pubnames.rel.debug_aranges.debug_str.note.GNU-stack.comment4(	�wx%P(+P(0P(FB�*�;>	$|PR4f�N	t~^�iXjPj�f	|~�{Hkiw	
��k �	��k���l��l&�l�qP	TuW��
!�%�1�'�C�$"
T[fmx|�����P�@��������!%+6;CLTfmt�������� {���	!)4�#=EMintparts.crejectpartstrypartsequal_integralsprotect_integralsextract_integralequalsderivativemvpolyismonomialtwomake_powervar0substcontainsautointegratebypartsintegratebypartsenglisherrbufcancelsimple_integralispolyin__assert_faileulereobviously_negativeminusonesumvaluereciprocaldiffproductintegraltnegatedefinite_integralevalatstrcpyget_mathmodeerasecolorsmake_termequationandconfirm_partsonemake_fractionequatetoproblemget_problemtypeget_selected_equationget_activelineget_controldatahistorypolyvalcommentbuftransferintegralsubtermtransfer2C�Pr�,5>_�����:�� 4DT ��  #3 -!b"�O#�!	D	"
	
	
	#
$�
#!�!�"\u%~%�%��!5
p
"�
A&Ybk��'�'�'�()\^�*��F*�#+g,�-�.	,P(�+�,a/�.�,=0�(�	�1�2�3�44`-�5�5)5p6�7�,l+�,�-".`(�/.u0�(�	�11Q8X8`8�!a!�9�"" ;0 <J =a >� ?� ?P!?m!2�!?�!?".]"(�"@�"�"5###1i#y#Al$C�$D�%'J'|'z��	�	�
Oo(6�k
�AO�-�����h%��I��y!�!�$�%&�4�4�5�5�5�5�5636�6r7v7�7�7�7�7 8l8p8�8�899m9q9�9	:
:9:�:�:; ;o04HLhl����������

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists