Sindbad~EG File Manager
% This file finds a proof of Cantor's theorem, when the result is interpreted using the
% implicit typings mentioned in comments below. Or, it finds a proof of Russell's paradox,
% if interpreted as an untyped result, i.e., there is a fixed point of "not".
set(lambda).
set(demod_inf).
set(hyper_res).
set(binary_res).
set(very_verbose).
assign(max_distinct_vars,4).
assign(max_weight,24).
assign(pick_given_ratio,4).
% typings:
% Prop Ap(P(alpha),alpha).
% P(alpha) Ap(beta,alpha) where beta is the type of c
% so polymorphically, something Ap(something, alpha); the second arg always has type alpha
% Prop not(Prop).
% P(Alpha) c(alpha).
% alpha J(P(alpha)).
list(usable).
x=x.
w != not(w).
end_of_list.
list(demodulators).
not(not(x)) = x.
end_of_list.
list(sos).
Ap(Ap(c,J(x)),z) = Ap(x,z) |$ANS(x) | $ANS(z). % "negated" goal. Says every x of type P(alpha) is extensionally equal to c(J(x)).
end_of_list.
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists