Sindbad~EG File Manager

Current Path : /usr/home/beeson/Otter-Lambda/
Upload File :
Current File : /usr/home/beeson/Otter-Lambda/induct.o

ELF�\4(U��S����E��$�����=u����5��E��B������B�����C��[]�U�����E��=u�F��@��E����=x��$�����$����E��@���U��S���=u�����H9Cu�w�����[]�U���H����H�E�}�y�v�U؋E�D$�$������E؉D$�E܉D$�E�D$�E�$�E�D$�E�D$�����t(�E�D$��$��D$��D$�����E����U��S�������E������d��������`���f�}@���E��E�;E�|��E�D$�E�D$�E�D$�U���Ѝ���d����
�$�D
�D$�D
�D$������H�U�����Ѝ���`��������u+�$*����D$�$���DžD�����U�����Ѝ���`����%�f�����U�����Ѝ���`����
f��(�����(���%���f��(�����(���f�
��H����D$�U���Ѝ���d����
�D$�D
�D$�D
�D$�$�������H����$��L����D$��P����D$����E���$��������E��S����D$�D$��D$�$.����=xDžD������E�$�E�D$�E�D$����E�}�x�3�E�$�E�D$�E�D$�1�E�}�u�DžD�����$+����D$��h����$�������Ѝ���d����
�$�D
�D$�D
�D$����D$��h����$�����h����D$�$���DžD�����D����]���U��S��t����E�����E�����E��E��E��E�����E��E�;E�|���U���Ѝ��E���D$�E�$�E�D$�E�D$��������U�����Ѝ��E������t^�E��}�u�E��U�����Ѝ��E��%�f��u&�E��=y�E��E�$����g����E��+����}�u�E�����^�}�~'�$���������*����E��1�}�u%�E�$�E�D$�E�D$���E���}����Eܣ��$����]��D$�U܉��Ѝ��U�
�D$�D
�D$�D
�D$�$������Eȉ$�ẺD$�EЉD$����U܉����Ѝ��U��
f�E��E�%���f�E��E�f�
�C����E��M�}�u�}�$�D$0�D$�D$�$@���������$����E��Eċ]���U��S��t�E��E��E�������E�����E�����E��E��E�;E�|���U���Ѝ��E���D$�E�$�E�D$�E�D$��������U�����Ѝ��E������t^�E��}�u�E��U�����Ѝ��E��%�f��u&�E��=y�E��E�$��������E��+����}�0�}�u�}�$�D$`�D$)�D$�$�����}����}����E���$����q����]��D$�U���Ѝ��U�
�D$�D
�D$�D
�D$�$������Eȉ$�ẺD$�EЉD$����U�����Ѝ��U��
f�E��E�%���f�E��E�f�
�E���E��Eċ]���U��VS���E�E��E������lt�E��i�}�=t*�}�<t$�}�>t�}�}t�}�|t�}�~t�E��9�����E�����Ẽ}�tk�E�D$�E�D$�E�D$�Uȉ����E̍P��$�B�D$�B�D$�����t(�$,����D$�$����E��f�}@uA�E�D$�E�$�E�D$�E�D$���Eԃ}�t��E��E��E�E؉$����Eԃ}����}�=u9�U����D$�B�D$�B�D$�U��$�B�D$�B�D$�����uG�}�=���D$��D$��D$�E�$�E�D$�E�D$�����u��f�}؇uf�}�u�E��@����u�$�D$��D$[�D$�$�����E��@��E�E����t:�E��P�;u(�$-����D$�$����E��9�E��P�;���E؉$����E��@��E�E����u$�D$��D$j�D$�$;����E��E�����Íu��U��E�D$�$������E��D$�E��D$ �E��D$$�U����D$�B�D$�B�D$�U��D$�B�D$�B�D$�4$������\$�E��$�E��D$�E��D$����U��E�B�E�B�E�E�$�E�D$�E�D$�E��E��k�����uV�$.����D$�$����$/����D$�$����$0����D$�$�����E���=y.�E�$�E�D$�E�D$��Eԃ}�y�E��k�E%�����	�f�E����EЋE �D$$�E�D$�E�D$�E�D$ �UЋ�D$�B�D$�B�D$�E�$�E�D$�E�D$����]��E��$������E��D$�E��D$�E��D$�E�D$�E�D$�E�D$�$������E��$�E��D$�E��D$����$1����D$�E$�$����}�u}����ÍU���D$��D$ ��D$$��D$��D$��D$�E�D$�E�D$�E�D$�$������\$�E��$�E��D$�E��D$����E��E��e�[^]�U��VS���E�E��E������lt�E��u�}�=t*�}�<t$�}�>t�}�}t�}�|t�}�~t�E��E����E������E�����E��}�tk�E�D$�E�D$�E�D$�Uԉ����EЍP��$�B�D$�B�D$�����t(�$,����D$�$����E���E؉$����E��}����}�=u9�U����D$�B�D$�B�D$�U��$�B�D$�B�D$�����uG�}�=����D$��D$��D$�E�$�E�D$�E�D$�����u�f�}؇uf�}�u�E��@����u�$�D$C�D$��D$�$�����E��@��E�E����t:�E��P�;u(�$2����D$�$����E���E��P�;�h�E؉$����E��@��E�E����u$�D$C�D$��D$�$Q����E��E�����Íu��U��E�D$�$������E��D$�E��D$ �E��D$$�U����D$�B�D$�B�D$�U��D$�B�D$�B�D$�4$������\$�E��$�E��D$�E��D$����U��E�B�E�B�E�E��k�����uV�$.����D$�$����$/����D$�$����$0����D$�$�����E���=y.�E�$�E�D$�E�D$���E��}�y�E����]���D$��D$��D$����Ѝ��U��
�D$�D
�D$�D
�D$�$������E �D$$�E�D$�E�D$�E�D$ ����Ѝ��U��
�D$�D
�D$�D
�D$�E��$�E��D$�E��D$���������� �E�$�E�D$�E�D$����$3����D$�E$�$����$4����D$�$����$5����D$�$����}�������ÍU���D$��D$ ��D$$��D$��D$��D$�E�D$�E�D$�E�D$�$������\$�E��$�E��D$�E��D$�������E��E��e�[^]�U��������E��E�Eă}�=t$�}�<t�}�>t�}�}t�}�|t�E���}�=uE�U����D$�B�D$�B�D$�U��$�B�D$�B�D$�����u�E��4�}�=tD��D$��D$��D$�E�$�E�D$�E�D$�����u�E����E؉$����E�}�t�E���f�}؇t�E��f�}�t�E���E��@����t�E���E��@��EԋEԃ���t
�Eԃ���u�E��X����EȍE؉$����M �U���B�A�B�A�$w����D$�E$�$����U ��$�B�D$�B�D$���E��E�;E�|��U��EЉD$�$���������Ѝ��Uȋ
�D$�D
�D$�D
�D$�E��$�E��D$�E��D$�����tT�$7����D$�$����$8����D$�$����$9����D$�$����E��6����
�U ��$�B�D$�B�D$����E��E���U��������lt�E��f�E؉$����E�}�t�E��Ff�}؇t�E��2f�}�t�E���E��@����t�E���E��@��E�E����t�E����u�D�$:����D$�$����$;����D$�$����E���E���E�}�=t�}�<t�}�}t�}�|t�3�E�P��EȋB�E̋B�EЋE�P����E��B�E��B�E��1�E�P����EȋB�E̋B�EЋE�P��E��B�E��B�E��}�=���E �D$$�E�D$�E�D$�E�D$ �EȉD$�ẺD$�EЉD$�E��$�E��D$�E��D$�����u]��������E �D$$�E�D$�E�D$�E�D$ �E��D$�E��D$�E��D$�Eȉ$�ẺD$�EЉD$�����u�0�$<����D$�E$�$����$����E��.�E��%�E�E�}�<t�}�}t�	�E���E��E���U���xf�}=t�6�U��E��B�E��B�E�f�}��t��U���E�B�E�B�E�U�����E؋B�E܋B�E�U�����EȋB�E̋B�EЋU���$��E��B�E��B�E��E؉D$�E܉D$�E�D$�E�$�E�D$�E�D$�����t9f�}�u2f�}�u+�Ẽ���u �EЃ8uf�}�u�$����Qf�}�^����D$��D$��D$�U����$�B�D$�B�D$�����tm�E؉D$�E܉D$�E�D$�U��$�B�D$�B�D$�����t9f�}�u2f�}�u+�Ẽ���u �EЃ8uf�}�u�$����f�}�^���E؉D$�E܉D$�E�D$�U����$�B�D$�B�D$�����tZf�}�uSf�}�uL�Ẽ���u
�EЃ8u��Ẽ���u+�EЃ8u#�EЋ@�8u�$����$�����U����=y�E��f�}
tf�}uf�}
t��E��f�}��w�U����EȋB�E̋B�EЋU��$��E؋B�E܋B�E�����E�����Ѝ��E���D$�E؉$�E܉D$�E�D$�����u�E��n����Ѝ��U��
�D$�D
�D$�D
�D$�E؉$�E܉D$�E�D$�����t �U�Eȉ�ẺB�EЉB�E���U��EȉD$�ẺD$�EЉD$�E؉D$�E܉D$�E�D$�$������E�D$����Ѝ��U��
�D$�D
�D$�D
�D$�E��$�E��D$�E��D$����E�E�E��t�E
f�E�f�E��E�f;E�r�S�E�D$�UƉ��Ѝ��U�
�$�D
�D$�D
�D$����E�}�u	�E���E�@f�E���E��E���U����E�$�E�D$�E�D$����E��}��u%�$=����D$�$����E��M�}��uA�$>����D$�$����$?����D$�$����E���E��E��E���U����������E��}�	~��E��� �E����������%:;I$>$>:;
:;I8
I!I/	I
:;(
:;

:;I
:;I
8

:;I
8
'II:;
:;I8
&I:;!I/(
.:;'@
4:;I
.?:;'@
:;I
.?:;'I@
:;I

:; 4:;I
!.:;'I@
":;I
#4:;I
$4:;I
%.?:;'I@
&:;I
'.:;'@
(.?:;'@
)4:;I?<n1Dyyy/trigcalc/induct.c/home/beeson/Otter-LambdaGNU C 3.3.5 (Debian 1:3.3.5-13)size_t�w�__u_char"�unsigned char__u_short#�short unsigned int__u_int$w__u_long%�long unsigned int__int8_t(
signed char__uint8_t)�__int16_t*;short int__uint16_t+�__int32_t,kint__uint32_t-w__int64_t2�long long int__uint64_t3�long long unsigned int__quad_t;�__u_quad_t<�__dev_t��__uid_t�w__gid_t�w__ino_t��__ino64_t��__mode_t�w__nlink_t�w__off_t�qlong int__off64_t��__pid_t�k��__val��#�k��__fsid_t��__clock_t�q__rlim_t��__rlim64_t��__id_t�w__time_t�q__useconds_t�w__suseconds_t�q__daddr_t�k__swblk_t�q__key_t�k__clockid_t�k__timer_t�k__blksize_t�q__blkcnt_t�q__blkcnt64_t��__fsblkcnt_t��__fsblkcnt64_t��__fsfilcnt_t��__fsfilcnt64_t��__ssize_t�k__loff_t�}__qaddr_t�k	�__caddr_t��	�char__intptr_t�k__socklen_t�w
N1_ISupper�_ISlower�_ISalpha�_ISdigit�_ISxdigit� _ISspace��_ISprint��_ISgraph��_ISblank_IScntrl_ISpunct_ISalnumunitZj��digitw�lnw#val�#	jbignumw�signk#n�#d�#bigrat�arg#�,argtag#
t-z
i.q
d/�
b0�t*symbol&�#arity'�#info(�#args)t#	�term*,double"0fractw#varaddw#intexpw#negexpw#ratexpw#rootsw#purew#gcdw#absw#relopw#factorialw#matrix w#inverse"w#functions#w#sums$w#flt%w#complex'w#complexpowers*w#p+w
#mod,w#aflag0�� 	
left	z#right	z#line	k
#permanent	k#visible	k#reverse	k#oldeigen		k#defn	
/actualop
�	��kzz��	z2	
men

w#choice
w#operation
	�	b
status
w#choice
w#used
w#inhibited
w#men
w#hashbucket
C		
inh
AP
A;#�
B;#kind
D;#link
E	
#	�	inhibition
F�	�
,scopew#multorderw#typew#dp�#locusz#�	k#realpart
�#imagpart�# name�
#(�
��varinf!

dldata�#�
#	�
dlist�
� #addr�#increment�#Pk#functorw#�k#name �#history!�#	�	parameter# �02
&�#�'k#maxvariables(k#eigenvariable)k#currentline*k#�+�#,k#maxparameters-k#�.�# nextdefn/k#$defns0�#(maxdefns1k#,	�	�
	�vardata2��
D)factork#(k#difk#intlineark#gcdk#zeropowerk#fractexpk#negexpk#rootproductk# pk#$infractionk#(complex!k#,domainflag#k#0ringflag%k#4orderflag&k#8arith'"#<hwnd(�#@polyflags)�:a
prop
z#line
k#link
:#	assumption
eqnsolver
	c	i�kzz��,
$assumptions
�#maxassumptions
;#V
;#;
�#maxtheorems
;#D
;#history
�#permhistory
�#maxhistory
w#workspace
�#maxworkspace
�# nextworkspace
!w#$solver
#R#(	�	@	w	�proverdata
$�topick�,>line<�#y=k#(���		��message>�gr8
P
k#��#color1�#color2�#color3�#ncolorsk#yk#spacingPointsk#thickness1k# thickness2k#$titlebackgroundcolor�#(e�#,��#0��#4GraphPaper �@�graphtype*k#numberofpoints,k#linewidth-�#graphcolor.�#�/�#fillcolor0�#border1�#�2�# �3�#$e4�#(ticks5w#,labels7w#,savezooms<w#,saveparams=w#,grid>w#,showtitles?w#,tool@w#,whichgraphBk#0(Fz#4fprimeGz#@gprimeHz#LxfunctionIz#XyfunctionJz#dindependent_variableKz#pdependent_variableNz#|rvariableP�#�xvariableQ�#�yvariableR�#�tminS�#�tmaxS�#�tselectedU�#�xminV�#�xmaxV�#�yminV�#�ymaxV�#�slistW�#�dimslist[k#�jumplist\�#�dimjumplist]k#�openlist^�#�dimopen_k#�closedlist`�#�dimclosedak#�srestrictionsb�#�dimsrestrictionsdk#�jumprestrictionse�#�dimjumprestrictionsgk#�elisth�#�dimelistkk#�singularitiesl�#�nsingularitiesmk#�initial_valuesn�#�jumpsp�#�njumpsqk#�dxminr�#�dyminr�#�dxmaxs�#�dymaxs�#�pxmintk#�pxmaxtk#�pyminwk#�pymaxwk#�titlexz#�txminz�#�tyminz�#�txmaxz�#�tymaxz�#�xminsym{z#�xmaxsym{z#�yminsym{z#�ymaxsym{z#�selectedx~�#�selectedy~�#�pencil_left�#�pencil_top�#�pencil_right�#�pencil_bottom�#�whichparams��#����#�newaxes�w#�erase�w#�crosshairsflag�w#�rectangle_flag�w#�dfield�k#�dfield_applicable�w#�update�w#��w#�riemannflag�w#�root_xcoords��#�root_ycoords��#�nroots�k#�nintervals�z#�left��#�right��#�area��#�spot�w#�zoom_disabled�k#�tempsing�k#�grpaper�#�zvariable��#�independent_variable2�z#�zfunction�z#�zmin��#�zmax��#�umin��#�umax��#�vmin��#�vmax��#�rendermode�k#�camera��#�camera_rotation��#�focus��#�lamp1��#�lamp2��#�lamp1flag�k#�lamp2flag�k#�lamp1color��#�lamp2color��#�points�
#�P�
#�normals�
#�npoints�k#�nindex�k#�	��k�	k
��graph�+coord;G,x*#y+#YPAIR,&�1formula.G#reasonrect/G#comment0G#line1T	4OcxChar4k#cyChar5k#width7;#height8;#
top:;#left;;#right<;#bottom=;#clientRight@;#clientBottomA;#leftmarginB;#rightmarginC;#topmarginE;#bottommarginF;#reasonsH;# linesI	#$yJ;#(selectedK
#,selectedlineMk#0	�PapyrusO�s\�Xs#commentYs#controlflagsZ�#eigenindex[�#
	�linedata\� �;�mathmode`w#display_onaw#memoryflagbw#complex_frozencw#checksolutionsflagdw#substitutionflagew#logcollectflagfw#comdenomflaggw#linebreakshw#nfailedopsiw#radicalflagjk#finishedflagkw#assumptions_visiblelw#definitions_visiblemw
#expandflagnk#trigexpandflagok#factorflagpk#selected_equationqk#�rk#�sk#minmax_intervaltz#pendingu�#(modelv� #,inhibitionsw� #�vsuccessivefailuresxk#�vlocalfailureszk#�vautosteps{k#�vopseq|� #�wfailedops}� #�wlinedatahistory~� #�wnlinedataw#�wplan�� #�whwnd��#�wshowstepflag�k#�w� �	��	
	2	� ��	y� 2	�controldata���$l=�kind�w#problemsource�w#docnumber�k#��k#��k#originaltopic�k#version�k#hwnd��#papyrus��$#brotherdoc��# progresshwnd��#$magnification�k#(backgroundcolor��#,textcolor��#0highlightcolor��#4reasoncolor��#8selectioncolor��#<backgroundpattern�k#@textweight�w#Dinitialized�w#Djustsaved�w#Dproblemready�w#Dsaveas��#HDocControlData�� #LDocPolyData��
#�xanddisplay�w#�xordisplay�w#�xfalsedisplay�w#�xbreakcol�#�xmaxfract�#�xheap��$#�xheapsize�w#�xDocVarData��#�xhomework��$#�yproblemnumbers��$#�yDocProverDataǤ#�zmainchoice�k#�zactive_parameter�k#�z(�z#�zgraphs�%#�zdisplay3d�q#�zviewport3d�q#�zngraphs�k#�znuserfunctions�k#�zdefns�%#�z		N%k�%%�		�DOCDATA�!PDOCDATA�?%	 %
�%	unknownminmaxdamped_oscillationdom_errorbounded_oscillationunbounded_oscillationcomplex_approachapproachE%&tl�data�z#��&#prev�&#	�%termlist��%
�(
dummyanytermpair_of_termsvariablevariablesnotzeronotzerodivnotzeromulnotzeropowernotzerobase	notzerodenom
Pindexpair(
realnonzerorealpositive_realtworealsindex_and_termterm_and_indexindex_and_varindex_and_nonzero_termposnonnegnegnonposintervalpositive_integerspecific_positive_integermsubstrevsubstrelrates_subtlist term_and_indexpair!positiveoddinteger"nonnegativeoddinteger#prod$reallist%trigsubst&functiondefn'functionredefn(absolutelyanyterm)notzeroinlimit*relrates1+relrates2,twoprompts-twoprompts1.integer/constant_condition0nonzero_constant1condition@$&*)p[iv[k#cd\k#line]k#link^*)#	�(historynode_�(n)pushnodedkUtempdn)�x	0)�)popnodeqk�Utempqn)�|undo_inductionvars���U�)unassume���Ut�z�k�k�t�*selectinductionvariable�k��Ut�z�arg�z����� ����$out�i�k�terr�k�p ��k�lbuffer��*��~ 
����~ �����~�*��_+simple_select�k�Ut�z�i�k�t 
��p �֠�l ��k�h �k�d 1�k�` ��k�\!�+auto_selectk3	U"tz�#ik�t$k�p$1k�l$�k�h$
��d$���`$�k�\%�,basiscase=k3	�U"t9z�"arg9z�&�9�� &�9��$#f=w�t#k>k�p#q?z�X#err@k�T$
A��P$;B��L$DCk�H$Dk�D%�-inductionstep�k��U"t�z�"arg�z�&���� &����$#f�w�t#k�k�p#q�z�X$D�k�T$;���P#nplusone�z��$
����#err�k��$�k��%x.thereforeasdesired�k�JU"t�z�"arg�z�&���� &����$#err�k�t#q�z�X#k�k�T#i�k�P$V�k�L$
���H#f�w�D%H/useinductionhypkJ�U"tz�"argz�&��� &���$#errk�t#kk�p#fw�l#gw�h#qz�X#leftsidez�H#rightsidez��'�/inhibit_sumopG�U"tDz�#uGz�h$PGz�X#loGz�H#hiGz��#leftGz��!S0get_startfk[U"t`z�"ans`��#errfk�t#higz�X#logz�H#ih��F#nh��D$
i��@!�0select_aux�k[�U"t�z�#err�k�|(�0reset_induction��DU#i�k�|)one�0z)zero�0)two�0)true�01k�	indhyp$�0 currentdepth&kinductionvariable'kvarhistan)�P�
yyy/trigcalc/usr/lib/gcc-lib/i486-linux/3.3.5/include/usr/include/bits/usr/includeyyyinduct.cstddef.htypes.hctype.hheap.hbignum.hterms.harith.hdefns.hmodel.hvaux.hpolyval.hproverdl.hglobals.hgraphstr.hdocument.hprover.hcheckarg.hconstant.h�q���V-����fc��,Ɯ�㸫2q�,�VcdG&(w2�����:N'��-Bh��VrU�$��������FV�
�r���rrr:<$Vdr&V���uU�d�d��V�f�����Y3V�0��r�rrrr���:<$Vdr&V���uU�6;��VY3�r��xr��$���I��r#�Ԝ�F����V��.dd�:�����Ⱥ��d�,�L_�e}r��	qr��$����I��Ԝ�F����V��.dd�:����Ⱥ��Vb,�����}dWr���rƸ?�>��d���r����:���V��:_��z�
�d�rY����d���r����V�����d��e������rԏrZd�:�:dddZ�W��W���3���d��dd�;�J:����9d��rZc�d��d���d[d����s�selectinductionvariableyyy/trigcalc/induct.c0simple_selectcountints == 0 && countfree > 1auto_selectcountints > 1 || (countints == 0 && countfree > 1)basiscase((q).symbol) == (unsigned short) 135 && ((q).arity)==3 && ((((((term *)(q).args)[2])).info) & (unsigned short) 0x000f)==0U((k)&4)inductionstep((k)&1)����|�kA�B
D�kaA�B
�.A�B
D���A�B
�	A�B
G���A�B
D�A�B
D�3	�A�B
H����A�B
H����A�B
J�A�B
�JA�B
=A�B
[�A�B
�JA�B
�r1�)undo_inductionvars�)selectinductionvariable�*simple_select�+basiscase�,inductionstep�-thereforeasdesiredx.useinductionhyp�0reset_inductionDcountfreevarliststackflagnparametersfunctioncountintstheoremsnexttheoremindexnextassumptiontitlecolorcomdenomnlinesvarinfocurrenttopicunsigned intnvariablesproblemtypereasonlinenumberaxeslabelcolorparametersbackgroundnextfreeflagaxescolorGCC: (GNU) 3.3.5 (Debian 1:3.3.5-13).symtab.strtab.shstrtab.rel.text.data.bss.debug_abbrev.rel.debug_info.rel.debug_line.rodata.rel.debug_frame.rel.debug_pubnames.rel.debug_aranges.debug_str.note.GNU-stack.comment4D	�h�%x+�H 0�\B�!r1>	|q�RNS�N	<u^WY j\X�f	Du�{�Y�w	4v
��Z �	<v��Z��[��[&\�\`@	�e�
)1k:kaB��
KW�Je=o[�z (
������.������	-9EMTY`n��|����3	���������$*<?C��QU\��ow�J�������������Jinduct.ccurrentdepthinductionvariablevarhistpushnodepopnodeunassumeauto_selectinhibit_sumopget_startselect_auxindhyppermallocnospaceget_currentlineset_eigenvariableundo_inductionvarsget_nextassumptionget_assumptionequalstruepush_assumptionselectinductionvariableget_nvariablesget_varlistget_varinfoenglisherrbuftypeassume__assert_failsimple_selectstrcpyatom_stringstrcatcontainsbasiscaseget_problemtypeget_nexttheoremget_theoremszeroreadpendingpoppendingmake_intand3pushpendingget_mathmodecommentbufsubstget_eigenvariableleoneinductionstepsumpsubstthereforeasdesireddependsrecord_theoremuseinductionhypordertermsreleasesumofiinhibittwosumofisquaredsumofallpowersdifferenceofnthpowersequationssolvereset_induction"*2>CKPY^r{�����������  Q!a"i"r"{#�%�&�'!N(^)*D+LQYu���,��-(.$R/d0z)�&�'�%1z���� (e*�+����,�8&@'H%�1
AQX],y~��*�+M	3�	4�	5�	!�	(
)E
6M
6U
6c
7�
!�
"�
"�
"�
! 07<,br(�)��8����,�9d:�;�<�(�=�(�=
(
=+
t
&�
>�
?@"+.(=.HRA[AdAm6v66�:�;�355=4F&�!�(�)�7
! ")"2"O!����,��(�)�81AHM,^u9�:�;<((=4(D=P(`=t�A�A�A��C]Dchp�+�(�.�(�=�(�=��6�6666"6C:c;i��!"!"*"G!b7�&�8(-.n w�F�(�)�(�)�():GT3p7�(	)(%)><g>y(�.�I�J�!�K�L�M�M�M!?!rNwL�!OLPL)�&��1�*!�Q��Rv-�(�)�(�)�(�)):x��	�	�
�
Ll��"0V�a
����-��������F��'m{W!e!^$�%�&�&T)X)�)�)�)�)�)�)**>*L*`**�*�*�*�*++'+5+C+Q+x+|+�+�+�+�+�+�+,,6,E,�,�,�,�,�,�,	--N-]-�-�-�-�-�-.M.\.�.�.�.�._/c/�/�/�/D0k0o0�0�0191X1m1]48LPhl����������,0DH\`tx��

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists