Sindbad~EG File Manager

Current Path : /usr/home/beeson/Otter-Lambda/
Upload File :
Current File : /usr/home/beeson/Otter-Lambda/ineq2.o

ELFg4(U��S��T�E�f�}+t�E��6�E�$������E
f�E��E��E�9E�|�Y�E�D$�E�D$�E�D$�U���Ѝ��U�
�$�D
�D$�D
�D$�����t�E��E�E؍E�뜃}�t�E��f�}�uh�E�D$�E�Ẽ}�u�E��Ű�$�ŰB�D$�ŰB�D$����E�D$�U��$�B�D$�B�D$����E�E�E��4�U�E�H���D$�D$+�$������E��E�;E�|�U�M�U���Ѝ��A��U���Ѝ��U�
�D$�D
�D$�D
�D$�$������E�롋E�@�E��E�9E�|�Q�M�U�����A�X�U���Ѝ��U�
�D$�D
�D$�D
�D$�$������E�뤋E�D$�U��$�B�D$�B�D$����E�}�t�E�@�$����E���E��EЋ]���U����E�U�@�B����w�	�E������%�E�U�@�B����w�	�E���E��E���U��VS����Ef�E��E
f�E��E��$������D$�E��$����E��}�u���DžD����
�E��E�9E�|��U����Ѝ��U�
�E��D
�E��D
�E��U����)Ѝ��U��E������D
�E��D$�E��D$�E��D$�E��$�E��D$�E��D$�����ti�U����)Ѝ��U���
��D
��D
�U����)Ѝ��E����\�U����)Ѝ��E��D�f�}�^tf�}�+tDžD����f�}�^���x����U�����D$�B�D$�B�D$�$�������x����$��|����D$�E��D$����E�}�����x����U�����D$�B�D$�B�D$�$�������x����$��|����D$�E��D$����E�}�t�E��$���DžD�����E��D$�E��D$�E��D$�U���$�B�D$�B�D$�����t��Eȡ�E̡�E����]��L�E��D$�EȉD$�U���$�B�D$�B�D$����E�}�t�E��$���DžD����"�U����)Ѝ��E��|t�E�
�f�E̋U����)Ѝ��U��Eȉ
�ẺD
�EЉD
�U����)Ѝ��E��D�U����)Ѝ��E��E��\��E��D$�E��D$�E��D$�U���$�B�D$�B�D$�����t��Eȡ�E̡�E����]��L�E��D$�EȉD$�U���$�B�D$�B�D$�o����E�}�t�E��$���DžD����	�U����)Ѝ��E��|t�E�
�f�E̋U����)Ѝ��U��Eȉ
�ẺD
�EЉD
�U����)Ѝ��E��D�U����)Ѝ��E��E��\���E��D$�EȉD$�E��$�E��D$�E��D$����E�}�t�E��$���DžD����#	�U����)Ѝ��E��|t�E�
�f�E̋U����)Ѝ��U��Eȉ
�ẺD
�EЉD
�U����)Ѝ��E��D�U����)Ѝ��E��E��\�E�����D$�D$�E��D$�E��$����U�E�@���D$�D$��$������U�E�@���D$�D$��$�����f�E�f�E�f�E��E��E�9E�|�+�U����)Ѝ��E��|t	�E�@f�EE�����E�f�}�<u?�M؋U���D$�B�D$�B�D$�E��D$�E��D$�E��D$�$�������U����)Ѝ��E��|u�E�9E�|��E�����E�9E����Eƒ���tC�U����B��B�U����B��BDžD����
�U����B��B�U����B��BDžD������]؋U����)Ѝ��U��
�D$�D
�D$�D
�D$�E��D$�E��D$�E��D$�$������Eƒ���t;�]�Uĉ��Ѝ��S�E؉
�E܉D
�E�D
�E�@f�E�f�E��:�]�UƉ��Ѝ��S�E؉
�E܉D
�E�D
�E�@f�E�f�E��E���E�9E�|�>f�}�<���u؍�x����U����)Ѝ��U��
�D$�D
�D$�D
�D$�E��D$�E��D$�E��D$�$�������h����E��D$�E��D$�E��D$�U����)��E��P��D$�B�D$�B�D$�$�������x����D$��|����D$�E��D$��h����D$��l����D$��p����D$�4$������A�E�9E����u؍�X����U����)Ѝ��U��
�D$�D
�D$�D
�D$�E��D$�E��D$�E��D$�$�������H����E��D$�E��D$�E��D$�U����)��E��P��D$�B�D$�B�D$�$�������X����D$��\����D$��`����D$��H����D$��L����D$��P����D$�4$������J�M؋E��D$�E��D$�E��D$�U����)��E��P��D$�B�D$�B�D$�$������U����)��E����x��f�}�u6�]�UƉ��Ѝ��S�E؉
�E܉D
�E�D
�E�@f�E��3�]�Uĉ��Ѝ��S�E؉
�E܉D
�E�D
�E�@f�E�f�}���f��f�E��\f�}����]�Uĉ��Ѝ��S�E؉
�E܉D
�E�D
�E�@f�E�f�}�}��M�UƉ��Ѝ��A��U����)��E��P��D$�B�D$�B�D$�E��D$�E��D$�E��D$�$������E�@f�E���]�UƉ��Ѝ��S�E؉
�E܉D
�E�D
�E�@f�E�f�}�}ui�M�Uĉ��Ѝ��A��U����)��E��P��D$�B�D$�B�D$�E��D$�E��D$�E��D$�$������E�@f�EčE������U����)��E����xuf�}�<t��f�}�}uM�M؋E��D$�E��D$�E��D$�U����)��E��P��D$�B�D$�B�D$�$������K�M؋E��D$�E��D$�E��D$�U����)��E��P��D$�B�D$�B�D$�$������]�UƉ��Ѝ��S�E؉
�E܉D
�E�D
�E�@f�EƋEf���U�E�f�B�Ef���U�E�f�Bf�}�u9�E�P��EȋB�E̋B�EЋE�@�$����U�Eȉ�ẺB�EЉBf�}�u9�E�P��EȋB�E̋B�EЋE�@�$����U�Eȉ�ẺB�EЉBDžD�����D����e�[^]�U����Ef�E�f�}�<tf�}�>t�E��f�}�<u�U��E��B�E��B�E���U����E��B�E��B�E�f�}�<u�U����E��B�E��B�E���U��E��B�E��B�E�f�}�u=f�}�u6�E�����u
�E��8u�-�E�����u�E��8u
�E��@�8u��E���f�}�*t�E���EȉD$�E؉D$�D$<�E��$�E��D$�E��D$���E�}�t	�E��uf�}�<u�U �Eȉ�ẺB�EЉB�#�U �EȉD$�ẺD$�EЉD$�$�m���U �E �@
���f�B�$�����D$�E$�$����E��E���U����Ef�E�f�}�<tf�}�>t�E��f�}�<u�U��E��B�E��B�E���U����E��B�E��B�E�f�}�<u�U����E��B�E��B�E���U��E��B�E��B�E�f�}�u=f�}�u6�E�����u
�E��8u�-�E�����u�E��8u
�E��@�8u��E���f�}�*t�E���EȉD$�E؉D$�D$<�E��$�E��D$�E��D$� ��E�}�t	�E��uf�}�<u�U �E؉�E܉B�E�B�#�U �E؉D$�E܉D$�E�D$�$����U �E �@
���f�B�$�����D$�E$�$����E��E���U����Ef�E�f�}�}tf�}�|t�E��f�}�}u�U��E��B�E��B�E���U����E��B�E��B�E�f�}�}u�U����E��B�E��B�E���U��E��B�E��B�E�f�}�u=f�}�u6�E�����u
�E��8u�-�E�����u�E��8u
�E��@�8u��E���f�}�*t�E���EȉD$�E؉D$�D$}�E��$�E��D$�E��D$�p��E�}�t	�E��uf�}�}u�U �Eȉ�ẺB�EЉB�#�U �EȉD$�ẺD$�EЉD$�$�
���U �E �@
���f�B�$�����D$�E$�$����E��E���U����Ef�E�f�}�}tf�}�|t�E��/f�}�}u�U��E��B�E��B�E���U����E��B�E��B�E�f�}�}u�U����E��B�E��B�E���U��E��B�E��B�E�f�}�u=f�}�u6�E�����u
�E��8u�-�E�����u�E��8u
�E��@�8u��E��wf�}�*t�E��d�EȉD$�E؉D$�D$}�E��$�E��D$�E��D$���E�}�t�E�� f�}�}u�U �E؉�E܉B�E�B����D$��D$��D$�E؉$�E܉D$�E�D$�����t�U ����B��B�w��D$��D$��D$�E؉$�E܉D$�E�D$�����t�U ����B��B�#�U �E؉D$�E܉D$�E�D$�$����U �E �@
���f�B�$�����D$�E$�$����E��E���U��VS��Ef�E��E
f�E�f�}/��D$/�E��D$�U��$�B�D$�B�D$����E��D$/�E��D$�U����$�B�D$�B�D$����E�}�t�U��E��B�E��B�E���E�
���f�E��}�t�U����E��B�E��B�E���E�
���f�E��}�t�}�t�E��D�U�E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$������E��f�}*t�E����U��E�D$�D$*�$�����f�E��E��E�9E�|��U���Ѝ��U�
�$�D
�D$�D
�D$�����t6�U���Ѝ��U�
�$�D
�D$�D
�D$��������U���Ѝ��uЋU���Ѝ��U�
��D
�D�D
�D�U���Ѝ��U��"D
��t7�U���Ѝ��]��U���Ѝ��E��D
�f�D�E�@f�E���E�E�E�����f�}�u�EЉ$����E��f�}�u-�M�UЋ��B�A�B�A�EЉ$����E��N�E��U�J9�u|f�}�=t%f�}�<tf�}�}tf�}�|tf�}�>t	f�}�~t�P�U���Ѝ��U�
�$�D
�D$�D
�D$���f�}�=u	�E���E��E��$����E�f;E�u3�EЉ$����$�����D$�$����E���U�E�D$�D$*�$������E��E�9E�|�F�M�U���Ѝ��q�U���Ѝ��UЋ
��D
�D�D
�D�E�믋EЉ$����E��E��e�[^]�U���x�Ef�E�f�}�<tf�}�>t�E��f�}�<u�U��E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�<u�U����EȋB�E̋B�E���U��EȋB�E̋B�E�f�}��:f�}��/�E܃���u
�E�8u�+�E܃����
�E�8���E�@�8���D$<�E��D$�Eȉ$�ẺD$�EЉD$����E�}�t�E���E �E�f�}�<u@�E��D$�E��D$�E��D$��D$��D$��D$�E��$������>��D$��D$��D$�E��D$�E��D$�E��D$�E��$������$�����D$�E$�$����E��If�}��7f�}��,�Ẽ���u
�EЃ8u�+�Ẽ�����EЃ8���EЋ@�8���D$<�E��D$�E؉$�E܉D$�E�D$�v����E�}�t�E���E �E�f�}�<u@��D$��D$��D$�E��D$�E��D$�E��D$�E��$������>�E��D$�E��D$�E��D$��D$��D$��D$�E��$������$�����D$�E$�$����E���E��E���U���x�Ef�E�f�}�}tf�}�|t�E���f�}�}u�U��E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�}u�U����EȋB�E̋B�E���U��EȋB�E̋B�E�f�}��4f�}��)�E܃���u
�E�8u�+�E܃�����E�8���E�@�8���D$}�E��D$�Eȉ$�ẺD$�EЉD$����E�}�t�E���f�}�}u@�U �E��D$�E��D$�E��D$��D$��D$��D$�$������>�U ��D$��D$��D$�E��D$�E��D$�E��D$�$������$�����D$�E$�$����E��Cf�}��1f�}��&�Ẽ���u
�EЃ8u�+�Ẽ�����EЃ8���EЋ@�8���D$}�E��D$�E؉$�E܉D$�E�D$�Z����E�}�t�E��f�}�}u@�U ��D$��D$��D$�E��D$�E��D$�E��D$�$������>�U ��D$��D$��D$�E��D$�E��D$�E��D$�$������$�����D$�E$�$����E���E��E���U���xf�}<t�E��%�E��f�8/t�E��
�E���P��E�B�E�B�E�E���P����E؋B�E܋B�E�U��E�D$�E�D$�E�D$�$������E��$�E��D$�E��D$����Eԃ}�t%�$�����D$�$����E��l�E�
���f�E܋U �E؉D$�E܉D$�E�D$��D$��D$��D$�$������$S����D$�E$�$����E��E���U���xf�}}t�E��%�E��f�8/t�E��
�E���P��E�B�E�B�E�E���P����E؋B�E܋B�E�U��E�D$�E�D$�E�D$�$������E��$�E��D$�E��D$����Eԃ}�t%�$�����D$�$����E��l�E�
���f�E܋U �E؉D$�E܉D$�E�D$��D$��D$��D$�$������$T����D$�E$�$����E��E���U��VS�����f�E�f�}�uDžd����M	�E%��tDžd����1	��x����$�������x����D$��|����D$�E��D$�E�$�E�D$�E�D$�����uDžd���������E��D$�E��$����E��}�uDžd����f�E��E��E�9E�|��E���E܋��E��B�E��B�E���D$��D$��D$�E��$�E��D$�E��D$�����t�Y�E�%��t�E���E���-�E���E܋�E���E܋�@
f�A�E�@f�E�E��4����UȋE�D$�E�D$�E�D$�$�������D$��D$��D$�Eȉ$�ẺD$�EЉD$�����u�Eȉ$�ẺD$�EЉD$����Ef�E����f�E�f�}�=t%f�}�<tf�}�}tf�}�|tf�}�>t	f�}�~t��E�$�E�D$�E�D$����Of�}�uG�E��E
9E�|�5�U���Ѝ��U�
�$�D
�D$�D
�D$����E��U��E�D$�D$��$�����f�E��E��E�9E�|���D$��D$��D$�E���E܋��$�B�D$�B�D$�����t���E��D$�E���E܋��$�B�D$�B�D$����E��$����E��$�E��D$�E��D$����E�}�tg�U���Ѝ��U��E��
�E��D
�E��D
�U���Ѝ��]��U���Ѝ��E��D
���f�D�E�@f�E�E�����f�}�u	�E��Uf�}�u:�U���E��B�E��B�E��E��$����E��E��E��E��E��E��E��f�E���E�f�E��E��}�����D$��D$��D$�E�$�E�D$�E�D$�����tK�U��E��D$�E��D$�E��D$�$����U �E��D$�E��D$�E��D$�$�������E�$����] ��h����E��D$�E��D$�E��D$�E�D$�E�D$�E�D$�$�������h����D$��l����D$��p����D$�$�����f�}�>tf�}�|t�
�E �P��$�B�D$�B�D$��������E �P����$�B�D$�B�D$��������E f�8<t�E f�8}t��E ��`����E f�8<uJ�E �P��D$�B�D$�B�D$�E �P����D$�B�D$�B�D$��`����$������H�E �P��D$�B�D$�B�D$�E �P����D$�B�D$�B�D$��`����$������D$~�U ��$�B�D$�B�D$�����tH�M��U ��D$�B�D$�B�D$�$����U �E��D$�E��D$�E��D$�$������E��$����E��E�9E�|�I�E���E��<u/�E���E܋�E���E܋������@!�f�A�E�묋E��$����}�tDžd������U �E �@
���f�B�E f�8����E��E �@9E�|���M �U���Ѝ4��Y�M �U���Ѝ��A�D
���f�D3�M �U���Ѝ��A�f�E�f�}�=t5f�}�<t.f�}�}t'f�}�|t f�}�>tf�}�~tf�}�t
f�}�t�;�M �U���Ѝ4��Y�M �U���Ѝ��A�D
f�D3�E������E �f�E�f�}�=t-f�}�<t&f�}�}tf�}�|tf�}�>tf�}�~t
f�}�t��U �E �@
f�Bf�}�uW�E��E �@9E�|�B�M �U���Ѝ4��Y�M �U���Ѝ��A�D
f�D3�E���$&����D$�E$�$���Džd�����d����e�[^]�U��S��tf�}tf�}u(f�}t��E�U��E�U�B�E�U�B��Ef�E��Ef�E�f�}�~���E؉D$�U��$�B�D$�B�D$����EȉD$�U����$�B�D$�B�D$����U��E؉D$�E܉D$�E�D$�EȉD$�ẺD$�EЉD$�$������M��U����D$�B�D$�B�D$�U��D$�B�D$�B�D$�$������E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�E�$�������E��U��T$�U�T$�$������E��E�9E�|�R�U���Ѝ��E��U���Ѝ��U�
�D$�D
�D$�D
�D$�$�6������E�룋E؋U��E܋U�B�E�U�B�E�]���U��S��T�Ef�E�f�}����Ef�E��U��E��D$�D$��$������E��E�9E�|�R�U���Ѝ��E��U���Ѝ��U�
�D$�D
�D$�D
�D$�$�f������E�룋E؋U��E܋U�B�E�U�B�[�E�Eԃ}�>tn�}�>�}�<t�#�}�|���}�}���
�U��D$�B�D$�B�D$�U����D$�B�D$�B�D$�U�$��������U��D$�B�D$�B�D$�U����D$�B�D$�B�D$�E�$�������U��D$�B�D$�B�D$�U����D$�B�D$�B�D$�U�$������[�U��D$�B�D$�B�D$�U����D$�B�D$�B�D$�E�$�������E�U��E�U�B�E�U�B�E�]���%:;I$>I'II$>&	:;
(
:;
:;I8

':;I!I/:;
:;I
:;I
8

:;I
8

:;I8
&I.:;'I@
:;I
4:;I
.?:;'I@
.?:;I<.?:;'I@
:;I
 :;I
!4:;I
"4:;I
#.:;'I@
$<%4:;I?<�)�2yyy/algebra/ineq2.c/home/beeson/Otter-LambdaGNU C 3.3.5 (Debian 1:3.3.5-13)size_t�u__compar_fn_t7������int�	�@
FIND
ENTERACTIOND�entryGkeyH#dataI#char
ENTRYK�	[x
preorder
postorder
endorder
leafVISIT~)__action_fn_t�}���[�__u_char"�unsigned char__u_short#�short unsigned int__u_int$u__u_long%long unsigned int__int8_t(%signed char__uint8_t)�__int16_t*Vshort int__uint16_t+�__int32_t,�__uint32_t-u__int64_t2�long long int__uint64_t3�long long unsigned int__quad_t;�__u_quad_t<�__dev_t��__uid_t�u__gid_t�u__ino_t�__ino64_t��__mode_t�u__nlink_t�u__off_t��long int__off64_t��__pid_t����__val��#���__fsid_t��__clock_t��__rlim_t�__rlim64_t��__id_t�u__time_t��__useconds_t�u__suseconds_t��__daddr_t��__swblk_t��__key_t��__clockid_t��__timer_t��__blksize_t��__blkcnt_t��__blkcnt64_t��__fsblkcnt_t�__fsblkcnt64_t��__fsfilcnt_t�__fsfilcnt64_t��__ssize_t��__loff_t��__qaddr_t��__caddr_t�__intptr_t��__socklen_t�u	T1
_ISupper�
_ISlower�
_ISalpha�
_ISdigit�
_ISxdigit� 
_ISspace��
_ISprint��
_ISgraph��
_ISblank
_IScntrl
_ISpunct
_ISalnumunit`p��digitu�lnu#val�#pbignum}�sign�#n�#d�#bigrat�arg#�2argtag#t-�i.�d/�b0�z*symbol&�#arity'�#info(�#args)z#�term*2double(		0fract	u#varadd	u#intexp	u#negexp	u#ratexp	u#roots	u#pure	u#gcd	u#abs	u#relop	u#factorial	u#matrix	 u#inverse	"u#functions	#u#sums	$u#flt	%u#complex	'u#complexpowers	*u#
	+u
#mod	,u#aflag	0��	 


�#
�#line
�
#permanent
�#visible
�#reverse
�#oldeigen
	�#defn

5	actualop�	�	
���
�5
men
u#choiceu#operation
�
bstatusu#choiceu#usedu#inhibitedu#menu#hashbucketF
inhAindexAV#-BV#kindDV#linkE#�
inhibitionF�
�,scopeu#multorderu#typeu#dp#locus�#-	�#realpart
�#imagpart�# name�#(��varinf&dldata�#8#�dlist�� #addr�#increment�#index�#functoru#-�#name #history!�#�parameter#%�
02varlist&
#nvariables'�#maxvariables(�#eigenvariable)�#currentline*�#parameters+�
#nparameters,�#maxparameters-�#varinfo.�
# nextdefn/�#$defns0�
#(maxdefns1�#,���	vardata2�D
)factor
�#function
�#dif
�#intlinear
�#gcd
�#zeropower
�#fractexp
�#negexp
�#rootproduct
�# 

�#$infraction
�#(complex
!�#,domainflag
#�#0ringflag
%�#4orderflag
&�#8arith
'(	#<hwnd
(#@polyflags
)�
daprop�#line�#linkd#,assumption,eqnsolver	������
�,$=�#maxassumptionsV#nextassumptionV#theorems
#maxtheoremsV#nexttheoremV#history
#permhistory�#maxhistoryu#workspace�#maxworkspace# nextworkspace!u#$solver#|#(�juproverdata$�topic�&,>line<&#nlines=�#(66�	<message>�	�

numerical_calculation1
numerical_calculation2
complex_arithmetic
simplify_sums
simplify_products
expand_menu
fractions
signed_fractions
compound_fractions
common_denominators	
exponents

expand_powers
negative_exponents
square_roots
advanced_square_roots
fractional_exponents
nth_roots
roots_of_roots
roots_and_fractions
complex_numbers
factoring
advanced_factoring
solve_equations
quadratic_equations
numerical_equations
advanced_equations
cubic_equations
logarithmic_equations
cramers_rule
several_linear_equations
selection_mode_only
linear_equations_by_selection
linear_equations_by_substitution 
matrix_methods!
advanced_matrix_methods"
absolute_value#
absolute_value_ineq1$
absolute_value_ineq2%
less_than&
greater_than'
less_than_or_equals(
greater_than_or_equals)
square_ineq1*
square_ineq2+
recip_ineq1,
recip_ineq2-
root_ineq1.
root_ineq2/
zero_ineq10
zero_ineq21
square_ineq32
square_ineq43
recip_ineq34
recip_ineq45
root_ineq36
root_ineq47
zero_ineq38
zero_ineq49
binomial_theorem:
factor_expansion;
sigma_notation<
advanced_sigma_notation=
prove_by_induction>
trig_ineq?
log_ineq1�
log_ineq2�
log_ineq3�
log_ineq4�
logarithms_base10�
logarithms�
logarithms_base_e�
natural_logarithms�
reverse_trig�
complex_polar_form�
logs_to_any_base�
change_base�
evaluate_trig_function�
basic_trig�
trig_reciprocals�
trig_squares�
csc_and_cot_identities�
trig_sum�
double_angle�
multiple_angles�
verify_identities�
solve_by_30_60_90�
solve_by_45_45_90�
zeroes_of_trig_functions�
inverse_trig_functions�
invsimp�
adding_arctrig_functions�
complementary_trig�
complementary_degrees�
trig_odd_and_even�
trig_periodic�
half_angle_identities�
product_and_factor_identities�
limits�
limits_of_quotients�
quotients_of_roots�
lhopitalmenu�
special_limits�
hyper_limits�
advanced_limits�
logarithmic_limits�
limits_at_infinity�
infinite_limits�
infinities�
zero_denom�
more_infinities�
polynomial_derivs�
derivatives�
dif_trig�
dif_explog�
dif_inversetrig�
chain_rule�
minima_and_maxima�
implicit_diff�
related_rates�
simplify�
higher_derivatives�
basic_integration�
trig_integration�
trig_integration2�
integrate_exp�
integrate_by_substitution�
integrate_by_parts�
fundamental_theorem�
definite_integration�
improper_integrals�
oddandeven�
trig_substitutions�
trigonometric_integrals�
trigrationalize�
integrate_rational�
integrate_sqrtdenom�
integrate_arctrig�
simplify_calculus�
integrate_hyperbolic�
series_geom1�
series_geom2�
series_geom3�
series_geom4�
series_geom5�
series_ln�
series_trig�
series_exp�
series_atan�
series_appearance�
series_algebra�
series_manipulations�
series_convergence_tests�
series_convergence2�
complex_functions�
complex_hyperbolic�
hyperbolic_functions�
hyperbolic2�
more_hyperbolic�
inverse_hyperbolic�
dif_hyperbolic�
dif_inversehyperbolic�
sg_function1�
sg_function2�
bessel_functions�
modified_bessel_functions�
functions_menu�
automode_only�
automode_only2�
automode_only3�menu_name�P	s	
unknown
min
max
damped_oscillation
dom_error
bounded_oscillation
unbounded_oscillation
complex_approachapproach��tl�data��#8��#prev��#�termlist��rextract_constant;�_Ut7��ans7
�val7��x;��hi<��derr<��`flag<��\place<��Xn=��V�sp]c]�#odd^�#val_�#protect`�#�specialf�_�Uac��bc��!intervals_aux~���Utm��fm��vposm
�negm
�err~��pinterval��Xtemp��Hp���Fq���Dcount���Bn���@v����x����u����i����points�!��qsortЬr�!intervalsneg1?��iU8�� arg8��88
� &8�$!err?��t!f@��r!posA��X!negA��H"A���"A����"intervalspos1Z�iUW�� argW��8W
� &W�$!errZ��t!f[��r!pos\��X!neg\��H"\���"\���A#intervalsneg2t��Ur�� argr��8r
� &r�$!errt��t!fu��r!posv��X!negv��H"v���"v����#intervalspos2���'U��� arg���8�
� &��$!err���t!f���r!pos���X!neg���H"����"����#�$dp_aux��'_U t��� ans�
����v!n���t!k���r!i���l!err���h!err2���d!flag���`!temp���H!num����!denom����~%droppositive1��_�U��� arg���8�
� &��$!err���t!f���r"���X"���H!temp����,&droppositive2
���"U�� arg��8
� &�$!err
��t!f��r"��X"��H!temp����&posnum1d��"�#Ub�� argb��8b
� &b�$!ud��h!vd��X!erre��T8'posnum2z��#%Ux�� argx��8x
� &x�$!uz��h!vz��X!err{��T}(explicitdomain��%�.U t��� arg���8�
� &��$!savenextassumption�V�v!marker�V�t!i���p!err���l!retval���h!count���f!k���d!f���b"=���\!p���H!q����!r����!u����!scratch�}(���#�(eliminate_ne0��.�0U t.��!n0��v!f0��t!i1��p!u2��X!v2��H#Y)reverseG��0�2U tD��!nG��v!fH��t!iI��p!ansJ��X$_ENTRY%zerop)�%falsep)%truep)�>�
yyy/algebra/usr/lib/gcc-lib/i486-linux/3.3.5/include/usr/include/usr/include/bitsyyyineq2.cstddef.hsearch.htypes.hctype.hheap.hbignum.hterms.harith.hdefns.hmodel.hvaux.hpolyval.hproverdl.hglobals.hoperator.hprover.hconstant.h:rsr�ԀGV`wd�r8%���NsJs%dԏrcH�H�rU ��ddV�H'�2.����M�Md��4rt,d����(��4rt,d����(��*d����(�����#��d��vrr?-ǫ������N�+��+�eVԪ���J�r+�+�J�+��a�+�ra`)�&�+�,rd�;rd�;�	ŎsԸ44D�r�2d�rW#,�r[�sԸ44D�r�2d�rW#,�rZ�sԸ44D�r�2d�rW#,�rZ�sԸ44D�r�2d�r�8�8�#,�r
Uც-0dW�d����8�r��dHh=�7�vc�r��rV��9.������?s�r�dsԸ44V+d����V+d����rYdsԸ44V+d�r@>��V+d�r@>��r9Uer�����?d���>�rYer�����?d���>�rU��r���I�	dd�dH�8,�W-x�
�#8�r�,��.t�dHGV/��d(7t�r�r:���s�8#(�gy�'%#�,/
u�d�0�r;�<;��4,�H;t���td�r���%��Ks��rt���Ks�7DDAA�
����|�_A�B
D�_NA�B
�A�B
H����A�B
i�A�B
�A�B
�^A�B
'8A�B
E��_"A�B
�A�B
�"CA�B
�#CA�B
%�	A�B
H���.�A�B
D��0(A�B
D���)�special
!intervalsneg1�!intervalspos1�"intervalsneg2A#intervalspos2�$droppositive1~%droppositive2,&posnum1�&posnum28'explicitdomain�2leftineqcomdenomrightunsigned intreasonlinenumbernextassumptionsGCC: (GNU) 3.3.5 (Debian 1:3.3.5-13).symtab.strtab.shstrtab.rel.text.data.bss.debug_abbrev.rel.debug_info.rel.debug_line.rel.debug_frame.rel.debug_pubnames.rel.debug_aranges.debug_str.note.GNU-stack.comment4�2	|q�%�2+�20�2B�4�)>	<x�R�^�N	�zbdc�^	�z�
se�o	�{��e �	�{��eI�"f�"f&Hf�tj�	$oU�	_�(�0(0'87�.�
DV]bhrz�_N�������������������i���^-4GV]ez�_"������"C���#C�%�	����#6@IRineq2.cextract_constantintervals_auxreversedp_auxeliminate_neget_eigenvariableequalstnegdevalmake_termtnegatefree2specialcallocatenospacezeroeveninferoddqsortlessthantruefalseleandequationintervalsneg1englishstrcpyintervalspos1intervalsneg2intervalspos2make_fractionentireobviously_positiveSetShowStepArgdiveqndivineqSetShowStepOperationerrbufdroppositive1greaterthandroppositive2geposnum1positiveposnum2explicitdomainget_nextassumptionsolvedget_assumptionsdomainassumecopyclear_alreadylptset_nextassumptioneconstantconstantcontainsor(��>�,C�������Km� �� (0wAJRZ�v8!Vw	"c	#j	#r	#}	$�	$�	$�	#�	#�	#�	$�	$�	$,
%"k"�&%b%�&�%A'�'u%�"J�J)Y*�)	*�)�*##,#5#R^$e$m$w$�$�$��#�#�#)*B.�/�0��j1x2�3�4��)�5�J����"���7)#*���
")2;J7Y)h*� � � � %� � !!!90!)?!*�!�!�! "%-"6"?"`"9o")~"*#;7#L#)\#5�#�#�#�#"�#)�#*^$;z$�$)�$5�$�$�$�$%�$)
%*)%>m%�%?�%@�%,&#5&#>&#[&�&A�&#�&#�&#'8'BD'>�'B�'B�'(#%(#.(#Z(�(C�(D�(f)�)#�)#�)#�)*E.*Fi*&�*E�*G�*He+7�+9�+I,E-,F�,w.)�.*/C;/Cp/"�/"�/J
0�0�172"S29�2%v�	>	L	�
�s�������
  &!*!1!O!^!�!�!�!�!�!""d"t"�"�"�"�"�"!#1#]#a#h#�#�#�#�#$$9$�$�$�$%$%O%^%�%�%�%�%�%�%&B&F&M&k&z&�&�&�&�&'U'Y'|'�'#(�(�())K
4
8L
Pl
p�
��
��
��
��
�

 4
8L
Pl
p�
�

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists