Sindbad~EG File Manager

Current Path : /usr/home/beeson/Otter-Lambda/
Upload File :
Current File : /usr/home/beeson/Otter-Lambda/integral.o

ELF^4(U���hf�}�t�E��Y�Ef�8�t�E��C�Ef�xu�M �E�P���B�A�B�A���Ef�x���Mء�D$��D$��D$�E�P����D$�B�D$�B�D$�$������E�D$�E؉$�E܉D$�E�D$����Eԃ}�t�E؉E�E܉E�E�E�M �E�D$�E�D$ �E�D$$�U����D$�B�D$�B�D$�E�P��D$�B�D$�B�D$�$������U �E �@
���f�B�$_����D$�E$�$����E��E���U���(�Ef�E��E
f�E��E�f�}��u,f�}�u%�M�U�����B�A�B�A�E��f�}�*���E��E�9E�|��E�D$�U����Ѝ��U�
�$�D
�D$�D
�D$�[����E�}�t�}�t�E���}�t�E��;�U����Ѝ��U�
�$�D
�D$�D
�D$�����u	�E��H�E���P����E��5f�}�-u'�E�D$�U��$�B�D$�B�D$����E���E��E���U����E��D$ �E��D$�E�D$�E�D$�E�D$�E �D$�E�$�E�D$�E�D$�5�E��}��E�U��E�U�B�E �U�B��U؋E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$������E�
���f�E܍U��E؉D$�E܉D$�E�D$�E�D$�E�D$�E�D$�$������EȉD$$�E�D$�E�D$�E �D$ �E�D$�E�D$�E�D$�E��$�E��D$�E��D$���f�}�+tf�}�*t�E�
���f�E��$����EȋU��E̋U�B�EЋU�B�E��U��S����Ef�E��E
f�E��Ef�E�f�}
tf�}u,f�}
t�#�U �E��E�B�E�BDžP�����f�}�u*f�}�u#�U �E��E�B�E�BDžP����f�}����f�}����M �U$�E��E�B�E�B���B�A�B�A�M(�U�����B�A�B�A�D$��E�$�E�D$�E�D$�����uDžL����
DžL�����L�����P����f�}��uf�}�t
f�}��t�#�U �E��E�B�E�BDžP�����f�}*�<f�}*t#�U �E��E�B�E�BDžP�����E��E��E��E�9E����E�9E�|�t�U����Ѝ��U�
�E�D
�E�D
�E�U����Ѝ��U�
�E؋D
�E܋D
�E�E�f;E���f�}�uH�D$��E؉$�E܉D$�E�D$�����t#�U �E��E�B�E�BDžP����
f�}�ul�E�H9E�ub�E�f;E�sY�D$��U������E�P��$�B�D$�B�D$�����t#�U �E��E�B�E�BDžP����D
f�}�uf�}�u	�E�@�E��3DžP����
�E؉$�E܉D$�E�D$�����u�E��E���q����}��d�U������E�P��E�B�E�B�E�M(�U�����B�A�B�A�E�f;E����M$�U��E���)É�@���D$�D$*�$������E��U��E�)‰�@9E�|�l�]$�U����Ѝ��[�E��U�‰����E�P���B�D�B�D�E��륋M$�U������E�P���B�A�B�A�E ��H����}�t'�U$���H�����B��H����C�B��H����B�#�E��H�����E��H����C�E��H����BDžP����f�}+�x�E
f�E�f�}+t#�U �E��E�B�E�BDžP����D�E$f�@�E$f�@�E(f�@�E(f�@�E��E�9E�|�/�U����Ѝ��U�
�E�D
�E�D
�E�U����Ѝ��U�
�E؋D
�E܋D
�E�f�}�-u/f�}�-u(�U��E�B�E�B�E�U��E؋B�E܋B�E�f�}؄u*f�}�u#�U �E��E�B�E�BDžP����Wf�}�*tf�}�/t�\�E��E�9E�|�j�U����Ѝ��E�f�<�uH�U����Ѝ��E�f�|u-�U����Ѝ��E�T����E��B�E��B�E���E����E�9E�����X����D$��h����D$�E��D$�E��D$�E��D$�E؉$�E܉D$�E�D$���f��X����u#�U �E��E�B�E�BDžP����Kf��X���*uYf��Z���uO��`���f�8!uC��`�����f�8�u3��`�����f�xu#�U �E��E�B�E�BDžP������E�������E��E��E��E�9E�|��U����Ѝ��U�
�E�D
�E�D
�E�U����Ѝ��U�
�E؋D
�E܋D
�E�f�}�-u/f�}�-u(�U��E�B�E�B�E�U��E؋B�E܋B�E�E�f;E���f�}���f�}����E���U����E��B�E��B�E��E$f�8@u-�U$�E؉�E܉B�E�B�U(�E���E��B�E��B��M$�E؉D$�E܉D$�E�D$�U$��D$�B�D$�B�D$�$������M(�E��D$�E��D$�E��D$�U(��D$�B�D$�B�D$�$������f�}�*��D$�D$��E�$�E�D$�E�D$�������f�}�*���E�f�E��E��E��E��E�9E�|�O�U����Ѝ��E�f�<�u-�U����Ѝ��E�T����E��B�E��B�E���E����E�9E�u�K�E��E�9E�|�o�U����Ѝ��U�
�EȋD
�E̋D
�EЋU����Ѝ��U�
�E��D
�E��D
�E�f�}Ȅuf�}�uf�}��t�E�@�E����E�f;E�t#�U �E��E�B�E�BDžP�����f�}�+���E(�D$ �E$�D$��X����D$�E��D$�E��D$�E��D$�Eȉ$�ẺD$�EЉD$�E�����T�����T���u#�U �E��E�B�E�BDžP����G��T���u<�E�@�E��3f�}�!t,�E��D$�Eȉ$�ẺD$�EЉD$�����t�E��E������}�t�}�t��}����E���E$f�8@u*�U$�E؉�E܉B�E�B�U(�E���E��B�E��B�t�M$�E؉D$�E܉D$�E�D$�U$��D$�B�D$�B�D$�$������M(�E��D$�E��D$�E��D$�U(��D$�B�D$�B�D$�$������E���^����}�t#�U �E��E�B�E�BDžP�����Ef;Eu�E
f;Eu�#�U �E��E�B�E�BDžP������E
f�E��E��E�9E�|��E(�D$ �E$�D$�E �D$�U����Ѝ��U�
�D$�D
�D$�D
�D$�U����Ѝ��U�
�$�D
�D$�D
�D$��E��}�t�E���P����(�E���g����U �E��E�B�E�BDžP�����P����]���U��VS���E�f�}+t�E���E
f�E��D$�E��$����E��}�u����E��y�U��E��D$�D$+�$������E��E�9E�|�y�U���Ѝ��U�
�E؋D
�E܋D
�E�f�}ؾu@�U����Ѝ��U��E؉
�E܉D
�E�D
�E���E���E���E��|����}�"�E��$����E��$����E���]ȍE��$������E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$������E�
���f�E̋E��$����E�9E�u�U �Eȉ�ẺB�EЉB��M �U��E���)É�@���D$�D$+�$������E��E��E�9E�|�^�E���E��<uD�M �U���Ѝ��q�U���Ѝ��U�
��D
�D�D
�D�E��E���E�+E�9E�t$�D$�D$��D$�$6����] �U���Ѝ��S�Eȉ
�ẺD
�EЉD
�$�����D$�E$�$����E��$����E��E��e�[^]�U��S��$�E
f�E��U �E��D$�D$��$������E��E�9E�|�j�M �U���Ѝ��A��E�D$�E�D$�E�D$�U���Ѝ��U�
�D$�D
�D$�D
�D$�$������E�닋]���U��S��D�E
f�E��U8�E��D$�D$��$������E��E�9E�|��M8�U���Ѝ��A��E,�D$(�E0�D$,�E4�D$0�E �D$�E$�D$ �E(�D$$�E�D$�E�D$�E�D$�U���Ѝ��U�
�D$�D
�D$�D
�D$�$������E��[����]���U���f�}�t�E��B�U��E�B�E�B�E�f�}�t�E���U����E؋B�E܋B�E�f�}
u:�E �D$�E؉D$�E܉D$�E�D$�E�$�E�D$�E�D$������U����EȋB�E̋B�EЋU��$��E��B�E��B�E��E �D$0�E��D$$�E��D$(�E��D$,�EȉD$�ẺD$�EЉD$ �E؉D$�E܉D$�E�D$�E�$�E�D$�E�D$����U �E �@
���f�B�$�����D$�E$�$����E��E���U���f�}�t�E���U��E�B�E�B�E�f�}�t�E���E�f�E��U����E؋B�E܋B�E�U �E��D$�D$��$�����f�}
uu�E��E�9E�|��M �U������A�D$�E؉D$�E܉D$�E�D$�U����Ѝ��U�
�$�D
�D$�D
�D$�����E��뒋U����EȋB�E̋B�EЋU��$��E��B�E��B�E��E��E�9E�|�f�E �D$0�E��D$$�E��D$(�E��D$,�EȉD$�ẺD$�EЉD$ �E؉D$�E܉D$�E�D$�E�$�E�D$�E�D$�!����E��돋U �E �@
���f�B�$�����D$�E$�$����E��E���U��VS��f�}�t�E����U��E�B�E�B�E�U����E؋B�E܋B�E�f�}�%t�E���E؉D$�E܉D$�E�D$�U��$�B�D$�B�D$�����u�E��W�]ȍu��U��E؉D$�E܉D$�E�D$�$������E��D$�E��D$�E��D$�E؉D$�E܉D$�E�D$�4$�������D$��D$��D$�E��D$�E��D$�E��D$�$�����f�}
u�U �Eȉ�ẺB�EЉB�l�M �U��$��D$(�B�D$,�B�D$0�U����D$�B�D$ �B�D$$�E؉D$�E܉D$�E�D$�EȉD$�ẺD$�EЉD$�$������U �E �@
���f�B�$�����D$�E$�$����E��E��e�[^]�U��S��D�Ef��r�����r�����������+������+����"t$�����/������^����E��D$�EȉD$�E��D$�E��D$�U��$�B�D$�B�D$���t�����t���tDž���fDž(���"fDž*�������D$�D$��(������$�����U�����x����B��|����B�E�f��x���/u=��D$��D$��D$�U�����$�B�D$�B�D$�����uDž����E��D$�EȉD$�E��D$�E��D$�U��$�B�D$�B�D$���t�����t���tDž���fDž(���^fDž*�������D$�D$��(������$�����U��E�B�E�B�E�U����E؋B�E܋B�E�f�}�^u�U��E؋B�E܋B�E�E��D$�EȉD$�E��D$�E��D$�E؉$�E܉D$�E�D$�%��t�����t���tDž����fDž(���/fDž*�������D$�D$��(������$����O�E��D$�EȉD$�E��D$�E��D$�E�$�E�D$�E�D$�fDž(����Dž���Rf�}�+u	f�}�u�Dž���3�EЃ�f�8-u	�E�f�8-u�E�f�8-u[�EЃ�f�8-u�M�������D$�E��D$��D$��D$��D$�Eȉ$�ẺD$�EЉD$�����t����K�������D$�E��D$��D$��D$��D$�Eȉ$�ẺD$�EЉD$�����t�����t���t>�E��D$�Eȉ$�ẺD$�EЉD$�����t�����t���tDž���(��(����$����]؍����E��D$�E��D$�E��D$�$����������D$�����D$����D$�E��D$�E��D$�E��D$�$������E�
�f�E܋E�
���f�E���r�������������+�"�����+�����"t �!�����/t:�����^����U �E؉D$�E܉D$�E�D$�$�������E��f�8^uC�M؋E���P����D$�B�D$�B�D$�E؉D$�E܉D$�E�D$�$������U �E؉D$�E܉D$�E�D$�E�D$�E�D$�E�D$�$������y�M �U����D$�B�D$�B�D$�E؉D$�E܉D$�E�D$�$������:�U �E؉�E܉B�E�B�$�D$A�D$��D$�$T����$�����D$�E$�$���Dž�������]���U��VS��`f�}+t�E���E
f�E��E��E�9E�|�$�U���Ѝ��Ef�<�u��E����E�9E�u�E���E��E��E�9E�|�F�E�;E�t7�U���Ѝ��U�
�$�D
�D$�D
�D$�����t�E��E�믃}�u�E��<�]ȡ�D$��D$��D$�U���Ѝ��U�
�D$�D
�D$�D
�D$�$������E�H9E�uN�U �Eȉ�ẺB�EЉB�U �E �@
���f�B�$	����D$�E$�$����E���M �U��E��)É����D$�D$+�$������E��E��E�9E�|��E�;E�t4�U���Ѝ��U�
�$�D
�D$�D
�D$�����t�x�E�;E�u,�] �U���Ѝ��S�Eȉ
�ẺD
�EЉD
�?�M �U���Ѝ��q�U���Ѝ��U�
��D
�D�D
�D�E��E��4����E �@9E�t$�D$V�D$��D$�$e����$	����D$�E$�$����M �U���Ѝ4��Y�M �U���Ѝ��A�D
���f�D3�E��Eče�[^]�U��S���f�}+u%�D$^�E�$�E�D$�E�D$�����uDž4����f�}
�;�U����$�B�D$�B�D$�����u!�U��$�B�D$�B�D$�����u�+�$�����D$�$���Dž4����A�U���D$��D$��D$�E�D$�E�D$�E�D$�$������E�D$�E�D$�EȉD$�E؉D$�E�D$�E��$�E��D$�E��D$�����uDž4�����Uȡ�D$��D$��D$�EȉD$�ẺD$�EЉD$�$������O�E�D$�E�D$�EȉD$�E؉D$�E�D$�E�$�E�D$�E�D$�����uDž4����%��x�����h����E�D$�E�D$�E�D$��D$��D$��D$�$�������X�����D$��D$��D$�E؉D$�E܉D$�E�D$�$�������h����D$��l����D$��p����D$��X����D$��\����D$��`����D$�$������E��D$��x����$��|����D$�E��D$����Ef�8uL�Ef�xuB�E�@����u4�E�@�8u)�E��E��E��E��E��E��EȉE��ẺE��EЉE���M���D$��D$��D$�U��D$�B�D$�B�D$�$������U��E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$������U��E��D$�E��D$�E��D$�EȉD$�ẺD$�EЉD$�$�������H�����8����E��D$�E��D$�E��D$�$�������8����D$��<����D$��@����D$�E��D$�E��D$�E��D$�$������E �D$��H����$��L����D$��P����D$����M��U ��D$�B�D$�B�D$�E�D$�E�D$�E�D$�$������E�D$�E��$�E��D$�E��D$�����u�U�E���E��B�E��B�Ef�8+u�U�E�@
@f�BDž4�����4����]���%:;I$>$>:;
:;I8
I!I/	I
:;(
:;

:;I
:;I
8

:;I
8
'II:;
:;I8
&I(
.?:;'I@
:;I
:;I
4:;I
.:;'I@
4:;I
.?:;'I@
:;I
 :;I
!.:;'@
"!I/#4:;I
$.:;'I@
%4:;I?<�)�)yyy/trigcalc/integral.c/home/beeson/Otter-LambdaGNU C 3.3.5 (Debian 1:3.3.5-13)size_t�y__u_char"�unsigned char__u_short#�short unsigned int__u_int$y__u_long%�long unsigned int__int8_t(signed char__uint8_t)�__int16_t*=short int__uint16_t+�__int32_t,mint__uint32_t-y__int64_t2�long long int__uint64_t3�long long unsigned int__quad_t;�__u_quad_t<�__dev_t��__uid_t�y__gid_t�y__ino_t��__ino64_t��__mode_t�y__nlink_t�y__off_t�slong int__off64_t��__pid_t�m��__val��#�m�__fsid_t��__clock_t�s__rlim_t��__rlim64_t��__id_t�y__time_t�s__useconds_t�y__suseconds_t�s__daddr_t�m__swblk_t�s__key_t�m__clockid_t�m__timer_t�m__blksize_t�s__blkcnt_t�s__blkcnt64_t��__fsblkcnt_t��__fsblkcnt64_t��__fsfilcnt_t��__fsfilcnt64_t��__ssize_t�m__loff_t�__qaddr_t�m	�__caddr_t��	�char__intptr_t�m__socklen_t�y
P1_ISupper�_ISlower�_ISalpha�_ISdigit�_ISxdigit� _ISspace��_ISprint��_ISgraph��_ISblank_IScntrl_ISpunct_ISalnumunit\l��digity�lny#val�#	lbignumy�signm#n�#d�#bigrat�arg#�.argtag#
t-|
i.s
d/�
b0�v*symbol&�#arity'�#info(�#args)v#	�term*.double$0fracty#varaddy#intexpy#negexpy#ratexpy#rootsy#purey#gcdy#absy#relopy#factorialy#matrix y#inverse"y#functions#y#sums$y#flt%y#complex'y#complexpowers*y#	+y
#mod,y#aflag0�� 	
left	|#right	|#line	m
#permanent	m#visible	m#reverse	m#oldeigen		m#defn	
1actualop
�	�	m||	�	|4	
men

y#choice
y#operation
	�	b
status
y#choice
y#used
y#inhibited
y#men
y#hashbucket
E	
inh
Aindex
A=#&
B=#kind
D=#link
E
#	�	inhibition
F�	�
,scopey#multordery#typey#dp�#locus|#&	m#realpart
�#imagpart�# name�
#(�
��varinf%
dldata�#1#	�
dlist�
� #addr�#increment�#indexm#functory#&m#name �#history!�#	�	parameter#$�02varlist&	#nvariables'm#maxvariables(m#eigenvariable)m#currentline*m#parameters+�#nparameters,m#maxparameters-m#varinfo.�# nextdefn/m#$defns0�#(maxdefns1m#,	�	�
	�vardata2�D)factorm#m#difm#intlinearm#gcdm#zeropowerm#fractexpm#negexpm#rootproductm# 	m#$infractionm#(complex!m#,domainflag#m#0ringflag%m#4orderflag&m#8arith'$#<hwnd(�#@polyflags)�^a
prop
|#line
m#link
^#	&assumption
&eqnsolver
	�	��m||	�,
$assumptions
�#maxassumptions
=#nextassumption
=#theorems
	#maxtheorems
=#nexttheorem
=#history
	#permhistory
�#maxhistory
y#workspace
�#maxworkspace
�# nextworkspace
!y#$solver
#v#(	�	d	y	�proverdata
$�topicm(,>line<(#nlines=m#(88�		>�message>�

dummyanytermpair_of_termsvariablevariablesnotzeronotzerodivnotzeromulnotzeropowernotzerobase	notzerodenom
indexindexpair
realnonzerorealpositive_realtworealsindex_and_termterm_and_indexindex_and_varindex_and_nonzero_termposnonnegnegnonposintervalpositive_integerspecific_positive_integermsubstrevsubstrelrates_subtlist term_and_indexpair!positiveoddinteger"nonnegativeoddinteger#prod$reallist%trigsubst&functiondefn'functionredefn(absolutelyanyterm)notzeroinlimit*relrates1+relrates2,twoprompts-twoprompts1.integer/constant_condition0nonzero_constant1condition@R
�
numerical_calculation1numerical_calculation2complex_arithmeticsimplify_sumssimplify_productsexpand_menufractionssigned_fractionscompound_fractionscommon_denominators	exponents
expand_powersnegative_exponentssquare_roots
advanced_square_rootsfractional_exponentsnth_rootsroots_of_rootsroots_and_fractionscomplex_numbersfactoringadvanced_factoringsolve_equationsquadratic_equationsnumerical_equationsadvanced_equationscubic_equationslogarithmic_equationscramers_ruleseveral_linear_equationsselection_mode_onlylinear_equations_by_selectionlinear_equations_by_substitution matrix_methods!advanced_matrix_methods"absolute_value#absolute_value_ineq1$absolute_value_ineq2%less_than&greater_than'less_than_or_equals(greater_than_or_equals)square_ineq1*square_ineq2+recip_ineq1,recip_ineq2-root_ineq1.root_ineq2/zero_ineq10zero_ineq21square_ineq32square_ineq43recip_ineq34recip_ineq45root_ineq36root_ineq47zero_ineq38zero_ineq49binomial_theorem:factor_expansion;sigma_notation<advanced_sigma_notation=prove_by_induction>trig_ineq?log_ineq1�log_ineq2�log_ineq3�log_ineq4�logarithms_base10�logarithms�logarithms_base_e�natural_logarithms�reverse_trig�complex_polar_form�logs_to_any_base�change_base�evaluate_trig_function�basic_trig�trig_reciprocals�trig_squares�csc_and_cot_identities�trig_sum�double_angle�multiple_angles�verify_identities�solve_by_30_60_90�solve_by_45_45_90�zeroes_of_trig_functions�inverse_trig_functions�invsimp�adding_arctrig_functions�complementary_trig�complementary_degrees�trig_odd_and_even�trig_periodic�half_angle_identities�product_and_factor_identities�limits�limits_of_quotients�quotients_of_roots�lhopitalmenu�special_limits�hyper_limits�advanced_limits�logarithmic_limits�limits_at_infinity�infinite_limits�infinities�zero_denom�more_infinities�polynomial_derivs�derivatives�dif_trig�dif_explog�dif_inversetrig�chain_rule�minima_and_maxima�implicit_diff�related_rates�simplify�higher_derivatives�basic_integration�trig_integration�trig_integration2�integrate_exp�integrate_by_substitution�integrate_by_parts�fundamental_theorem�definite_integration�improper_integrals�oddandeven�trig_substitutions�trigonometric_integrals�trigrationalize�integrate_rational�integrate_sqrtdenom�integrate_arctrig�simplify_calculus�integrate_hyperbolic�series_geom1�series_geom2�series_geom3�series_geom4�series_geom5�series_ln�series_trig�series_exp�series_atan�series_appearance�series_algebra�series_manipulations�series_convergence_tests�series_convergence2�complex_functions�complex_hyperbolic�hyperbolic_functions�hyperbolic2�more_hyperbolic�inverse_hyperbolic�dif_hyperbolic�dif_inversehyperbolic�sg_function1�sg_function2�bessel_functions�modified_bessel_functions�functions_menu�automode_only�automode_only2�automode_only3�menu_name�R fundamentaltheorem#mxUt!|�arg!|�1!	� !��$f>n*|�hnminusone*|�Xerr+m�T� lci_aux=mx�Ut7|�x7	�f=��~n>��|i?m�xflag?m�tcount?m�pf!constants_of_integration�|�NUold�|�new�|�p�|�hc�|�Xans�|�Hx�|��q�|��k�m���"ci_aux�mN�Uold�|�new�|�ans�	� params�	�$c�	�(u�|�hv�|�Xw1�|�Hw2�|��x�|��i�m��j�m��k�m��flag�m��flag2�m��flag3�m��marker�m��f����n����m²���">
�c|��~s|��~�Ktempf|��~rgm��~�#combineconstantsofintegration�m�kUt�|�arg�|� 1�	�  ���$n���vi�m�pj�m�lu�|�Xc�|�Htemp�|��count�m��scratchpad��#��	m!G$intvector_aux�kUu�|�x�|� 1�	� n���zi�m�t!�$intvector_aux2��Uu�|�x�|�lo�|� hi�|�, 1�	�8n���zi�m�t]%intvector�m�[Ut�|�arg�|� 1�	�  ���$u�|�hx�|�Xlo�|�Hhi�|��
&intmatrix
m[9Ut	|�arg	|� 1		�  	��$u
|�hx
|�Xlo
|�Hhi
|��im��n����&intabs&m97Ut%|�arg%|� 1%	�  %��$u&|�hx&|�Xtemp&|�H�'completethesquare1Am7�!Ut;|�arg;|� 1;	�  ;��$numA|�hdenomA|�XpA|�HqA|��ppA|��xA|��yA|��powerA|��~errBm��~fC���~pathD�'��~bufferE�'��{�'���'�"�+�(absorbconstant�m�!�$Ut�|�arg�|� 1�	�  ���$n���vi�m�pc�m�lcount�m�hk�m�d#6�|�H$m)completesquare1_aux�m�$�)Uleft�|�x�	�y�	�ans�	�addthis�	� a�|�hb�|�Xc�|�H#6�|��oldconst�|��ysq�|��temp�|��%onez)|%zeroz)%twoz)%fourz)%minusonez)N8�
yyy/trigcalc/usr/lib/gcc-lib/i486-linux/3.3.5/include/usr/include/bits/usr/includeyyyintegral.cstddef.htypes.hctype.hheap.hbignum.hterms.harith.hdefns.hmodel.hvaux.hpolyval.hproverdl.hglobals.hcheckarg.hoperator.hconstant.h"c�������F#dW,�r]cr�r����H8��dr2y�	��r'r�U�Fd�8��Ը��q�r��d:��:�d'�L�:�r:�rr�''�-:�Q:����jq��#��+�@u%Y䪀r:�H''�:;�:�-6+(w�B�:�@:_�)��H''�:;$Vd�:�::WG���+(w�VH''f��:�L�:㎐,iq��Z�V�:X:�:��d:�H:�Hpd��:���sr��ddV��'�'V4�d���F����+r,?Rw0*��r�q��csZq��H��Y���:��dr:dd_,�rX���:���d�rHYudd_t,�rX���:dr�4��rWl,�r	���P=�⎎�W�G�=�⎎�W:dr:;�⎎�-5�-���,MK�&���g��L#W�C8-=-:-$����r���)u��r:Sud�S�:,��*rH:,�,?yU	�0�;r��,�C��>@�@@��,f@88�:$:�,�combineconstantsofintegrationyyy/trigcalc/integral.cj==n-countcompletethesquare10absorbconstantk==((*next).arity)����|�xA�B
xUA�B
��A�B
N?
A�B
G���A�B
H��k�A�B
D��A�B
D��dA�B
[�A�B
9�A�B
H��7nA�B
G��!%A�B
E���$
A�B
G���)�fundamentaltheorem� constants_of_integration�"combineconstantsofintegration�$intvector]%intmatrix
&intabs�&completethesquare1�'absorbconstant�)functioncomdenomunsigned intreasonlinenumbernextnewconstGCC: (GNU) 3.3.5 (Debian 1:3.3.5-13).symtab.strtab.shstrtab.rel.text.data.bss.debug_abbrev.rel.debug_info.rel.debug_line.rodata.rel.debug_frame.rel.debug_pubnames.rel.debug_aranges.debug_str.note.GNU-stack.comment4�)	�h�%*+*0*B,�)>	`mR�URN	`o^+Zxj�Zxf	ho�{\�w	8p
��\ �	@p��\?�4]�4]&Z]��a�	Tf��xUN?

k�)�8�$

Lx_hlrx����������������#-5;M[dv�d�[��9��������7n�����)17B�!%Q_fjv{�integral.clci_auxci_auxintvector_auxintvector_aux2completesquare1_auxfundamentaltheoremminusonesumvaluediff3englishstrcpyconstantconstants_of_integrationconstant_of_integrationfree_substexpandreleasecontainsmake_termtwopartsandcontains2combineconstantsofintegrationcallocatenospacefree2get_eigenvariable__assert_failintegraldefinite_integralintvectorintmatrixintabsequalsabs1producttwomake_fractionevalatcompletethesquare1get_pathtailpathncopyzerofactorsquareofdiffactorsquareofsumpurefactorset_pathtailtnegatesqrt1make_powerabsorbconstantseminumericalerrbufoneisquadraticfourpolyvalcollectjs|��7Yhor�$) O!�!!z"#�$.
$j
%q!$J$�'�(�"�)�)�*�)\"�
�

+<KV)�",?"�-<K�")�1�2-354>4G4h5�6"8 9Q4Z4c4�18!9�8�9�:�:�:�;�:�::!<P=|>�?�g @� A� 52!AU!
e!
l!
q!+}!�!^"C�":�":�":�"##R#"�#CC$
S$
Z$
_$+k$z$�$!4%CS%Ce%u%D�%E�%E�%E�%�%F&"&+&L&�&F�&G�&G�&G�&3�&4�&4'4%'Al'5�'H�'4�'4(4'(A_(3�(3�(?)-)Hd)�)Iz��	�
r��
����   f j � � y!}!�"�"�"�"# #C#R#�#�#$_$c$�$�$�$%%u%y%�%�%"&&&I&X&�&�&�&�&�'�'(%(y(�(�(')E04HL`d|���������$(@D`d

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists