Sindbad~EG File Manager

Current Path : /usr/home/beeson/MathXpert/bin/automode/
Upload File :
Current File : /usr/home/beeson/MathXpert/bin/automode/opdef.o

ELF	>@,@@UH��}��E�H�H��H]�UH��}��u��}��t?�}��I�}��t�}��t�5�E�H�H���+�E�H�H��H����E�H�H�� H����]�UH��}�u��E����E�����H�Hc�H��H�H��H�E��E����E�����H�Hc�H��H�H��H�E�H�E�H;E�u
��#H�}�uH�}������H�}�uH�}�������H�}�uFH�}�t(H�}�tH�}�tH�}�t
H�}�u
����H�}�u@H�}�t(H�}�tH�}�tH�}�t
H�}�u��V��OH�}�u@H�}�t(H�}�tH�}�tH�}�t
H�}�u�����]���int�����Q�lnQval���arg&�/t0]i1Xd2
fb3
�(X	)C	*C	+C	,X�-uzJ�]]��]
�men
QQ�Q	
�	

 !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~������������������������������������������i�
_�
_�	i
_
_�
	pJW]]��RJ|]]���J�]]���J�]]���J�]]���J]]���J5]]���JZ]]��FJ]]��
J�]]��AJ�]]���J�]]���J]]���J6]]���J[]]��MJ�]]��RJ�]]��QJ�]]��PJ�]]���J	]]��J9	]]��kJ]	]]��6J�	]]��XJ�	]]��WJ�	]]��VJ�	]]��UJ
]]���J:
]]���J^
]]��	J�
]]��J�
]]��J�
]]��6J�
]]��:J]]��=J6]]��~J[]]��}J�]]��|J�]]��{J�]]��zJ�]]��yJ]]��xJ9]]��wJ^]]��vJ�]]��uJ�]]��tJ�]]��sJ�]]��rJ
]]��qJ<
]]��pJa
]]��oJ�
]]���J�
]]���J�
]]���J�
]]���J]]���J?]]���Jd]]���J�]]���J�]]���J�]]���J�]]���J]]���JB]]��Jg]]��J�]]��J�]]��J�]]��J�]]��J ]]��JE]]��Jj]]��J�]]���J�]]���J�]]���J�]]���J#]]���JH]]���Jm]]���J�]]���J�]]���J�]]���J]]���J&]]���JK]]���Jp]]���J�]]���J�]]���J�]]���J]]���J']]���JK]]���Jo]]���J�]]���J�]]���J�]]���J�]]���J$]]���JI]]���Jn]]���J�]]���J�]]���J�]]���J]]���J']]���JL]]���Jq]]���J�]]���J�]]���J�]]���J]]���J*]]���JO]]���Jt]]���J�]]���J�]]���J�]]���J]]���J-]]���JR]]���Jw]]���J�]]���J�]]���J�]]���J]]���J0]]���JU]]���Jz]]���J�]]���J�]]���J�]]���J]]���J3]]���JX]]���J}]]���J�]]���J�]]���J�]]���J]]���J6]]���J[]]���J�]]���J�]]���J�]]���J�]]���J]]���J9]]���J^]]���J�]]��J�]]��}J�]]��~J�]]��|J]]���J<]]���Ja]]���J�]]���J�]]���J�]]���J�]]���J]]���J?]]���Jd]]���J�]]��{J�]]��zJ�]]��yJ�]]��xJ]]��wJB]]��vJg]]��tJ�]]��sJ�]]��nJ�]]��mJ�]]��rJ ]]��qJE]]��pJj]]��oJ�]]��uJ�]]���J�]]���J�]]���J  ]]���JD ]]���Jh ]]���J� ]]��_J� ]]��^J� ]]��]J� ]]��\J!]]��ZJ@!]]��[Jd!]]��XJ�!]]��YJ�!]]��WJ�!]]��VJ�!]]��UJ"]]��TJ<"]]��RJ`"]]��SJ�"]]��PJ�"]]��QJ�"]]���J�"]]��kJ#]]��iJ8#]]��jJ\#]]��hJ�#]]��`J�#]]��HJ�#]]��FJ�#]]��GJ$]]��EJ4$]]��OJX$]]��JJ|$]]��IJ�$]]��LJ�$]]��KJ�$]]���J%]]���J0%]]���JT%]]���Jx%]]���J�%]]���J�%]]���J�%]]���J&]]���J,&]]���JP&]]��NJt&]]���J�&]]���J�&]]���J�&]]���J']]��gJ(']]��fJL']]��eJp']]��dJ�']]��cJ�']]��bJ�']]���J(]]���J$(]]���JH(]]���Jl(]]���J�(]]���J�(]]���J�(]]���J�(]]���J )]]���JD)]]���Jh)]]���J�)]]���J�)]]���J�)]]���J�)]]���J*]]���J@*]]���Jd*]]���J�*]]���J�*]]���J�*]]���J�*]]��CJ+]]��9J<+]]��/J`+]]��%J�+]]��J�+]]��J�+]]��@J�+]]��6J,]]��,J8,]]��"J\,]]��J�,]]��J�,]]��?J�,]]��5J�,]]��+J-]]��!J4-]]��JX-]]��
J|-]]��BJ�-]]��8J�-]]��.J�-]]��AJ.]]��7J0.]]��-JT.]]��$Jx.]]��J�.]]��J�.]]��#J�.]]��J/]]��J,/]]��4JP/]]��*Jt/]]��=J�/]]��3J�/]]��)J�/]]�� J0]]��J(0]]��JL0]]��Jp0]]��J�0]]��J�0]]���J�0]]���J1]]���J$1]]���JH1]]���Jl1]]���J�1]]���J�1]]���J�1]]���J�1]]���J 2]]���JD2]]���Jh2]]���J�2]]���J�2]]���J�2]]���J�2]]���J3]]��J@3]]��~Jd3]]��}J�3]]��|J�3]]��{J�3]]��zJ�3]]��yJ4]]���J<4]]���J`4]]���J�4]]���J�4]]���J�4]]���J�4]]���J5]]���J85]]���J\5]]���J�5]]���J�5]]���J�5]]��xJ�5]]��wJ6]]��vJ46]]��uJX6]]��tJ|6]]��sJ�6]]��rJ�6]]��qJ�6]]��pJ7]]��oJ07]]��nJT7]]��mJx7]]��<J�7]]��2J�7]]��(J�7]]��;J8]]��1J,8]]��'JP8]]��Jt8]]��J�8]]��
J�8]]��J�8]]��J9]]��	J(9]]��/JM9]]��-Jr9]]��.J�9]]��J�9]]��J�9]]��J:]]��jJ+:]]���JP:]]���Ju:]]���J�:]]���J�:]]���J�:]]���J	;]]���J.;]]���JS;]]��Jx;]]��J�;]]���J�;]]��J�;]]��J<]]��J0<]]��JU<]]���Jy<]]��J�<]]��1J�<]]��0J�<]]��DJ
=]]��DJ2=]]��AJW=]]��CJ|=]]��@J�=]]��BJ�=]]��?J�=]]��:J>]]��>J5>]]��=JZ>]]��<J>]]��;J�>]]��9J�>]]��8J�>]]��7J?]]��6J8?]]��4J]?]]��5J�?]]��3J�?]]��2J�?]]��,J�?]]��)J@]]��+J;@]]��*J`@]]��'J�@]]��(J�@]]��&J�@]]��`J�@]]��_JA]]��J>A]]��JcA]]��J�A]]��
J�A]]��J�A]]��J�A]]��aJB]]��^JAB]]��]JfB]]��ZJ�B]]��YJ�B]]��WJ�B]]��XJ�B]]��\JC]]��[JDC]]���JhC]]���J�C]]��%J�C]]��J�C]]��J�C]]��J D]]��JED]]��fJjD]]��gJ�D]]��eJ�D]]��$J�D]]��#J�D]]��"J#E]]��!JHE]]�� JmE]]��J�E]]��J�E]]��J�E]]���JF]]��J%F]]��JJF]]���JnF]]���J�F]]���J�F]]���J�F]]��TJ�F]]��SJ$G]]��RJIG]]��QJnG]]��PJ�G]]��OJ�G]]��NJ�G]]��MJH]]��LJ'H]]��KJLH]]��JJqH]]��IJ�H]]��HJ�H]]��GJ�H]]��JI]]��J*I]]��
JOI]]��JtI]]��J�I]]��J�I]]��
J�I]]��	JJ]]���J,J]]���JPJ]]���JtJ]]��EJ�J]]��FJ�J]]��J�J]]��JK]]���J,K]]���JPK]]���JtK]]���J�K]]���J�K]]���J�K]]���JL]]���J(L]]���JLL]]���JpL]]���J�L]]���J�L]]���J�L]]���JM]]���J$M]]���JIM]]���JnM]]���J�M]]��^J�M]]��]J�M]]��bJN]]��HJ%N]]��hJJN]]��dJoN]]���J�N]]���J�N]]���J�N]]���JO]]��ZJ'O]]���JLO]]���JqO]]���J�O]]���J�O]]���J�O]]���JP]]���J*P]]���JOP]]���JtP]]���J�P]]���J�P]]���J�P]]���JQ]]���J)Q]]���JMQ]]���JqQ]]���J�Q]]���J�Q]]���J�Q]]���JR]]���J%R]]���JIR]]���JmR]]���J�R]]���J�R]]���J�R]]���J�R]]���J!S]]���JES]]���JiS]]���J�S]]���J�S]]���J�S]]���J�S]]���JT]]���JAT]]���JeT]]���J�T]]���J�T]]���J�T]]���J�T]]���JU]]���J=U]]���JaU]]���J�U]]���J�U]]���J�U]]���J�U]]���JV]]���J9V]]���J]V]]���J�V]]���J�V]]���J�V]]���J�V]]���JW]]���J5W]]���JYW]]���J}W]]���J�W]]���J�W]]���J�W]]���J
X]]���J1X]]���JUX]]���JyX]]���J�X]]���J�X]]���J�X]]���J	Y]]���J-Y]]���JQY]]���JuY]]���J�Y]]���J�Y]]���J�Y]]���JZ]]���J)Z]]���JMZ]]���JqZ]]���J�Z]]���J�Z]]���J�Z]]���J[]]��{J%[]]��zJI[]]��yJm[]]��xJ�[]]��wJ�[]]��vJ�[]]��uJ�[]]��tJ!\]]��sJE\]]���Ji\]]��J�\]]��~J�\]]��}J�\]]��|J�\]]��rJ]]]��qJA]]]��oJe]]]��pJ�]]]��nJ�]]]��mJ�]]]���J�]]]���J^]]��^J=^]]��]Ja^]]��\J�^]]��[J�^]]��ZJ�^]]��YJ�^]]��WJ_]]��XJ9_]]��VJ]_]]��UJ�_]]��hJ�_]]��kJ�_]]��jJ�_]]��gJ`]]��fJ5`]]��eJY`]]��dJ}`]]��cJ�`]]��bJ�`]]��aJ�`]]��`J
a]]��_J1a]]��LJUa]]��KJya]]��J�a]]��J�a]]��J�a]]��J
b]]��J2b]]��JWb]]��J|b]]��J�b]]��J�b]]��J�b]]��Jc]]��J5c]]��lJYc]]��iJ}c]]���J�c]]���J�c]]���J�c]]���J
d]]���J1d]]��MJUd]]��DJyd]]��FJ�d]]��;J�d]]��HJ�d]]��JJ	e]]��6J-e]]��7JQe]]��,Jue]]��+J�e]]��*J�e]]��)J�e]]��5Jf]]��4J)f]]��3JMf]]��2Jqf]]��1J�f]]��0J�f]]��SJ�f]]��/Jg]]��.J%g]]��-JIg]]��IJmg]]��(J�g]]��'J�g]]��&J�g]]��%J�g]]��<J!h]]��AJEh]]��?Jih]]��@J�h]]��>J�h]]��=J�h]]���J�h]]��CJi]]��JAi]]��Jei]]��J�i]]��J�i]]��J�i]]��J�i]]��Jj]]��J=j]]��Jaj]]��QJ�j]]��RJ�j]]��PJ�j]]��OJ�j]]��NJk]]��	J:k]]��8J^k]]��9J�k]]��:J�k]]��J�k]]��J�k]]��$Jl]]��#J6l]]��!JZl]]�� J~l]]��"J�l]]��J�l]]��J�l]]��Jm]]��J2m]]��JVm]]��Jzm]]��
J�m]]��J�m]]��J�m]]��J
n]]��J.n]]��1JSn]]��TJxn]]��SJ�n]]��QJ�n]]��PJ�n]]��
Jo]]��J1o]]��JVo]]��
J{o]]��	J�o]]��J�o]]��J�o]]��Jp]]��J4p]]��JYp]]��J~p]]��J�p]]��J�p]]��J�p]]���Jq]]���J5q]]���JYq]]���J}q]]���J�q]]���J�q]]���J�q]]���J
r]]���J1r]]���JUr]]���Jyr]]���J�r]]���J�r]]���J�r]]���J	s]]���J-s]]���JQs]]���Jus]]���J�s]]���J�s]]���J�s]]���Jt]]���J)t]]���JMt]]���Jqt]]���J�t]]���J�t]]���J�t]]���Ju]]���J%u]]���JIu]]���Jmu]]���J�u]]���J�u]]���J�u]]���J�u]]���J!v]]���JEv]]���Jiv]]���J�v]]���J�v]]���J�v]]���J�v]]���Jw]]���JAw]]���Jew]]���J�w]]���J�w]]���J�w]]���J�w]]���Jx]]���J=x]]���Jax]]���J�x]]���J�x]]��$J�x]]��%J�x]]��iJy]]��jJ=y]]��kJby]]��hJ�y]]��nJ�y]]��lJ�y]]��mJ�y]]��gJz]]��fJ@z]]��eJez]]��dJ�z]]��cJ�z]]��bJ�z]]��aJ�z]]��`J{]]��_JC{]]��KJh{]]��JJ�{]]��FJ�{]]��"J�{]]��#J�{]]��!J!|]]�� JF|]]��Jk|]]��J�|]]��IJ�|]]��HJ�|]]��GJ�|]]��BJ$}]]��CJI}]]��EJn}]]��DJ�}]]��AJ�}]]��@J�}]]��?J~]]��>J'~]]��=JL~]]��<Jq~]]��;J�~]]��:J�~]]��9J�~]]��8J]]��7J*]]��6JO]]��5Jt]]��4J�]]��3J�]]��2J�]]��1J�]]��0J-�]]��/JR�]]��.Jw�]]��-J��]]��,J��]]��+J�]]��*J�]]��)J0�]]��(JU�]]��Jz�]]���J��]]���J]]���J�]]���J
�]]���J.�]]���JR�]]���Jv�]]���J��]]���J��]]���J�]]���J�]]���J*�]]���JN�]]���Jr�]]���J��]]���J��]]���Jރ]]���J�]]���J&�]]���JJ�]]���Jn�]]���J��]]���J��]]���Jڄ]]���J��]]���J"�]]���JF�]]���Jj�]]���J��]]���J��]]���Jօ]]��sJ��]]��rJ �]]��qJE�]]��pJj�]]��oJ��]]���J��]]���J׆]]���J��]]���J�]]���JC�]]���Jg�]]��NJ��]]��OJ��]]���JՇ]]���J��]]���J�]]��MJB�]]��LJg�]]���J��]]��J��]]��~Jӈ]]���J��]]���J�]]���J?�]]���Jc�]]���J��]]���J��]]���Jω]]���J�]]���J�]]���J;�]]���J_�]]���J��]]���J��]]���Jˊ]]���J�]]���J�]]���J7�]]���J[�]]���J�]]��J��]]��Jɋ]]��J�]]��J�]]��J8�]]��J]�]]��J��]]��J��]]��J̌]]��J�]]��J�]]��J;�]]��J`�]]��J��]]��bJ��]]��yJ͍]]��uJ�]]��tJ�]]��xJ9�]]��wJ]�]]��vJ��]]��sJ��]]��rJɎ]]��qJ�]]��kJ�]]��jJ5�]]��MJY�]]��oJ}�]]��nJ��]]��mJŏ]]��lJ�]]��iJ
�]]��hJ1�]]��gJU�]]��fJy�]]��GJ��]]��JÐ]]��
J�]]��	J
�]]��J2�]]��JW�]]��J|�]]���J��]]���Jđ]]���J�]]���J
�]]���J2�]]���JW�]]��J|�]]��~J��]]��}Jƒ]]��|J�]]��{J�]]��zJ5�]]��yJZ�]]��xJ�]]��wJ��]]��cJȓ]]��_J�]]��^J�]]��]J4�]]��\JX�]]��[J|�]]��ZJ��]]��YJĔ]]��VJ�]]��UJ�]]��TJ0�]]��SJT�]]��QJx�]]��`J��]]��RJ��]]��WJ�]]��XJ�]]��PJ,�]]��IJP�]]��HJt�]]��KJ��]]��GJ��]]��FJ�]]��EJ�]]��DJ(�]]��CJL�]]��?Jp�]]��>J��]]��=J��]]��<Jܗ]]��zJ�]]��NJ$�]]��:JH�]]��LJl�]]��JJ��]]��aJ��]]��BJؘ]]��AJ��]]��@J �]]��;JD�]]��9Jh�]]��WJ��]]��VJ��]]��Jי]]��J��]]��J!�]]��JF�]]��Jk�]]��J��]]��J��]]���Jښ]]��J��]]���J$�]]���JI�]]���Jn�]]���J��]]���J��]]��fJݛ]]��dJ�]]��bJ'�]]��`JL�]]��^Jq�]]��\J��]]��ZJ��]]��eJ�]]��cJ�]]��aJ*�]]��_JO�]]��]Jt�]]��[J��]]��YJ��]]��mJ�]]��lJ�]]��kJ-�]]��jJR�]]��iJw�]]��hJ��]]��gJ��]]��7J�]]��5J	�]]��6J-�]]��4JQ�]]��3Ju�]]��0J��]]��1J��]]��J�]]��/J�]]��-J)�]]��.JM�]]��,Jq�]]��J��]]��J��]]��*Jݠ]]��J�]]��J%�]]��+JI�]]��(Jm�]]��\J��]]��#J��]]��"Jڡ]]��!J��]]��)J"�]]��JF�]]��Jj�]]��J��]]��J��]]��J֢]]��J��]]��J�]]��JC�]]��Jh�]]��J��]]��J��]]��Jף]]��J��]]��J!�]]��JE�]]��Ji�]]��
J��]]��J��]]��Jդ]]��
J��]]��	J�]]�� JA�]]��Je�]]��%J��]]��$J��]]��Jѥ]]��J��]]��FJ�]]���J>�]]���Jc�]]���J��]]���J��]]���JҦ]]���J��]]���J�]]���JA�]]���Jf�]]���J��]]���J��]]���Jէ]]���J��]]���J�]]���JD�]]���Ji�]]��TJ��]]���J��]]���Jب]]���J��]]���J"�]]���JG�]]���Jl�]]���J��]]���J��]]���J۩]]���J�]]���J%�]]��,JJ�]]���Jo�]]���J��]]���J��]]���Jު]]���J�]]���J(�]]���JM�]]���Jr�]]���J��]]���J��]]���J�]]���J�]]���J+�]]���JP�]]���Ju�]]���J��]]���J��]]���J�]]���J	�]]��RJ.�]]���JS�]]���Jx�]]���J��]]���J­]]���J�]]���J�]]���J1�]]���JV�]]���J{�]]���J��]]��*JŮ]]���J�]]���J�]]���J4�]]���JY�]]���J~�]]���J��]]���Jȯ]]���J�]]���J�]]���J7�]]��MJ\�]]��LJ��]]��KJ��]]��JJ˰]]��J�]]��IJ�]]��J:�]]��#J_�]]��NJ��]]�� J��]]��Jα]]��J�]]��J�]]��J=�]]��Jb�]]��J��]]��"J��]]��!JѲ]]��SJ��]]��J�]]��HJ@�]]��GJe�]]��BJ��]]��FJ��]]��EJԳ]]��J��]]��J�]]��?JC�]]��Jh�]]��>J��]]��J��]]��+J״]]��J��]]��J!�]]��JF�]]��Jk�]]��J��]]��J��]]��Jڵ]]��J��]]��J$�]]��JI�]]���Jn�]]��J��]]���J��]]���Jݶ]]���J�]]���J'�]]���JL�]]���Jq�]]���J��]]���J��]]���J�]]���J�]]���J*�]]���JO�]]���Jt�]]���J��]]���J��]]���J�]]���J�]]���J-�]]���JR�]]���Jw�]]��QJ��]]��
J��]]��J�]]��8J�]]��AJ0�]]��@JU�]]��=Jz�]]��<J��]]��;Jĺ]]��:J�]]��7J�]]��9J3�]]��6JX�]]��)J}�]]��J��]]��
Jǻ]]���J�]]��J�]]��	J6�]]���J[�]]���J��]]���J��]]���Jʼ]]���J�]]���J�]]���J9�]]���J^�]]���J��]]���J��]]��3Jͽ]]��5J�]]��/J�]]��DJ<�]]��CJa�]]��PJ��]]��OJ��]]��4Jо]]��2J��]]��1J�]]��0J?�]]��.Jd�]]��(J��]]���J��]]���Jӿ]]���J��]]���J�]]���JB�]]���Jg�]]���J��]]��'J��]]��J�]]��J��]]��&J �]]��%JE�]]��$Jj�]]���J��]]���J��]]���J�]]���J��]]���J#�]]���JH�]]���Jm�]]���J��]]��J��]]��
J��]]��	J�]]��J&�]]���JK�]]���Jp�]]���J��]]���J��]]���J��]]���J�]]���J)�]]���JN�]]���Js�]]���J��]]���J��]]���J��]]���J�]]���J,�]]���JQ�]]���Jv�]]���J��]]���J��]]���J��]]���J
�]]���J/�]]���JT�]]���Jy�]]���J��]]���J��]]���J��]]���J
�]]���J2�]]���JW�]]��J|�]]��J��]]���J��]]���J��]]���J�]]���J5�]]���JZ�]]���J�]]���J��]]���J��]]���J��]]���J�]]���J8�]]���J]�]]���J��]]���J��]]���J��]]���J��]]���J�]]���J;�]]���J`�]]���J��]]���J��]]���J��]]���J��]]���J�]]���J>�]]���Jc�]]���J��]]���J��]]���J��]]���J��]]���J�]]���JA�]]���Jf�]]���J��]]���J��]]���J��]]���J��]]���J�]]���JD�]]���Ji�]]���J��]]���J��]]���J��]]���J��]]���J"�]]���JG�]]���Jl�]]���J��]]���J��]]���J��]]���J�]]���J%�]]��JJ�]]��~Jo�]]���J��]]���J��]]���J��]]���J�]]���J(�]]���JM�]]���Jr�]]���J��]]���J��]]���J��]]���J�]]���J+�]]���JP�]]��|Ju�]]��{J��]]��xJ��]]��yJ��]]��wJ	�]]��vJ.�]]��uJS�]]��tJx�]]��sJ��]]��cJ��]]��3J��]]��2J�]]���J1�]]���JV�]]���J{�]]���J��]]���J��]]���J��]]���J�]]��bJ4�]]��oJY�]]��nJ~�]]��kJ��]]��jJ��]]��iJ��]]��^J�]]��hJ7�]]��gJ\�]]��fJ��]]��mJ��]]���J��]]�� J��]]��eJ�]]��`J:�]]��_J_�]]��]J��]]��XJ��]]��WJ��]]��VJ��]]��[J�]]��aJ=�]]��ZJb�]]��YJ��]]��UJ��]]��TJ��]]��SJ��]]��OJ�]]��NJ@�]]��LJe�]]��KJ��]]��JJ��]]��IJ��]]��[J��]]��CJ�]]��BJC�]]��AJh�]]��5J��]]��@J��]]��?J��]]��>J��]]��=J!�]]��<JF�]]��;Jk�]]��:J��]]��$J��]]��#J��]]��4J��]]��9J$�]]���JI�]]��7Jn�]]��0J��]]��*J��]]��)J��]]��"J�]]��!J'�]]��JL�]]��Jq�]]��J��]]��J��]]��J��]]��J�]]��J*�]]��JO�]]��Jt�]]��
J��]]��J��]]��tJ��]]��uJ�]]��J-�]]��JR�]]��Jw�]]���J��]]���J��]]���J��]]���J�]]���J+�]]���JO�]]���Js�]]���J��]]���J��]]���J��]]���J�]]���J'�]]���JK�]]���Jo�]]���J��]]���J��]]���J��]]���J�]]���J$�]]���JH�]]���Jl�]]���J��]]���J��]]���J��]]���J��]]���J �]]���JD�]]���Jh�]]���J��]]���J��]]���J��]]���J��]]���J�]]���J@�]]���Jd�]]���J��]]���J��]]���J��]]���J��]]���J�]]���J<�]]���J`�]]���J��]]���J��]]���J��]]��YJ��]]���J�]]���J9�]]���J]�]]���J��]]���J��]]���J��]]���J��]]���J�]]���J5�]]���JY�]]���J}�]]���J��]]���J��]]���J��]]���J
�]]���J1�]]���JU�]]���Jy�]]���J��]]���J��]]���J��]]���J	�]]���J-�]]���JR�]]��!Jv�]]���J��]]���J��]]���J��]]���J�]]���J*�]]���JN�]]���Jr�]]���J��]]���J��]]���J��]]���J�]]���J&�]]���JJ�]]���Jn�]]���J��]]���J��]]���J��]]���J��]]���J"�]]���JF�]]���Jj�]]���J��]]���J��]]���J��]]���J��]]���J�]]���JB�]]���Jf�]]���J��]]��EJ��]]��DJ��]]��(J��]]��%J�]]��'JA�]]��&Jf�]]���J��]]���J��]]���J��]]���J��]]��GJ�]]���J>�]]���Jb�]]���J��]]���J��]]���J��]]���J��]]���J�]]���J:�]]���J^�]]��~J��]]��}J��]]��|J��]]��{J��]]��zJ�]]��yJ6�]]��xJZ�]]��tJ~�]]��wJ��]]��sJ��]]��rJ��]]��qJ�]]��pJ2�]]��oJV�]]��nJz�]]��jJ��]]��gJ��]]��lJ��]]��VJ
�]]��ZJ.�]]��XJR�]]��YJv�]]��WJ��]]��UJ��]]��TJ��]]��SJ�]]��\J*�]]��[JN�]]��RJr�]]��iJ��]]��hJ��]]��fJ��]]��eJ�]]��dJ&�]]��aJJ�]]��cJn�]]��`J��]]��_J��]]��^J��]]��]J��]]��QJ"�]]��PJF�]]��OJj�]]��NJ��]]��MJ��]]��JJ�]]��<J��]]��;J�]]��9JB�]]��IJf�]]��@J��]]��?J��]]��CJ�]]��BJ��]]��>J�]]��8J>�]]��7Jb�]]��5J��]]��4J��]]��3J�]]��2J�]]��1J�]]��0J:�]]��/J^�]]��.J��]]��,J��]]��+J�]]��*J�]]��)J�]]��$J6�]]��(JZ�]]��'J~�]]��&J��]]��%J�]]��#J�]]��"J�]]��J2�]]��JV�]]��Jz�]]��.J��]]��/J�]]��J�]]��J�]]��
J0�]]��JT�]]���Jx�]]���J��]]���J��]]���J�]]���J�]]��-J-�]]��,JR�]]��Jv�]]��J��]]��J��]]��J�]]��J�]]��'J*�]]��&JN�]]��EJs�]]��J��]]��J��]]��J�]]��lJ�]]��pJ(�]]��JL�]]��Jp�]]���J��]]��J��]]�� J�]]��
'	J��/�a'	��\b'	%��XAi�hBi�`
	il�o�	J�li	%J�h
	
�����n	 J�liI.?:;9!'I<.?:;9!'I<($>!I:;9I
:!;9I	
:!;9I8
!I/:!;9I:;9!	
.?:!;9'I@z7I
:!;9I8I4:!;!�9I%$>&I:;9I:;9'I
:;9I
k
:;9I
k>I:;94:;9I?4:;9I?:;9I,Z�

	�
u�4�&�0
0Y.�tt<utt<v
���/�/
�8�;�2�5����
�1�;�2�9��vv
�8�1�;�2��v
vYsqrtineq24gcoshdefdifabs2cosisinlimpowerfractionsadddegreesinfinityoverzerosqshowmoretermssgtoabslogofreciprocalreversedifsigmashowevaluatedtermslimarccotinfgreater_than_or_equalscanceltermbacktorootsexpineq2gdifofsquareslnofpowercomplexexponential2limosctanquotientofsqrtsxmoveroneplusxkseries2revunitdenomdivabs2mulineqsqrt4gapplyfunction10applyfunction11applyfunction12applyfunction13applyfunction14applyfunction15abspowerrevfactorbasesqrtineq25gcollectlogs2cothalf1revcossqperiodicperiodicformcomplexsinrevpowerineq25automode_onlylimsumpulloutdenomintsecsqexponenttosqrtpowerpreparetocancelwriteascubeoneoveroneminusxkseries2revsqrteqnsigmasumintminusmakesinpowerweakcomplexarithmeticcotsqevendifeqnevaltorationalgeometricseriesfromk2revintegratenumericallyevalbarlnfinishroottestpowerineq24evennumericalineqinverse_hyperbolicsgzerocollectlnssqrtineq11sqrtineq12sqrtineq13difacsccoshevenlogarithms_base_ereverseintseriespureintegratenumericallylimitsshowfirsttermslogrootreciptantodenomcoshinfinitypullminusoutdefinite_integrationevaluatesigmatorationalordertermscomplementary_degreesrootineq11gwritenumberaspoweroflimoscsincomplexrootsqrttorootreversepowertopower1checknumericallydivnumdenom2xmoveroneplusxkseries2xmoveroneplusxkseries3differenceofcubesdifacosdifacotweakarithmeticeliminatenegexp1secrule2multiplycoefssqrtineq22intsubwithdisplaysqrtineq24sqrtineq25intsinsqbinomialseries2revreversedifseriestanatancardan2exponenttorootinfinityoverzerosubmulselectedrowfactoroutbase10sqrtofquotientswaprowsaddlimitscscperiodicdistribandcancellnseries3revrootineq12gsechdefrevrecipineq11gsymbollimtanhinfabsineqtrue2gcomplexapartlimprodspliteqn2sqrtineq14addendpointslogbofpowerreversedoublesinbreakpowermulineqsqrt1cosseriesweierstrassxoveroneminusxseries2revsqrtofaminusbiyourtrigsubloginexponent2sqrtofpowertrigdoublesubminusoutfromdenom2powerineq14oddexpseriesintexponentialsinperiodicaddmulselectedrowcramers_rulerecipineq31gcubic_equationsinttocsc2recipineq12gevenpowerineq2gintegraltolimitinfinityoverzero2complex_polar_formsinsinlnseriesminusrevroottosqrtfactoronesidelnseries3normalizelinear1normalizelinear2limlntpowerovertpowersintocos2degarctanodddifasec2lnineq1gabseqntoineq2tanoddcleardenomslimtpoweroverlnttransfertanrulelnineq1posnum2gintacscplusautointegratebypartsintconstcotsumtanhalf2revpowerineq24oddgfactorcubeofdifsqrtineq15square_rootssqrtineq21sintocosxoveroneminusxseriesrevcomputelnmultnumdenomsqsqrtineq1revdifasechdif_inversehyperboliccoshplussinhlimtoverlntrejectimpossiblecospseudosquare3expandintegrandliminftanlimarctaninfaddeqnsubeqn2brothertandifintegrate_sqrtdenomlimtoverlntpowerlineupvarsrecipineq32gevaleulereacotinfinitytanhsqtosechsqlinear_equations_by_substitutionlimexpinf2evenpowerineq4gdifminusintervalspos1cottotan2degpowersqrtexppowereqn2powereqn3powereqn4powereqn5cosseries2cosseries3limroot1limroot2computepoweraddundefinedpointslnineq2gselecteqnacoscosinttoatanhseriessubindexderivopsubtwoeqnssumoffourthpowersargtagtrigsubsinhabsineqfalsesecsqperiodiceliminatederivativesolvecos45chainrulevarsleftintsechdif_hyperbolicintacostelescopingsumintacotmultiplycomplexconjugatesseccomplementcancelrootgcdsubselectedeqndiveqnsdifsqrtradtodegsolvecos0regardvarasconstatanhtolneliminateparameterliminfsinsqrtexpdiflncoscotseries2cotseries3lnleftineq1lnleftineq2coshalf1coshalf2icoshstatefinalbound1maximalsubintasecminusadding_arctrig_functionslnrecipdifexpminmaxexperimentsgrecip2sgrecip3cancelfactorial3factor4thofdifexpand_powerspowerofroot2powerofroot3powerofroot4powerofroot5sqrtofsqrtselectinductionvariablesintocos2intsubcosintsubcotevalarcsecfactoroutconstanttanseries2integrate_expsinsuminvsimpnegexpseries3revdifexponentialsolvecos60divergencetestcomplex_functionsknownrooticothmore_infinitiessintocsclnseriesminus2lnseriesminus3expseries3revsqrtineq14goneoveroneplusxkseries2revsolvesin45trig_substitutionsbringminusoutproduct_and_factor_identitiessinoddpowertriplesincommondenomfinishlimitcomparisontestcossqhalf2absleneg2arcsinoddsquareineq2limthrulogsquareineq4cubeofsummultiplyoutrootofrootsubstforvarbinomialtheoremlnofemod2pirootineq23glnofirecipineq22gchoosesubstitutionsquareeqnmultabscotsqtocscsqconstantintosigmazeroes_of_trig_functionsreversesubtrig_integration2quotientofrootsgreaterthanabsdouble_anglefundamentaltheorem2computelogabsineqtrue2numerical_calculation1numerical_calculation2difsecspecial_limitsmultbyidentitysinseries3revevalarctanrecipineq41gseccomplementdegintsecsq2normalizelinear1gabseqntoineq1sgoddpowersolvesin2sqrtineq23solve_by_45_45_90recipofi2recipofi3showcallingproblemcollectallgeabsminusoutfromdenom22hyperbolic2powerineq27gchangesignsisinhsolvetan30atanseries3revxoveroneplusxseriesrevexactmatrixinversereversepowertopower2sumofcosgeometricseriesfromk2geometricseriesfromk3limsqrtdenom1GNU C17 13.2.0 -mtune=generic -march=x86-64 -gzero_denomtanrecip2factor_expansionwriteaspolyinttansq2lnofreciprocalfractexpdenomsolvecos90sumofsquaresrootineq25gevalpuresigmatorationalsinhsumlnrightineq2changesignsandsense2solvecoslimlntpowerovertabsineqtruegminusoutfromdenom33pushminusinevaluate_trig_functiontrig_odd_and_evenautointsubcontentgcdintsubcsconeminusxseries3revbasic_integrationshowalleqnsquerytrigargunivariatepolybinomialseriesrevshowdevaluatedtermsdiftanlimquotientswapeqnstantosecinintintrecip3difofcosevaluatesigmatodecimalevalarcsindifcos2limabssecatanlogofproductsqrtineq11gfinishcomparisontest1finishcomparisontest2partialfractionsopseveral_linear_equationscancelsqrtchoiceadditivitylogbofonezerosqdenom2sigmaconstantsechsqtotanhsqrootofminuspulloutrealtransfereqnlogofoneevalfunctionaddeqn1addeqn2expineq1decrementtrigargcoshdefrev2infointsecpowerintegrateemptyintervalpowerrootineq1revsgassumenegfactorcoefficientsevalbarcomparisontest1comparisontest2difcoshcscrule2infinite_limitsinttan2limcotsingreverse_trigmulineqbysquare1glnsqrtxmoveroneminusxkseries3revcottocscsecunsigned chareliminatenegexpcancelbypolydivcosh0limlogxoveroneminusxseries2xoveroneminusxseries3solvetan60seriesevenandoddsincosopsechdeffloatinttanhzerobaserootsimpdifsindifcothrationalizedenomsubeqn1zero_ineq1zero_ineq2zero_ineq3zero_ineq4advanced_equationsdivineqexpandcoscancelroot3lauringsoncoshichangesigns1twobytwoinversesinhasinhintervalspos1gsquaretrue2gdistriblawvieteabslenegintexp1intexp2intexp3intexp4intexp5intexp6tantocottrigrationalizepolylessexpposnum1gchain_rulediveqnlogofquotientdifsigmalogarithms_base10absposhigher_derivativesintpowerofminusonecreatecompoundfractionautosubstitutionintseriesintervalspos2gtranslatevarsinsqhalf2root_ineq1root_ineq2root_ineq3root_ineq4sg_function1sg_function2difsin2tanhalf2evalpuresigmatodecimalcompoundfractions2powerineq14oddgcotseriesinfinityoverzero3collectmultiplesolnssquareineq1grejecteqntabulateexacttansqtosecsqsubmuleqnsminusintodenomeliminatesinsqaddinfinityfindcommondenomsquareofabslogofpowermulineqbysquare4gdifsinhinsertpointdifseriesadvanced_factoringeliminatesecsqabslessthanlimcscsingsinhalf1sinhalf2logbtologdifsqrt2limapartandfactorpowerineq11dif_explogcosevenpowerineq15limprod2rightpowerineq17squareineq2gpowerrootineq1powerrootineq2tanhalf1revsecseries2termlimthrucosfactornthofdifinfinitiessolvecot90oneoveroneminusxkserieswriteassumdivnumdenomintsecrootdenomcomplexformsinhdefrevchangeintegrationvariablemod360sumofnthpowersexpseries2revmulineqbysquare2ghyperbolic_functionsaritycomplex_arithmeticreversecollectpowers2dif_trigbasiscaselimits_at_infinityreversecollectpowerssqrtofsquarepowerineq21logrightineq1logrightineq2cothdefsgnegsinh0powerineq27squareineq3gxmoveroneminusxkseriesmulineqsqrt2mulineqsqrt3logpowerofbofbseries_bernoullicomplexpowersevaluatebinomialcoefgeometricseriesminusfromk2revsolve_by_30_60_90addtwoeqnslimtan1exptodenomcondensationtestzeta2liminverseoddpowermultbyonecomplex_hyperbolicsinhsqtocoshsqlimconstinductionstepcostosecsolvelinearcotrule2square_ineq1square_ineq2square_ineq3square_ineq4squareineq1tantocot2degsquareineq3sinhiintacscminuslogbtolnquotienttopowerseriesaddindextansumrevsquaretrue1squaretrue2makedifofcubescancelfactorial1bfactornthofsumintegraltestguessfactorexponenttorootpowergeometricseriesminusfromkdecimalmatrixinversecostosin2minusoutfromdenom3cevalopsinhsqplus1inttanfactorsquareofsumlimlinearmulineqbysquare3gcossqhalftrigsubsectanhsqplussechsqlimexp1limexp2tanseries3atantan2sqrtofaplusbiexplicitparamspowerofrootlimsqrtinfdifcsc2fundamental_theoremsolveoneinttocsccomputediscriminantdifofpowersconstantoutofsigmacomplexexponentialless_thanbinomialseries2binomialseries3cothiproducttopoweracscinfinitysqrtineq15gdifinversepowerpowerineq16gpolartorectangularlogdifalltoleftrecip_ineq1recip_ineq2recip_ineq3recip_ineq4eliminateconstnegexpleabsabslinearquocancelfactorial2bfactorialrecursionabsolute_value_ineq1absolute_value_ineq2difcschdifatan2multiplymatricescosataneliminatecoficomplexsinrev2powerofseriesevenintegrandlimundefinedabsineqtruecommon_denominatorssqsqrtineq2negexptodenomdifferenceofsquaresrecipineq42gintpolycschdefmultiplyfractions2poweroutofrecipchangelimitvariablelimdifintlinearintsinpowerineq24oddnonzerooverinfinitytanrule2series_convergence2multiplyoutintegranddifatanhtrigsubtanlogsqrtcancelfactorial3binttoacothbringminusout2bringminusout3sinoddapartandcanceldecimaltofractionswitchsidesmore_hyperboliclogs_to_any_baseget_brotherseries_geom1series_geom2series_geom3series_geom4series_geom5absnegintsqrtsecacostransfer2compoundfractions1limvaloplneqnsgodd2absineqtrue3posnum2xoveroneplusxseries2revdiflinearcombineintervalsintasecpluslimexponent2sinhdefrev2costosinsgodddifpolysinatansolveselectedeqndifabssumtodifofsums0rootofpower3rootofpower4rootofpower5rootnumtanineqmulineqsolvecos135limtlntlogineq1gdividepowerseriessumofarctanwritenumberaspowerpushunderevenrootabsrootintrecip2squareineq4gmultiplyoutandsimpsectocsc2limevenrootlogleftineq2gtrigsubsincsccomplementdegxoveroneplusxseries2xoveroneplusxseries3expandnumeratorpowerofsqrtatanseriescossinxoveroneplusxseriestanperiodicdropzerorowsincossamediflinear2sin30attractlnscancelabs3intcscpowersolve_equationsdifi0difi1reversedoublecos1reversedoublecos2reversedoublecos3logbinexponent2menusqrtofrootdifproductreversegreaterthanabsletrig_periodiccscsqperiodiccotoddwritenumberascubedifasecrejectpointcosasinintsigmatrigrationalizedenom1series_convergence_teststrigrationalizedenom3trigrationalizedenom4trigrationalizedenom5trigrationalizedenom6tominusinfinity0tominusinfinity1roots_and_fractionsexpseries2expseries3sumofarcsincosdifrevdifinregroupfactorsdifj0difj1powerineq11ginttosec2powerstonumstatefinalbound2unitbaselogineq2gnegative_exponentssolvesin300cottocscinintexpandpowertrigsubcoshhalf_angle_identitieslogbrecipintegrate_by_substitutioncosminusisinint1xoveroneminusxseriesdifsumlessthanabsinfinityovernonzeroabscosineqsqrtineq22goneplusxseries2revcontentfactorabspowerdifjnabsolute_valuelnzerodifk0difk1powerineq12gexplicitdomainpowerineq12powerineq13trig_reciprocalscrossmultiplypowerineq16pushunderoddrootabsgeneg2pullminusout2trigtodenomsolvesin315solvesin270collectnumberstanhatanhrootexpdifatansolvecos150rooteqnpowereqnsin45cothacothlimlntovertpowerquadratic_equationscomputefunctionmakecospowerbessel_functionslimsqrtldots0ldots1ldots2difknsinhalfperiod1sinhalfperiod2absposandassumeaddrowsmultiplyseriesdemoivregeometricseriesminusfromkrevtanoddpowersinseriessinsqtocossqadvanced_sigma_notationintcos2bignumreversedoublesin2doubletannegativediscriminantmakesubstitution2degtoradaddmuleqnsevaluatebernoulligeometricseriesfromkalternatingharmonicseriesnegexpseries2negexpseries3subseriesdivselectedeqnattractlogssqrtineq23gcomplexsinreverseintsigmadiflnminima_and_maximalnofnegativecomplexexptonumintcoshpowerineq23zetatobernoullipowerineq26less_than_or_equalssolvesin330intcot2sinhdefcoshalfperiod1coshalfperiod2xmoveroneplusxkseries3revsubrowscscsqevenlogarithmic_equationsdoublecos1doublecos2doublecos3doublecos4doublecos5difasinsqrtsimpzetaseries2zetaseries3cothalf2revrecipinterval11sigma_notationcancelrootzerodenomlimlnsingarccosoddcomplexfactorsofintegerreversepowertopower3intcothminusoutfromnum2oneoveroneminusxkseries3revdifconstantsubmulrowsdropeqndoublecoshfactorpolyundersqrtlogofpowerof10oneoveroneminusxkseries2oneoveroneminusxkseries3doublesinoneoveroneminusxkseriesrevgeometricseriesfromk3revnormalizelinear2grootinterval2limitcomparisontestmultdeflnrootlogrightineq2gtransferintegralrootineq13grecipinterval21recipinterval22showcallingcubicintabsdropzeromultiplyoutundersqrtordersimplefactorssquarefalse1gnumerical_equationsoddrootineqrejectimpossiblesinprimerulefactoropimpossibleeqnseliminateconstnegexpnumabsgreaterthanminusintoproduct2minusintoproduct3simplify_calculusinttoerfdropduplicaterowtrig_sumintsin2equatetoproblemsumleadingtermexptohyper1exptohyper2series_expautochoosesubstitutionrecipinterval31recipinterval32intsubsecetothecoterminalexpandzetaseriesdigitpowerineq21glnseriescancelabsgcdlimtpowerlntproductofsqrtspowerineq17gshort unsigned intapartrectangulartopolarsigned charreverselessthanpushminusunderrootcossumrevoneminussechsqsinhoddabssglnseriesrevexpanddenominatorintervalspos2undefinedpartregrouptermslimpowertimeslnabsintsinhinverse_trig_functionssecreciptanhlninvertlimattractlogb2logbofpowerofblimprod2leftevalarccotfactorhelperabsarctanineqminustopolaroddrootineq2gevaluateeulernumbersquarefreefactorseliminatesqrtstanasinlimleadingtermsrecipinterval41recipinterval42absoffractiondevalopdivrowsxoveroneminusxseries3revgeometricseriesfromkrevpowerineq22gtriginfinitytantocot2powerrootexpeliminatenegexpdenomcancelminusinquotientcancelroot2implicit_difflimcos1limcos2powerstodenomlntologsqrtofminusifunctioneqnexpand_menumakesumofcubesdoublesinhtrysubstitutioncothalf2intcotsq2orderfactorsrecipinterval51thereforeasdesiredintsubcousinspoweroutoffractionintsubtanlogrightineq1gpowerineq23gsgprod1sgprod2cosoddpowerlninfinitysqrtexpdenominflimpower1inflimpower2coshsqtosinhsqsimplify_productsswitchlimitsfactorquadraticsolvesin0factorintegerbacktosqrtsaddtozetaintcossqlogarithmsoneminustanhsqlnseries2revlimlogisloglimeqnssubtermdifreciplim1inverseleftrootinfinitycotdifrootineq15gsqsqrtineq2revrecipinterval62dividepolybyseriesprodofpowersuseinductionhyppowerofminusonefactorquarticonesofcoslogeqnsinseriesrevfactor4thofsumxmoveroneplusxkseriesrevdiflnsinrecipineq11binomial_theoremadditivecanceladdfractionspowerineq13gsolvetan45trig_integrationoperationlimsecsinglimminuszeroesoftanfactorundersqrtsgassumeposlimsinh1factorsquareofdifsqrtofpower2limosccostimesinfinitycoshsqminus1rootineq11oneoveroneplusxkseries2oneoveroneplusxkseries3difsgcscsqminuscotsqminusoutfromnumfinishratiotestsqrttoroot2sgfract1sgfract2applyfunction0applyfunction1applyfunction2applyfunction3applyfunction4applyfunction5applyfunction6applyfunction7applyfunction8applyfunction9secseriesabsineqfalsegetotheipicschacschtansqevenrecipineq21gpseudosquarecscoddtansumfinishdivergencetestinttolnratio2powerineq14evenlimcosh1long intlimsin1sqrtinterval1cossumtanhalf1difacoshlogbofquotientsqrtinterval6intcschsin90expineq2difacot2mulineqbysquare2evenpowerineq1evenpowerineq2evenpowerineq3evenpowerineq4powerineq26gsolvecos120secsqtotansqsinhinfinityintcscsq2rootpowerexprecipineq21pulloutrationalmulselectedeqnsolvetanchangesigns1gabstimessgfactorbydemoivremulineqsqdifferenceofnth2oddandeventransferstrictineqsindifzeroesofsininvisiblesubcomputerootdifacothcomplexabstrigrationalizedenom2polynomial_derivszero2ndenom2series_atancos0multiple_anglescollectpowersintcotselectmaxsinasindropzerocolumnlimlnrightrecipofiinvertandmultiplyevaluatefactorialtanacoslimthruexpdifln2logleftineq1logleftineq2minusintoproduct1difcot2oneoveroneplusxkseries3revrootineq21gpolyvalopdifpowerdoublecotratdenomandsimpsumofsinintegratebypartsintervalsneg1gcotdifrevrootineq25long doublederivativescomplementary_trigrecipinterval52eliminatecossqfinishcondensationtestdifasin2recipineq32itanhcschdefrevpowerineq15glhopitalchangesigns2gsolvesinabsineqtrue3garithmeticsinsqevenlong unsigned intlnofpowerofeseries_manipulationscompletethesquarelogofpowerreverseacoshtolnintervalsneg2gsigmatosuminttansqbinomialcoeftofactorialsaccess_optabledifasinhintegrate_arctrigunitelogsaddcriticalpointsinttosecdifofsincommondenomandsimprootofpowerswapselectedeqnbernoulliseries2bernoulliseries3intcotsqsigmapolysgposfactorunderrootdiflnabs2rootexpdenomrenameindexvariablequadraticformularootineq22gintinversepowerunitelogs2charcotoddpoweratantansinsquare1sinsquare2sinsquare3collecttermslim1inverserightdify0dify1splitofflasttermlimsqrt1limsqrt2muleqnssgabs1sgabs2logtolndifpower2solvelinearforliminfcoscomplexrootminusrootineq12cancelsqrtgcdrootineq15spliteqnlogoftenrootinterval1multiplypowerseriesdifatoxcosacosabsgenegminusoutfromnum22series_lnfinishintegraltestrelated_ratesdifynlimtanh1recipinterval61absevenpowersumofallpowerssumofisquaredaddmulrowsbinomialseriesataninfinitysinseries2revsectocsc2degcomputesqrtevalatpointzerodenom2zerodenom3invertandmultiply2introducenegexpdivselectedrowdifsec2cotcomplementdegsqrtinterval2ordereqnssqrtinterval3abseqnsqrtinterval4sqrtinterval5mulineqbysquare1ssolveopmulineqbysquare3mulineqbysquare4compoundfractions3compoundfractions4atanseries2revcoshsumsolvecos180secsqminustansqnegatenumdenomhighderivbinomialseries3revlimln1introducelninexponentatanseriesrevlimexptologcottotan2factorlogbaselnofproductsumofcubesrootineq21oneminusxseriesrevdifsechlimleadingtermdifacsc2zerosqdenomcramersrulelnofquotientldotstosigmalogineq1logineq2polydivoplimpolyrootofpower2cscrecipseries_trigoneminusxseries2revmultiplyfractionslnseries2dividebymatrixcancelgcdplainbinomialtheorembreakfraction1breakfraction2breakfraction3matrixformrootofsqrtdifacschdifsubstitutiontrig_ineqzeroexponentintrecipfactoringeliminatetansqsolvesin30testlimitdivabsdifrootslinear_equations_by_selectionwriteaspoweraddseriesfactorcubeofsumsolvetan135seriesdifintsinsqhalfconvertmatrixeqnlimoddrootlimlntovertintasinlimthrusinsquarefalse2gevaluatedeterminantlnrightineq2gunitelns2cotsumrevfactoroutnumbertwicehalfabsevenpowerrevetothei2npisqrtofnegfunctionisconstantgcdsubstitutionintegraltolimit2integraltolimit3integraltolimit4sgevenpowerlimsum1limsum2limsum3limsum4xmoveroneminusxkseries2revlnofminusonemultbymatrixidentitypowerrootineq2revactualoppowerineq24evengwriteintegeraspowersolvetan120pseudosquare2recipineq12introduceloginexponentselectminsecoddpowersigned_fractionsinttolnratio1trigonometric_integralsinttolnratio3rationalizenumdoubletantocotdegsquaretrue1garctanineqcotperiodiccomplexsqrtcollectlogbevalpilogratboundlogbinexponentevalarccossecasincomplexlntopolarformnegexpseriesseriesfirsttermscollectlogsinfinityplusinfinityfactordenominatortrigsubtanhinttoacoscanceloponeoveroneplusxkserieslnrightineq1gsqrtinfinityseriessumargscubeofdifoddintegrandmultdegreescottotanexponenttosqrtsecrulelogbofbrootineq13tanhioneplusxseriesrevsqrtofminus1factorpolyunderrootoneminusxseries2oneminusxseries3expseriesrevcothalf1limrootinfsubmulselectedeqndoublecos6trigsuminfractionfractexpnumcheckrootsolvesin60intervaltoabs1verify_identitiesintervaltoabs2differenceofnthpowersabssqrtsqrttoabslimarccotinf2logarithmic_limitszero2ndenomcoshacoshlogbtologsrootineq22rootineq23difdiflimtlntpowercomplexcosmultbyzerogeometricseriesminusfromk3revdifquotientinfinitytimesinfinitychange_baserootofproductdifcosdifcotaddselectedrowcleardenomofilimcontinuousdifacos2fractional_exponentsintpowershowundevaluatedtermsreversesinsqcoshminussinhintcsc2absofproductexpandsineqnsaddtermsqrtoficosseries3revminustopowerintroducelogbinexponentcossqevenratsimpopdroppositive1droppositive2realcardancosseries2revreverseleintlnasinhtolnmultiplyoutunderrootadvanced_matrix_methodsxmoveroneminusxkseries2xmoveroneminusxkseries3cosperiodicsechasechbasic_trigmulineqsqrt4negexpofquotientintegrate_rationalrationalizefractioncancelsqrt2roots_of_rootscotsquare1cotsquare2cscoddpowerproductofrootslimexpinffactorandcancelquotientofpowerssumoficubedsubeqnsquareofsumintegrate_hyperbolicpowersofi0powersofi1powersofi2powersofi3squarefalse1squarefalse2sumofitothefourthtan0evalarccscdivdegreespowerineq14evengunwinddefinitioncomplexarithmeticdif_inversetrigoptablelnrightineq1negexpseries2revoneoveroneplusxkseriesrevtansquare1tansquare2solvesin90powerineq22intervalsneg1intervalsneg2sindifrevmultiplyabsvaleqnscanceltermwriteassquarematrix_methodsliminverseevenpowergeometricseriesminusfromk2evalfirsttermssquarepowerseriessimplifylogbtolnsintroduceabssintocosdegaddmulselectedeqndefnoffactorialexpandsquarepowerineq25gmulselectedrowlnleftineq1gharmonicseriesoddrootineq2csctosec2degcommondenominfractionsqsqrtineq1greaterthantogeoneplusxseries2oneplusxseries3roottestsecperiodiclimquoinfiniteinfinityminusinfinitycollectlns2tanserieslimcosh2rootofquotientseriesintdifdifidentitysgrecipmuleqnsqrtofquotient2posnum1isolatelncancelfactorsimplify_sumsoddrootineqgdifcscfractionofabslnleftineq2glessthantolecotcomplementtanrecipcsccomplementlninexponentlninexponent2factornumericallysqrtineq12glimtansingxoveroneplusxseries3revwritenumberassquarecomplexcosrev2complexcosrevautomode_only2unitelnsinttoatanfractionalsubstitutionimproper_integralssolvenumericallybreakabsintfactorquadraticwithdisplaychangesigns2coshdefrevseries_algebracossqtosinsqdifatox2recipineq22coslowerboundlog_ineq1log_ineq2log_ineq3log_ineq4trig_squaresgeometricseriesminusfromk3complexlneqnscollectallhyper_limitsautomode_only3sqrtineq13gfactoroutbaseshowanothertermfactorbygroupingminusoutofsigmaoneminusxseriesxmoveroneplusxkserieslimtpowerlntpowercotrecipcompound_fractionspushundersqrtabseqnnegrecipineq31cotrecip2logrecipsolvetan0sin0etotheminusipicollectlogb2swapselectedrowcothdefrevprove_by_inductionatanseries2atanseries3long long intsqrtofproductchangebasesubselectedrowseriesintdifdefselection_mode_onlyratiotestcommondenom2advanced_limitseliminatequadratictermbernoulliseriesintsubsinexpandcubediflncoshcscsqtocotsqmulrowsrecipineq41recipineq42findcommondenom2csctosec2intidenttanhdefrevsecseries3costosindeglhopitalmenumodified_bessel_functionsbreakfractionquotients_of_rootscostosin2degsumofiabsgreaterthannegintdifintlinearitycsc_and_cot_identitieslnseriesminusadditivecommuteintcosdivideseriesbypolyxmoveroneminusxkseriesrevtandifrevpowertopoweraddselectedeqnsumtodifofsumslnofoneshiftindexdifdifncosseriesrevsgpowerreversegeevenpowerineq3gintsgeliminatenegexpnumsinacostrueeqnintsumintdivtest1intdivtest2oneplusxseries3revabsorbconstantlimits_of_quotientsdiflnabsfactorcomplexintegersimpleintinfinityoverzero2nabsgemultiplyifcancelslnofpowerreverseisolatelnpowermultnumanddenominttoasinabssinineqtoinfinity0toinfinity1fundamentaltheoremlimidentsinineqsinsumrevlnseriesminus2revtanhdefcommondenomandsimp2limrootdenom1limrootdenom2cancelfactorial1cancelfactorial2seriesmoretermsdefnofepowerofinfinitydefnoficscrulelimsqrtdenom2sqrtineq21gnegexpseriesrevtransfer1changesignsandsense1triplecoschangesignsandsense3changesignsandsense4coshsqminussinhsqasecinfinityabslessthannegacotminusinfinitytabulatesinsqperiodicminusoutfromdenomintcscsqabsofpolardefnofderivativeabseqn2sqrtnumfunctions_menuintegrate_by_partspowerofsqrt2cosdifintsec2pulloutnonzerolimitmulineqsqrt1gsecevendiflnsinhunsigned intsolvecos30intatancardancoscosmonicpolylimreciprationalizesumtransferineqfactornumberinlogsolvetan330doubleminusexponentsnatural_logarithmscancelsqrt3greater_thanloginexponentlnineq2squareofdifexpineq1gseries_appearanceasinsincleanupexponentsminusintonumtelescopingseriesshort intrecipinterval12complex_numberslimtpoweroverlntpowersquareseriesmulineqsqrt2gsgintshowfactorialsintermslimexponentunitexponentnth_rootsoneplusxseriesintroducenegexp1secondderivtanhinfinityproductofsigmasintcscdiftan2advanced_square_rootscombine3045logleftineq1glogbofproductcottosincosmakesubstitutionlogbofreciprocalfactorunderlimitdifexp2zeronumsecsqevensqrtdenommultcommutecompletethesquare1abslinearlimrationalfunctionsinseries2sinseries3mulineqsqrt3glogbeqnfactorbypolydivsqueezetheoremdiftanh/home/beeson/MathXpertautomode/opdef.c/home/beeson/MathXpertautomode.opdef.copdef.cbignum.hterms.hmodel.hops.htrig.hcalc.hseries.hoperator.hGCC: (FreeBSD Ports Collection) 13.2.0zRx�A�C
S<lA�C
g\�A�C
��
�TU�	*:HT[fs�������*2=HS^tb�����������)7I[mx���������

�'7IQYJ%cu�����������
#0?Oar��������$7J]p����������
/<IYh}�������� 
!�-=Rj{�������
!.8HWgw���������			4	?	J	U	a	m	z	�	�	�	�	�	�	�	�	�	�	�	


0
D
S
a
n
w
�
�
�
�
�
�
�
�
�
 +6AP`kw����������"/9Ganz����������

2
B
S
a
n
�
�
�
�
�
�
�
�
�
%4FTeq�����������~��*8AS[i~����������%9JP[Tcn{������������1#.9BLTckrz���������
=(:L\qz�������������*;L[k~���������
&1>EMY_kq����������#1CLVdr����������%4@LYjy���������'6BNXm{����������
!-:FQ\gr�����������$4DTdt���������&1<JZiu�����������&2>M[cp���������
/=KWco{����������"/;HVer����������
+8ER_q���������-?M_q���������m ! 1 C X c { � � � � � � � !!&!5!D!S!n!|!�!�!�!�!�!�!�!�!
"!"+":"E"Y"i"z"�"�"�"�"�"�"�"�"�"###)#<#G#?#R#`#c#f#n#v##�#�#�#�#�#�#�#�#�#�#$
$$$+$8$G$U$_$h$r$�$�$�$�$�$�$�$�$�$�$�$�$%%.%=%F%P%[%h%x%�%�%�%�%�%�%�%�%
&�%�%�%&&%&/&;&J&W&b&n&y&�&�&�&�&�&�&�&�&�&�&�&�&''' '*'7'J']'h'u'�'�'�'�'�(�'�'�'�'�'�'((#(2(>(J(W(d(n(y(�(�(�(�(�,--�(�(�(�(�(�,,�,�(�(�()
))")*)2);)D)P)Y)b)k)u)~)�)�)�)�)�)�)�)�)�)�)�)*
**%*2*>*J*V*b*o*|*�*�*�*�*�*�*�*�*�*�*�*++++!+Y+|+�+�+(+3+>+H+R+c+u+�+�+�+�+�+�+�+�+�+,
,,$,0,;,G,R,^,i,u,�,�,�,�,�,�,�,�,�,�,�,�,---(-1-;-D-M-X-c-n-y-�-�-�-�-�-�-�-�-�-�-�-.
...".*.2.:.B.J.R.Z.c.o.{.�.�.�.�.�.�.�.�.�.�.�.�.//&/7/D/Q/^/k/x/�/�/�/�-�/�-�/�/�/�/�/�/�/�/�/0
00%010=0I0W0e0s0�0�0�0�0�0�0�0�0�0�0�01
111(111:1D1M1K.S.T1]1f1o1x1�1�1�1�1�1�1�1�1�1�1�1�1�12222$202A2U2f2z2�2�2�2�2�2�2�2�2�2�2
33&343=3E3O3^3a3l3x3�3�3�3�3�3�3�3�3�3�3�3�3�3	444&4/484A4P4^4r4{4�4�4�4�4�4�4�4�4�4555 5-5?5K5\5m5�5�5�5�5�5�5�5�5�5666$616?6J6U6`6j6~6�6�6�6�6�6�6�6�6�677&7B7:7P7\7q7}7�7�7�7�7�7�7�7�788&898L8X8e8q8~8�8�8�8�8�8�8�8�8�8999$909<9C9L9V9_9g9q9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9:::#:,:3:;:D:K:U:^:g:o:w::�:�:�:�:�:�:�:�:�:�:�:�:�:�:;;;;";3;E;R;e;o;{;�;�;�;�;�;�;�;�;�;�;<< </<9<E<Q<`<g<o<{<�<�<�<�<�<�<�K�<�<�<�<�<�<�<==#=*=1=8=?=F=M=V=_=h=q=z=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=>>>>.>4>A>=>T>d>w>�>�>�>�>�>�>�>�>�>�>?%?-?7?D?O?[?k?g?�?�?�?�?�?�?�?�?�?
@@#@.@:@F@R@^@g@p@z@�@�@�@�@�@�@�@�@�@�@AA.ADAZApA�A�A�A�A�A�A�A�A�A�ABBB B(B0B<BIBUBbBqByB�B�B�B�B�B�B�B�B�BC%C=CVCoC�C�C�B�B�B�B�BC C8CQCjC�C�C�C�C�C�CD*DBD]DyD�D�D�D�D�DE,EBEYEpE�E�E�E�E�E
F"F8FNFhF�F�F�F�F�FG#GAGJGTG^GlG{G�G�G�G�G�G�G�G�G�G�GHH H.H<HIHWHhHuH�H�H�H�HeHrH�H�H�H�H�H�H�H�H�HIII.I>IPIcI�H�H�HvI�I�I�I�I�I�I�I�I�I�I�IJ%J,J3J:JGJWJeJxJ�J�J�J�J�J�JKK%K2KDKRK\KfKwK�K�K�K�K�K�K�K�K�K�K�K
LL/LDLWLgLvL�L�L�L)L>LQLaLpL�L�L�L�L�LJ�L�L�LM$M.M4MAMNMYMdMpM|M�M�M�M�M�M�M�M�M�M�M�M�MN	NNN,N:NINXN`NlNtN�N�N�N�N�N�N�N�N�N�N�N�N�NO O/O>OMOUO`OhOsO{O�O�O�O�O�O�O�O�O�O�O�O�O	PPP'P1P;PEPOPWP_PgPoPwPP�P�P�P�P�P�P�P�P�P�P�P�P�P�P�P�P	QQQ"Q(Q.Q:QFQNQVQ_QhQpQyQ�Q�Q�Q�Q�Q�Q�Q�Q�Q�Q�Q�Q�Q�Q�Q�Q�Q
RR(R7RFRURdRsR�R�R�R�R�R�R�R�R�RSSSS*S9SHSWSfSqSS�S�S�S�S�S�S�S�STTT%T2TBTPTYTcTmTxT�T�TU��T�Tl�T��opdef.cdevalopcomputerootcomputepowercomputefunctionfactorintegerevalatpointevalpievaleulereevalfunctionfactornumericallyevaluatebernoullievaluateeulernumberdecimaltofractionwritenumberassquarewritenumberascubewritenumberaspowerwritenumberaspowerofwriteintegeraspowerwriteassumdefnofipowersofi0powersofi1powersofi2powersofi3weakcomplexarithmeticcomplexpowerscevalopcomplexfactorsofintegerfactorcomplexintegerdoubleminuspushminusinpullminusoutregrouptermsordertermsdropzeroadditivecancelcollecttermsadditivecommutepullminusout2minusintoproduct1minusintoproduct2minusintoproduct3multbyzeromultbyonebringminusoutbringminusout2bringminusout3regroupfactorscollectnumbersorderfactorsdistriblawdifofsquaresmakedifofcubesmakesumofcubesmultcommutemultiplyoutexpandnumeratorexpanddenominatormultdefzeronumunitdenommultiplyfractionsmultiplyfractions2cancelopaddfractionsapartandcancelpolydivopcancelbypolydivpulloutrationalpulloutdenompulloutrealbreakfractionbreakfraction2cancelminusinquotientminusintonumminusintodenomminusoutfromnumminusoutfromdenomminusoutfromnum2minusoutfromdenom2minusoutfromdenom3minusoutfromdenom22minusoutfromdenom33minusoutfromnum22negatenumdenombreakfraction1breakfraction3compoundfractions1invertandmultiplyinvertandmultiply2compoundfractions2compoundfractions3compoundfractions4factordenominatorcommondenominfractionfindcommondenomfindcommondenom2commondenomandsimpcommondenomandsimp2multnumanddenomzeroexponentunitexponentzerobaseunitbaseintpowerofminusonepowertopowerminustopowerquotienttopowerproducttopowerplainbinomialtheoremreversecollectpowerspoweroutoffractionpowerstonumpowerstodenomexpandsquareexpandcubeexpandpowerbreakpowerreversepowertopower1reversepowertopower2reversepowertopower3poweroutofrecipeliminateconstnegexpeliminateconstnegexpnumeliminatenegexp1eliminatenegexpeliminatenegexpnumeliminatenegexpdenomintroducenegexpintroducenegexp1negexpofquotientreversecollectpowers2productofsqrtssqrtofproductsqrtsimpsqrtofsquaresqrttoabsfactorundersqrtsqrtofquotientsqrtofquotient2quotientofsqrtscancelsqrtcancelsqrt2powerofsqrtpowerofsqrt2evaltorationalcomputesqrtweakarithmeticcancelsqrtgcdfactorpolyundersqrtrationalizedenomrationalizenumcancelsqrt3multiplyoutundersqrtlauringsonroottosqrtsqrttorootsqrttoroot2sqrtofpowersqrtofpower2pushundersqrtratdenomandsimpexponenttosqrtexponenttorootrootpowerexppowerrootexppowersqrtexpsqrtexpdenomrootexpdenomfactorbasefractexpdenomfractexpnumexponenttosqrtpowerexponenttorootpowerproductofrootsrootofproductrootofpower5rootsimprootofpowerrootofpower3rootofpower2rootofpower4powerofrootpowerofroot2powerofroot3factorunderrootrootofminusfactorpolyunderrootmultiplyoutunderrootsqrtofsqrtsqrtofrootrootofsqrtrootofrootrootofquotientquotientofrootscancelrootcancelroot2cancelroot3cancelrootgcdpushunderoddrootpushunderevenrootpushminusunderrootrootdenomrootnumsqrtnumsqrtdenompowerofroot4powerofroot5recipofirecipofi2recipofi3sqrtofminus1sqrtofnegcleardenomofimultiplycomplexconjugatessumofsquaressquareofabscomplexabscomplexapartcomplexformsqrtofisqrtofminusisqrtofaplusbisqrtofaminusbifactoroutnumbercleardenomscontentfactorfactorsquareofsumfactorsquareofdifdifferenceofsquaresfactorquadraticquadraticformulawriteassquareprodofpowersfactorcoefficientsmakesubstitutionunwinddefinitionregardvarasconstinvisiblesubmakesubstitution2writeascubewriteaspowerdifferenceofcubesdifferenceofnthpowersdifferenceofnth2sumofnthpowerssumoffourthpowersfactorquarticautosubstitutionguessfactorfactorbypolydivfactorbygroupingwriteaspolyswitchsideschangesignsaddeqnsubeqntransfer1transfer2muleqndiveqnsquareeqncancelfactoralltolefttrueeqnpseudosquarepseudosquare2pseudosquare3spliteqncompletethesquaresqrteqncrossmultiplynegativediscriminantintroduceabssolvenumericallypowereqnrooteqnfunctioneqnspliteqn2selecteqnshowalleqnscollectmultiplesolnsrejecteqncheckrootsolvelineareliminatequadratictermcomputediscriminantshowcallingcubicvieterealcardancardan2reversesubtranslatevarpolyvaloppowereqn2powereqn3powereqn4powereqn5logbeqnlogeqnlneqncramersruleevaluatedeterminantvarslefteqnscollectalllineupvarsaddtwoeqnssubtwoeqnsdiveqnsaddmuleqnssubmuleqnsswapeqnsordereqnsdropeqnimpossibleeqnsmultabsdivabsdivabs2solvelinearforaddselectedeqnsubselectedeqndivselectedeqnaddmulselectedeqnsubmulselectedeqnswapselectedeqnsolveselectedeqnaddselectedrowsubselectedrowdivselectedrowaddmulselectedrowsubmulselectedrowswapselectedrowmultbymatrixidentitysolveoneeqnscanceltermeqnsaddtermeqnssubtermsubstforvarmatrixformmultbyidentityswaprowsaddrowssubrowsdivrowsaddmulrowssubmulrowsmultiplymatricesdropzerocolumndropzerorowdropduplicaterowconvertmatrixeqndividebymatrixtwobytwoinverseexactmatrixinversedecimalmatrixinverseabsposabsposandassumeabsnegabslinearabslinearquomultiplyabsvalabsofproductabsoffractionfractionofabsabsevenpowerabspowerabssqrtabsrootcancelabs3cancelabsgcdabseqnabseqn2abslessthanabslelessthanabsleabsabseqntoineq1abseqntoineq2absineqtrueabsineqtrue2absineqtrue3absineqfalseabslessthannegabslenegabsleneg2abseqnnegabsgreaterthanabsgegreaterthanabsgeabsabsineqtruegabsineqfalsegabsgreaterthannegabsgenegabsgeneg2absineqtrue3gabsineqtrue2gintervaltoabs1intervaltoabs2absevenpowerrevabspowerrevreverselessthanaddeqn1subeqn1changesigns1changesignsandsense1mulineqmulineqsqdivineqnumericalineqevenpowerineq1evenpowerineq3squareineq1squareineq3lessthantolecombineintervalsexplicitdomainreversegreaterthanchangesignsandsense3changesigns1gevenpowerineq3gsquareineq3ggreaterthantogereverseleaddeqn2subeqn2changesigns2changesignsandsense2evenpowerineq2evenpowerineq4squareineq2squareineq4reversegechangesignsandsense4changesigns2gevenpowerineq2gevenpowerineq4gsquareineq4gsqrtineq11sqrtineq14sqrtineq12sqrtineq15sqrtinterval1sqrtinterval3sqrtinterval5powerineq11powerineq12sqrtineq13squaretrue1squarefalse1sqsqrtineq1sqrtineq21sqrtineq24sqrtineq22sqrtineq25sqrtinterval2sqrtinterval4sqrtinterval6powerineq21powerineq22sqrtineq23squaretrue2squarefalse2sqsqrtineq2recipineq11recipineq21recipineq31recipineq41recipinterval11recipinterval21recipinterval31recipinterval41recipinterval51recipinterval61recipineq12recipineq22recipineq32recipineq42recipinterval12recipinterval22recipinterval32recipinterval42recipinterval52recipinterval62oddrootineqrootineq11rootineq13rootineq12rootineq15rootinterval1powerineq14evenpowerineq14oddpowerineq13powerineq15powerineq16powerineq17powerrootineq1oddrootineq2rootineq21rootineq23rootineq22rootineq25rootinterval2powerineq24evenpowerineq24oddpowerineq23powerineq25powerineq26powerineq27powerrootineq2droppositive1posnum1mulineqsqrt1mulineqbysquare1mulineqsqrt2mulineqbysquare2normalizelinear1intervalsneg1intervalspos1droppositive2posnum2mulineqsqrt3mulineqbysquare3mulineqsqrt4mulineqbysquare4normalizelinear2intervalsneg2intervalspos2sqrtineq11gsqrtineq14gsqrtineq12gsqrtineq15gpowerineq11gsquareineq1gpowerineq12gsqrtineq13gsquaretrue1gsquarefalse1gsqsqrtineq1revsqrtineq21gsqrtineq24gsqrtineq22gsqrtineq25gpowerineq21gsquareineq2gpowerineq22gsqrtineq23gsquaretrue2gsquarefalse2gsqsqrtineq2revrecipineq11grecipineq21grecipineq31grecipineq41grecipineq12grecipineq22grecipineq32grecipineq42goddrootineqgrootineq11grootineq13grootineq12grootineq15gpowerineq14evengpowerineq14oddgpowerineq13gpowerineq15gpowerineq16gpowerineq17gpowerrootineq1revoddrootineq2grootineq21grootineq23grootineq22grootineq25gpowerineq24evengpowerineq24oddgpowerineq23gpowerineq25gpowerineq26gpowerineq27gpowerrootineq2revposnum1gmulineqsqrt1gmulineqbysquare1gmulineqsqrt2gmulineqbysquare2gnormalizelinear1gintervalsneg1gintervalspos1gposnum2gmulineqsqrt3gmulineqbysquare3gmulineqsqrt4gmulineqbysquare4gnormalizelinear2gintervalsneg2gintervalspos2gbinomialcoeftofactorialsdefnoffactorialevaluatefactorialevaluatebinomialcoefsigmatosumevaluatesigmatorationalfactorialrecursioncancelfactorial1cancelfactorial2cancelfactorial3cancelfactorial1bcancelfactorial2bcancelfactorial3bfactorcubeofsumfactorcubeofdiffactor4thofsumfactor4thofdiffactornthofsumfactornthofdiffactorquadraticwithdisplaysigmaconstantminusoutofsigmaconstantoutofsigmasigmasumsumofisumofisquaredsumofallpowersshowfirsttermsevaluatesigmatodecimalevalpuresigmatorationalevalpuresigmatodecimalsigmapolytelescopingsumshiftindexrenameindexvariableproductofsigmassplitofflasttermsumoficubedsumofitothefourthreversedifsigmareverseintsigmaconstantintosigmasumtodifofsums0sumtodifofsumsselectinductionvariablebasiscaseinductionstepuseinductionhypthereforeasdesiredabssinineqabscosineqcoslowerboundabsarctanineqlnineq1logineq1lnrightineq1lnleftineq1logrightineq1logleftineq1expineq1lnineq2logineq2lnrightineq2lnleftineq2logrightineq2logleftineq2expineq2lnineq1glogineq1glnrightineq1glnleftineq1glogrightineq1glogleftineq1gexpineq1glnineq2glogineq2glnrightineq2glnleftineq2glogrightineq2glogleftineq2gexpineq2gpolylessexplogratboundlogofpowerof10logofonelogoftenlogtolnintroduceloginexponentfactornumberinlogfactoroutbase10loginexponent2logreciplogbreciplogofpowerlogofproductlogofreciprocallogofquotientcollectlogscollectlogs2attractlogslogsqrtlogrootfactoroutbaselogofpowerreversecomputeloglnofelnofonelnofpowerofeintroducelninexponentlninexponent2lnofpowerlnofproductlnofreciprocallnofquotientcollectlnscollectlns2attractlnslnsqrtlnrootlnofpowerreversecomputelnlnrecipsinsumrevsindifrevcossumrevcosdifrevtanhalf1revtanhalf2revcothalf1revcothalf2revtansumrevtandifrevcotsumrevcotdifrevreversesinsqrectangulartopolarpolartorectangularabsofpolarminustopolarcomplexrootminuscomplexexptonumexplicitparamsfactorbydemoivrelogbinexponent2logbofblogbofpowerofblogbofproductlogbofreciprocallogbofquotientlogbofonefactorlogbaselogpowerofbofblogbofpowercollectlogbcollectlogb2attractlogb2logbtolnslogbtologschangebaselogbtologlogbtolnlntologintroducelogbinexponentzeroesofsinonesofcoszeroesoftanmod360mod2piradtodegdegtoradcombine3045tanrulecottotancottosincossecrulecscruletanrule2cotrule2cottocscseccscrule2secrule2tanreciptanrecip2cotrecipcotrecip2secrecipcscrecipsintocsccostosectantodenomsinsquare1sinsquare2sinsquare3sinsqtocossqcossqtosinsqsecsqminustansqtansquare1tansquare2secsqtotansqtansqtosecsqsinoddpowercosoddpowertanoddpowersecoddpowermakesinpowermakecospowercscsqminuscotsqcotsquare1cotsquare2cscsqtocotsqcotsqtocscsqcsccomplementcotcomplementcotoddpowercscoddpowersinsumsindifcossumcosdiftansumtandifcotsumcotdifdoublecos5doublecos6doubletandoublecotreversedoublesinreversedoublesin2reversedoublecos1reversedoublecos2reversedoublecos3decrementtrigargquerytrigargtriplesintriplecosexpandsinexpandcoschecknumericallysolvesin30solvesin330solvesin60solvesin300solvecos30solvecos150solvecos60solvecos120solvetan30solvetan330solvetan60solvetan120solvesin45solvesin315solvecos45solvecos135solvetan45solvetan135solvesin0solvesin90solvesin270solvecos90solvecos0solvecos180solvetan0solvecot90solvesinsolvesin2solvecossolvetanevalarcsinevalarccosevalarctanevalarccotevalarcsecevalarccscarcsinoddarccosoddarctanoddperiodicformrejectimpossiblesinrejectimpossiblecostanasintanacostanatansinasinsinacossinatancosasincosacoscosatansecasinsecacossecatanatantanasinsinacoscosatantan2sumofarcsinsumofarctansintocoscostosintantocotseccomplementsintocos2costosin2tantocot2cottotan2sectocsc2csctosec2sintocosdegcostosindegtantocotdegcotcomplementdegseccomplementdegcsccomplementdegsintocos2degcostosin2degtantocot2degcottotan2degsectocsc2degcsctosec2degadddegreesmultdegreesdivdegreescosevencotoddsecevencscoddsinsqevencossqeventansqevencotsqevensecsqevencscsqevensinperiodiccosperiodictanperiodicsecperiodiccscperiodiccotperiodicsinsqperiodiccossqperiodicsecsqperiodiccscsqperiodicsinhalfperiod1sinhalfperiod2coshalfperiod1coshalfperiod2sinsqhalfcossqhalfsinsqhalf2cossqhalf2sincossametanhalf1tanhalf2cothalf1cothalf2sinhalf1sinhalf2coshalf1coshalf2twicehalfsincosopcossinsumofsindifofsinsumofcosdifofcostrigdoublesubtestlimitlimsumlimdiflimconstlimidentlimlinearlimminuslimprodlimpowerlimexponent2limexponentlimsqrtlimoddrootlimevenrootlimpolylimabslimreciplimquotientfactorunderlimitlimrationalfunctionquotientofpowersrationalizefractionpulloutnonzerolimitfactoroutconstantmultnumdenomdivnumdenom2divnumdenomlimapartandfactorlimsqrt1limsqrt2limroot1limroot2limsqrtdenom1limsqrtdenom2limrootdenom1limrootdenom2lhopitalderivopisolatelnisolatelnpowernegexptodenomtrigtodenomcreatecompoundfractionlimsin1limtan1limcos1limcos2defnofelimln1limexp1limexp2limpowertimeslnabslimosccoslimoscsinlimosctanliminfcosliminfsinliminftanlimsinh1limtanh1limcosh1limcosh2limlogisloglimlimcontinuouschangelimitvariablelimvaloplimexptologlimundefinedlimlogsqueezetheoremrationalizesumlimleadingtermslimleadingtermsumleadingtermundefinedpartlimthruexplimthruloglimtlntlimtpowerlntlimtlntpowerlimtpowerlntpowerlimlntovertlimlntpowerovertlimlntovertpowerlimlntpowerovertpowerlimtoverlntlimtoverlntpowerlimtpoweroverlntlimtpoweroverlntpowerinflimpower1inflimpower2limexpinflimexpinf2limlnrightlimsqrtinflimrootinflimarctaninflimarccotinflimarccotinf2limtanhinflimthrusinlimthrucosinvertlimliminverseevenpowerliminverseoddpowerlim1inverserightlim1inverseleftlimquoinfinitelimlnsinglimtansinglimcotsinglimsecsinglimcscsinglimprod2leftlimprod2rightinfinityovernonzerononzerooverinfinityinfinitytimesinfinityaddinfinityinfinityplusinfinitytoinfinity1toinfinity0tominusinfinity1tominusinfinity0powerofinfinityinfinityminusinfinityzerodenomzerodenom2zerodenom3infinityoverzeroinfinityoverzero2infinityoverzero3infinityoverzerosqinfinityoverzero2nzerosqdenomzerosqdenom2zero2ndenomzero2ndenom2lninfinitysqrtinfinityrootinfinityataninfinityacotinfinityacotminusinfinityasecinfinityacscinfinitytriginfinitycoshinfinitysinhinfinitytanhinfinitylnzerodifconstantdifidentitydifsumdifminusdiflineardifpowerdifpolyprimeruledefnofderivativediflinear2difproductdifrecipdifquotientdifsqrtdifrootsdifinversepowerdifabsdifsindifcosdiftandifsecdifcotdifcscdifexpdifatoxdifexponentialdiflndiflnabslogdifdifexp2difatox2difln2diflnabs2diflncosdiflnsindifatandifasindifacosdifacotdifasecdifacscdifatan2difasin2difacos2difacot2difasec2difacsc2difpower2difsqrt2difsin2difcos2diftan2difsec2difcot2difcsc2difabs2chainruleminmaxexperimentaddcriticalpointsaddendpointsaddundefinedpointsaddlimitsrejectpointtabulatetabulateexactselectmaxselectminssolveopeliminateparameterfunctionisconstantdifeqneliminatederivativeratsimpopfactoropmultiplyoutandsimpcancelgcdunivariatepolymonicpolybacktosqrtsbacktorootseliminatesqrtsdifdifdifdifnsecondderivhighderivint1intconstintidentintlinearintminusintsumintlinearityintpowerintinversepowerintpolyintrecipintrecip2multiplyoutintegrandexpandintegrandintabsintsinintcosinttanintcotintsecintcscintsecsqintcscsqinttansqintcotsqinttosecinttocscintsin2intcos2inttan2intcot2intsec2intcsc2intsecsq2intcscsq2inttansq2intcotsq2inttosec2inttocsc2intexp1intexp2intexp3intexp4intexp5intexp6intexponentialintlninttoerfautochoosesubstitutiondifsubstitutionshowcallingproblemtrysubstitutionchangeintegrationvariableautointsubintsubwithdisplayautointegratebypartsequatetoproblemtransferintegralsimpleintfundamentaltheoremfundamentaltheorem2evalbarevalbarlnswitchlimitsadditivityinsertpointbreakabsintpureintegratenumericallyintegrateemptyintervalintegraltolimitintegraltolimit2integraltolimit3integraltolimit4intdivtest1intdivtest2oddintegrandevenintegrandtrigsubsintrigsubtantrigsubsectrigsubsinhtrigsubcoshtrigsubtanhyourtrigsubintsinsqintcossqintsubcosintsubsinintsubtanintsubcotintsubsecintsubcsctantosecinintcottocscinintintsecpowerintcscpowerweierstrasstrigrationalizedenom1trigrationalizedenom4trigrationalizedenom2trigrationalizedenom5trigrationalizedenom3trigrationalizedenom6squarefreefactorspartialfractionsopcompletethesquare1intrecip3inttoataninttoacothinttolnratio1inttoatanhinttolnratio2inttoasininttolnratio3inttoacosintasinintacosintatanintacotintacscplusintacscminusintasecplusintasecminusabsorbconstantintsinhintcoshinttanhintcothintcschintsechxoveroneminusxseriesxoveroneminusxseries2xoveroneminusxseries3xoveroneplusxseriesxoveroneplusxseries2xoveroneplusxseries3xoveroneminusxseriesrevxoveroneminusxseries2revxoveroneminusxseries3revxoveroneplusxseriesrevxoveroneplusxseries2revxoveroneplusxseries3revoneoveroneminusxkseriesoneoveroneminusxkseries2oneoveroneminusxkseries3xmoveroneminusxkseriesxmoveroneminusxkseries2xmoveroneminusxkseries3oneoveroneminusxkseriesrevoneoveroneminusxkseries2revoneoveroneminusxkseries3revxmoveroneminusxkseriesrevxmoveroneminusxkseries2revxmoveroneminusxkseries3revoneoveroneplusxkseriesoneoveroneplusxkseries2oneoveroneplusxkseries3xmoveroneplusxkseriesxmoveroneplusxkseries2xmoveroneplusxkseries3oneoveroneplusxkseriesrevoneoveroneplusxkseries2revoneoveroneplusxkseries3revxmoveroneplusxkseriesrevxmoveroneplusxkseries2revxmoveroneplusxkseries3revgeometricseriesfromkgeometricseriesfromk2geometricseriesfromk3geometricseriesminusfromkgeometricseriesminusfromk2geometricseriesminusfromk3geometricseriesfromkrevgeometricseriesfromk2revgeometricseriesfromk3revgeometricseriesminusfromkrevgeometricseriesminusfromk2revgeometricseriesminusfromk3revlnserieslnseries2lnseries3lnseriesminuslnseriesminus2lnseriesminus3lnseriesrevlnseries2revlnseries3revlnseriesminusrevlnseriesminus2revsinseriessinseries2sinseries3cosseriescosseries2cosseries3sinseriesrevsinseries2revsinseries3revcosseriesrevcosseries2revcosseries3revnegexpseriesnegexpseries2negexpseries3negexpseriesrevnegexpseries2revnegexpseries3revatanseriesatanseries2atanseries3atanseriesrevatanseries2revatanseries3revbinomialseriesbinomialseries2binomialseries3binomialseriesrevbinomialseries2revbinomialseries3revcotseriescotseries2cotseries3bernoulliseriesbernoulliseries2bernoulliseries3secseriessecseries2secseries3zetaserieszetaseries2zetaseries3alternatingharmonicseriesldots0ldots1ldots2ldotstosigmashowanothertermshowmoretermsshowevaluatedtermsshowfactorialsintermsshowdevaluatedtermsshowundevaluatedtermstelescopingseriesmultiplyseriesmultiplypowerseriesdivideseriesbypolydividepolybyseriesdividepowerseriessquareseriessquarepowerseriespowerofseriesaddseriessubseriesseriesfirsttermsseriesmoretermsseriesaddindexseriessubindexseriessumreversedifseriesreverseintseriesevalfirsttermsseriesintdifseriesintdifdefseriesdifinteliminatecofiseriesevenandoddfinishdivergencetestfinishintegraltestfinishratiotestfinishroottestfinishcomparisontest1finishcomparisontest2finishlimitcomparisontestfinishcondensationteststatefinalbound1statefinalbound2zeta2addtozetazetatobernoullicomplexlntopolarformcomplexlnlnofilnofminusonelnofnegativecomplexcoscomplexsincomplexsqrtcomplexrootcomplexexponentialcomplexexponential2etotheipietotheminusipietothei2npietothecoterminalisinhicoshcoshisinhiitanhicothtanhicothicosisincosminusisincomplexcosrevcomplexsinrevcomplexcosrev2complexsinrev2coshdefcoshdefrev2sinhdefsinhdefrev2coshdefrevsinhdefrevcoshevensinhoddcoshplussinhcoshminussinhcosh0sinh0exptohyper1exptohyper2sinhsqplus1coshsqminus1coshsqminussinhsqcoshsqtosinhsqsinhsqtocoshsqoneminustanhsqoneminussechsqtanhdeftanhdefrevcothdefcothdefrevsechdefsechdefrevcschdefcschdefrevtanhsqplussechsqtanhsqtosechsqsechsqtotanhsqsinhsumcoshsumdoublesinhdoublecoshtanhlnasinhtolnacoshtolnatanhtolnsinhasinhcoshacoshtanhatanhcothacothsechasechcschacschdifsinhdifcoshdiftanhdifcothdifsechdifcschdiflnsinhdiflncoshdifasinhdifacoshdifatanhdifacothdifasechdifacschsgpossgnegsgzerosgoddsgodd2sgabs1sgabs2abssgsgevenpowersgoddpowersgrecipdifsgintsgsgintsgassumepossgassumenegsgprod1sgprod2sgfract1sgfract2sgpowersgrecip2sgrecip3sgtoabsabstimessgdifj0difj1difjndify0dify1difyndifi0difi1difindifk0difk1difknapplyfunction0applyfunction1applyfunction2applyfunction3applyfunction4applyfunction5applyfunction6applyfunction7applyfunction8applyfunction9applyfunction10applyfunction11applyfunction12applyfunction13applyfunction14applyfunction15expandmultiplyifcancelsordersimplefactorslimsum1limsum2limsum3intsqrtdoublecos4eliminatesinsqeliminatecossqeliminatetansqeliminatesecsqmaximalsubmultiplycoefspreparetocancelknownroottransfereqntransferstrictineqtransferineqtransfercontentgcdfractionalsubstitutiongcdsubstitutiondistribandcanceldifofpowerslimsum4factorhelperfactorandcancelfactoronesideunitelnsunitelogsunitelns2unitelogs2trigsuminfractioncleanupexponentsaccess_optableget_brothercousinsQ�d�w����0//02r<tFoPsZpdu�t�r�o�s�u�p�p�t�r�o�s�u	
 
(08@HPX`�������  !("0#8$@%HP&X'`hp
x�(�)�*�	�+�,�-�.�/�0�1�2�3�4�56789 :(;0<8=@>H?P@XA`BhCpDxE�F�G�H�IJKLM N(O0P8Q@RHSPTXU`VhWpXxY�Z�[�\�]�^�_�`�a�b�c�d�e�f�ghijk l(m0n8o�n�p�q�M�M�=�P�r�s�t�u�vwxyz {(|0}8~@HAP�X>`�h�p�x����������A���������������� �(�0�8�@�H�P�X������������������������������������� �(�0�8�@�H�P�X�`�h�p������������������������������������� �(�0�8�@�H�P�X�`�h�p�x���������	�	�	�	� 	�(	�0	�8	�@	�H	�P	�X	�`	�h	�p	�x	��	��	��	��	��	��	��	��	��	��	��	��	��	��	��	��	�
�
�
�
� 
�(
�0
�8
�@
�H
P
X
`
h
p
x
�
�
�
�
	�

�
�
�

�
�
�
�
�
�
�
�
 (08@HP X!`"h#p$x%�&�����'�(�)�*�+�	,�)�-�(�.�/�r�&�0�1�2�3���4�5�6
7
8
9
: 
;(
<0
=8
>@
H
?P
	X

`
@�
A�
B�
C�
D�
E�
F�
G�
4HI�J�K�L�M�N�O�P�Q�R�S�T�U��VWXYZ�[�\�]�^�_�`�a�b�c�d�e�f�g�h�i�jKk@l m(n0P8o@V�p�q�r�s�t�u�v�w�x�y�z�{�|�V�}y~� ������������������������������������� �(�0�8�@�H�P�X�`�h�p�x����������������������������������� �(�0�8�@�H�P�X�`�h�p�x������������������� �(�0�8�@�H�P�X�`�h�p����������������� �(�0�8�@�H�P�X�`�h��������������������������������� �(�0�8�@�H������������������ (0	8
@HP
X`�������������  !("0#8�@$H%�&�'�(�)�*�+�,���-�./012 3(40586@7H8P9�:�;�<�=�>�?�@�A�B�C�DEFGH�I�J�K�LMNOP Q(R0S8T@UHVPWXX�Y�Z�[�\�]�^�_�`�a�b�c�defgh i(j0k8l�m�n�o�p�q�r�s�t�uvw x(	0y8z@{H|P}X~`h�p�x������������������� �(z0�8�@�H�P{X�`�h�p�x������������������������������� ��������������� � � � �  �( �0 �� �� �� �� �� �� �� �!�!�!�!� !�(!�0!��!��!��!��!��!��!��!��!��!�"�"�"�"� "�("�0"�8"�@"�H"�P"��"��"��"��"��"��"��"��"��"��"��"��"��"��"��"��"�#�#�#�#� #�(#��#��#��#��#��#��#��#��#��#��#��#��#��#��#��#�$�$�$�$� $�($�0$�8$�@$�H$P$X$`$�$�$�$�$�$�$�$�$	�$
�$�$%
%%% %(%0%8%@%H%P%X%�`%h%p%x%�%�%�%�%�%�%�%��% �%!&"&#&$&% &&(&'0&(8&)@&*H&+P&,X&-`&.h&/p&
�&0�&1�&2�&3�&4�&5�&6�&7�&7'8'9':'; '<('=0'>8'?@'@H'AP'B�'C�'D�'E�'F�'G�'H�'I�'J�'K�'L�'M�'N�'O�'P�'Q�'R(S(T(U(V (W((X0(Y8(Z@([�(\�(]�(^�(_�(`�(a�(b�(c)d)e)f)g )h()i0)j8)k@)lH)mP)nX)o`)p�)q�)r�)s�)t�)u�)v*)*** *(*0*8*@*-H*(P*.X*/`*	h*wp*�*x�*y�*z�*{�*|�*}�*~�*�*��*��*��*�+�+�+�+� +�(+��+��+��+��+��+��+��+��+�,�,�,�,� ,�(,�0,�8,�@,�H,�P,�X,�`,�h,�p,�x,��,��,��,��,��,��,��,��,��,��,��,��,��,��,��,��,�-�-��-��-��-��-Y�-��-X�-��-��-��-��-��-�.�.�.�.� .�(.�0.�8.�@.�H.�P.�X.�`.�h.�p.��.��.��.��.��.��.��.��.��.��.��.��.�/�/�/�/� /�(/�0/�8/�@/�H/�P/�X/�`/�h/��/��/��/��/��/��/��/��/��/��/��/��/��/��/�0l0�0�0� 0�(0�00�80�@0�H0��0��0��0�0�0�0�0�0�0�0�0�0	�0
�0�0�0
1111 1(10181@1H1P1X1`1�1�1�1�1�1�1�1 �1!2"2#2$2% 2&(2'02(82)@2t�2*�2+�2,�2-�2.�2/�20�21�22�23�24�25�26�27�28393:3;3<�3=�3>�3?�3@�3A�3)�3B�3C�3D�3E�3F�3G�3H�3I�3J�3K4L4M4N4O 4P(4Q04R84S@4TH4UP4VX4W�4X�4Y�4Z�4[�4\�4]�4^�4_�4`�4a�4b�4E�4c�4d�4e�4F5f5g5h5i 5j(5k05l85m@5nH5oP5pX5q�5r�5s�5t�5u�5v�5w�5x�5y�5z�5{�5|�5}6~66�6� 6�(6�06�86�@6�H6�P6�X6��6��6��6��6��6��6��6��6��6��6��6��6��6�7�7�7�7� 7�(7�07�87��7��7��7��7��7��7��7��7��7��7��7��7��7��7��7�8�8�8�8� 8�(8��8��8��8��8��8��8��8��8��8��8��8��8�9�9�9�9� 9�(9�09�89�@9�H9�P9�X9�`9��9��9��9��9��9��9��9��9��9��9��9�9:�:�:�:� :�(:�0:�8:�@:�H:�P:#X:�`:@h:�p:��:#�:@�:�;�;#;�;��;@�;��;t�;��;��;��;��;��;�;��;��;��;��;�<�<�<�<� <�(<#0<�<��<��<��<��<��<��<��<��<��<��<��<��<��<��<��<�=�=�=�=� =(=0=8=@=H=P=X=�=�=	�=
�=�=�=
�=�=�=�=�=�=>>>> >(>0>8>@>�>�>�>�>#�> �>!�>"�>�>#�>$�>%?&?'?(?) ?#(?#0?$8?*�?+�?,@-@.@/@0 @1(@20@38@4@@5�@6�@7�@8�@9�@:�@;A<A=�A>�A?�A@�AA�AB�AC�AD�A#�A*BEBFBGBH BI(BJ0BK8BL@BMHBNPBOXBP`BQ�BR�BS�BT�BU�BV�BWCSCnC�CX C(CY0CZ8C[@C�HC\PC]XC^`C_hC`�CZ�Ca�Cb�Cc�C#DdDeDfDg Dh(Di0Dj8Dk�D@�D��Dt�D��D��D��D��D��D#�D@�D#�D*�DlEmEnEoEp Eq(Er�Es�Et�Eu�Ev�Ew�Ex�Ey�Ez�E{�E|�E}�E~FF�F�F� F�(F�0F�8F�@F�HF�PF�XF��F��F��F��F��F��F��F��F��F��F��F��F�G�G�G�G� G�(G�0G�8G�@G�HG�PG�XG��G��G��G��G��G��G��G��G��G��G��G��G�H�H�H�H� H�(H�0H�8H�@H�HH�PH�XH��H��H��H��H��H��H��H��H��H��H��H��H�I�I�I�I� I�(I�0I�8I�@I�HI�PI�XI��I��I��I��I��I��I��I��I��I��I��I��I�J�J�J�J� J�(J�0J�8J�@J�HJ�PJ�XJ�`J�hJ�pJ�xJ��J��J��J��J��J��J��J��J��J��J�K�K�K�K� K�(K�0K�8K�@KHKPK�K�K�K�K�K��K�K�K	�K
�K�K�K
�K�K�K�KLLLL L(L0L8L@LHLPLXL`LhLpL xL!�L"�L#�L$�L%�L&�L'M(M)M*M+ M,(M-0M.8M/@M0HM1PM2XM3`M4hM5pM6xM��M7�M8�M9�M:�M;�M<�M=�M>�M?�M@�MA�MB�MC�MDNENFNGNH NI(NJ0NK8NL@NMHNNPNOXNP`NQhNR�NS�NT�NU�NV�NW�NX�NYOZO[O\O] O^(O_0O`8Oa@ObHOcPOdXOe`OfhOgpOhxOi�Oj�Ok�Ol�Om�On�Oo�Op�Oq�OrPsPtPuPv Pw(Px0Py8Pz�P{�P|�P}�P~�P�P�Q�Q�Q�Q� Q�(Q�0Q�8Q�@Q�HQ�PQ�XQ�`Q�hQ�pQ�xQ��Q��Q��Q��Q��Q��Q��Q��Q��Q�R�R�R�R� R�(R��R��R��R��R��R��R�S�S�S�S� S�(S�0S�8S�@S�HS�PS�XS�`S�hS�pS�xS��S��S��S��S��S��S��S��S��S��S��S��S��S��S��S�T�T�T�T� T�(T�0T�8T�@T�HT�PT�XT�`T�hT��T��T��T��T��T��T�UFU?U=U= Un(Ur0U�8U�@UeHUFPUGXUL`UKhUpUMxUF�U��U�U��U��U��U��U�U�U?�U��U0�U��U��U�V�V�V�V� V�(V	


0

*
1
�68
�?
�bF
_6T
Ta[
�>b
Ci
�Mp
`w
#[~
EB�
�D�

6�
�/�
�(
�4
�@
�L
�N^
	j
�L�
�
l<�
7�
N�
�
�W�
m:�
O9
-
1M

hZ
i%
�a
�%
x,+
�	1
yc7
gQ=
cC
NSI
�+O
�bU
zJ[
a
7*g
�.m
�4s
�y
&
�1�
�
��
i[�
�J�
L�
cU�
�R�
�-�
�$�
�$�
�#�
b�
@1�
��
!�
 !�
F$�
R$�
��
��
�
�	
-!
:!
^$
j$!
�'
�-
�3
�9
<?
tE
L2K
�/Q
�ZW
ZJ]
WYc
aYi
kYo
uYu
�{
�:�
��
�a�
�
�
'�
Q�
e�
�R�
�-�
Y�
�\�
V5�
��
�@�
P�
X �
�
��
C7�
d�
9�
]B
�
|
�*
�,
`#
�)
1^/
�\5
]\;
lA
�YG
�[M
WPS
<Y
\_
(e
_k
�q
�@w
QB}
)�
��
�T�
��
�0�
9�
hF�
�U�
�
��
[<�
��
O�
�,�
�`�
A#�
H�
�X�
C@�
?�
PM�
�
S
�


�C
*5
�S
$'%
1'+
>'1
K'7
X'=
KFC
�II
�5O
�@U
 [
=ba
Yg
;Cm
=+s
C&y
�
� �
��
i�
�&�
l�
��
R
�
��
��
�.�
j\�
�`�
3�
|X�
�Y�
�T�
�
*�3
WbX
�O}
�D�
�K�
�C�
�X
�6
�S[
�7�
YL�
{#�
r�
�K
�X7
�\
`	�
�a�
N@�
r�
�	
r:	
�^	
!�	
%�	
�J�	
�B�	
�

�1;

l'_

QL�

IL�

AL�

h4�

�^
�57
�\
��
��
��
r�
b
>:
>_
�=�
�=�
�=�
�=�
�=

�==

�=b

�=�

 /�

�-�

�-�

,
M*@
G*e
vF�
ME�
GE�
�-�
+,
%,C
@h
c�
{�
r�
�]�
�=!
|=F
:k
:�
�
�<�
�b�
�]$
:=I
BWn
��
5L�
�6�
�E
~E'
�'L
%(q
�
��
vD�
AJ
I
(
�@L
l&p
�>�
�C�
�[�
Ja
�$%
IJ
�o
�d�
K�
��
F>
�R(
�.M
i.r
vP�
3�
�
�
tC
uR+
c7P
3u
j9�
4H�
��
K	
=.
�"S
�Bx
�%�
��
X�
�Z
�1
;\V
5_{
�6�
�:�
� �
^:
D`4
�<Y
z"~
�5�
�5�
��
�
�Q7
h
\
�6�
��
��

Y�
(
h1:
�_
�
%%�
_X�
�
nX
�,=
b
�#�
%O�
��
�B�
l!
@

e
��
�5�
�K�
�Z�
<>
�C
�#h
��
�M�
�0�
�P�
�0!
|LF
Rk
�Y�
	N�
$1�
�:�
� ! 
FVE 
T,i 
� 
�B� 
�� 
�� 
�!
?A!
`=e!
UF�!
�>�!
� �!
�3�!
;"
+="
�Va"
}[�"
�!�"
��"
>�"
%#
	K9#
Y[]#
)W�#
�U�#
��#
a�#
�$
5$
�NY$
O}$
�!�$
�_�$
+N�$
�0
%
�J1%
4%U%
�Uy%
�b�%
�(�%
m;�%
]	&
F-&
\/Q&
ubu&
�Q�&
�&
�b�&
�'
U)'
�YM'
MIq'
/�'
/�'
/�'
Y0(
$2%(
2I(
6m(
F\�(
��(
$>�(
RD�(
AD!)
�[E)
�
i)
�
�)
#�)
�"�)
D�)
W*
qHA*
�e*
��*
�#�*
�#�*
�F�*
�+
%H=+
�Ha+
[�+
[�+
�)�+
l�+
�T,
�_9,
�0],
s0�,
N�,
��,
��,
�O-
�+5-
�+Y-
�}-
�Q�-
WR�-
�]�-
�
.
�F1.
�;U.
�y.
��.
@�.
bd�.
Wd	/
�/-/
#_Q/
�u/
��/
�:�/
�6�/
�0
�)0
�\M0
�q0
�I�0
 6�0
�P�0
: 1
t/%1
�3I1
m1
�8�1
�Y�1
�U�1
&"�1
!2
�E2
D0i2
�1�2
(�2
�;�2
�A�2
3
�TA3
"e3
�3
7Z�3
"=�3

=�3
�N4
�=4
aLa4
.]�4
�2�4
��4
o3�4
�R5
�R95
�]5
L3�5
33�5
>�5
3X�5
�'6
�56
i8Y6
V}6

�6
�)�6
u)�6
�)
7
17
U7
	-y7
^�7
\-�7
+O�7
�	8
�I-8
�HQ8
�Vu8
�V�8
!c�8
oO�8
^O9
'Z)9
�N9
?s9
�2�9
f�9
1�9
;7:
"^,:
,Q:
�'v:
r!�:
�	�:

�:
la
;
�/;
HKT;
{Ny;
hM�;
�^�;
�>�;
D<
BM1<
�&V<
�Xz<
L�<
&d�<
��<
�7=
�+3=
V+X=
�+}=
�@�=
l+�=
'+�=
J>
+*6>
�[>
�,�>
>�>
��>
�5�>
?
�99?
�[^?
�?
�:�?
��?
~�?
oN@
�,<@
�a@
�"�@
u&�@
Y)�@
B%�@
�NA
^?A
�]dA
$L�A
L�A
L�A
]�A
�B
�BB
 gB
�X�B
��B
�B
:�B
5 C
#EC
iC
�^�C
c^�C
�3�C
g5�C
�	!D
BFD
�kD
��D
�9�D
��D
u9�D
1$E
JJIE
�5nE
e�E
<5�E
oR�E
�F
�&F
�KF
�oF
��F
{�F
s�F
6G
>,%G
�9JG
�oG
�?�G
��G
�Q�G
aH
`1(H
lMH
�/rH
_5�H
^#�H
D�H
cDI
�C+I
�`PI
UuI
jc�I
m�I
A�I
�"	J
]-J
&QJ
C4uJ
�
�J
W&�J
)�J
qJ	K
�%-K
�DQK
|QuK
�\�K
�\�K
�]�K
�L
&)L
2\ML
�	qL
-�L
gH�L
Ac�L
�]M
�P%M
8JM
�oM
�:�M
�a�M
��M
�IN
")&N
�4KN
&RpN
��N
��N
�K�N
�
O
�G(O
MMO
ArO
k�O
�`�O

+�O
\P
+P
�PP
�CuP
a�P
��P
�P
9#Q
�A*Q
aGNQ
qcrQ
��Q
��Q
g�Q
�ER
I&R
	JR
*?nR
^Q�R
�B�R
�$�R
��R
+"S
SFS
KjS
2�S
{.�S
<�S
�
�S
�DT
xABT
4YfT
�c�T
5$�T
E^�T
�0�T
}U
 F>U
ZbU
�W�U
,Q�U
e�U
"�U
%QV
�:V
L(^V
$�V
�J�V
f
�V
�P�V
;W
�*6W
*ZW
�`~W
�4�W
+(�W
�A�W
�'X
�2X
-VX
6WzX
�2�X
�-�X
Mc�X
�?
Y
..Y
�8RY
�#vY
V`�Y
r`�Y
0�Y
�FZ
.;*Z
�NNZ
,:rZ
�@�Z
jP�Z
0�Z
(I[
m^&[
BJ[
-n[
m�[
�[
$G�[
G�[
f2"\
�VF\
�_j\
�+�\
�+�\
�^�\
�^�\
HN]
�B]
�Pf]
�<�]
&&�]
1-�]
��]
�7^
@>^
v<b^
t�^
(X�^
p2�^
�V�^
;_
6E:_
� ^_
rU�_
j7�_
�_
PK�_
�`
IP6`
�Z`
�
~`
�O�`
.#�`
-A�`
ma
�S2a
Q:Va
D:za
�b�a
O	�a
�
�a
u
b
�3b
�.Xb
'}b
<K�b
MZ�b
�P�b
66c
�(6c
�Zc
mA~c

7�c
w5�c
I�c
8d
�a2d
�dVd
zd
P%�d
�H�d
�'�d
�%
e
PQ.e
�:Re
Wve
�>�e
|F�e
�<�e
�
f
�
*f
�ENf
rf
��f
�<�f
(7�f
�"g
�"&g
�HJg
�_ng
9�g
9�g
u �g
�>�g
9"h
6.Fh
} jh
�%�h
�^�h
iW�h
^�h
�Bi
__Bi
Q_fi
�_�i
"�i
�i
��i
mEj
dE>j
pbj
a�j
��j
-
�j
2�j
 ak
.S;k
�S_k
Cd�k
�c�k
)�k
�a�k
�l
vI7l
?)[l
1Kl
/�l
�b�l
(�l
$m
�3m
�<Wm
�"{m
_�m
� �m
�%�m
An
�J/n
�Tn
Vyn
��n
	D�n
B�n
{a
o
�2o
�)Wo
O|o
�K�o
�o
�
�o
Tp
K5p
�9Zp
�Op
��p
�>�p
�)�p
�q
�6q
�"Zq
K~q
1�q
p1�q
5/�q
&/r
�*2r
�Vr
�zr
�`�r
�M�r
f�r
�V
s
�).s
�RRs
�vs
�1�s
d�s
��s
P>t
R*t
CNt
t>rt
Ba�t
�*�t
<	�t
�u
�&&u
UTJu
�Nnu
7�u
bV�u
�F�u
��u
S!"v
�\Fv
	jv
d)�v
��v
iG�v
�M�v
Q\w
�UBw
(\fw
5)�w
�H�w
�8�w
U"�w
	x
3
>x
�bx
(�x

�x
�(�x
�+�x
�"y
<>y
Obcy
E�y
��y
t'�y
N�y
%z
(FAz
+fz
3(�z
�]�z
A�z
��z
eA{
8D{
�
i{
�4�{
�{
	�{
z2�{
�"|
JTG|
'l|
�7�|
��|
�M�|
v}
�?%}
J}
�o}
�B�}
3�}
�Z�}
<H~
w
(~
�M~
N.r~
�T�~
�:�~
�J�~
P<
�(+
�P
B.u
4�
�L�
3�
�a	�
�.�
�?S�
�x�
�.��
aa€
�,�
�O�
T11�
�JV�
�{�
���
�QÁ
`�
��
�/�
�S�
w*w�
e*��
S*��
�/�
�
�A+�
�/O�
�Os�
�1��
�1��
�1߃
�1�
e3'�
;;K�
�	o�
�
��
{>��
aۄ
�>��
a@#�
]G�
sSk�
�D��
�W��
�Wׅ
���
�[!�
hSF�
]Sk�
@=��
�.��
�؆
%M��
�/ �
 :D�
~h�
y��
�?��
�Tև
�T��
HH�
'YC�
�/h�
E��
E��
EԈ
#��
� �
�@�
�Id�
Z7��
�Z��
_ZЉ
j�
�W�
{<�
S`�
���

!��
:&̊
�_�

O�
�c8�
�N\�
i	��
�c��
0ʋ
n
�
�.�
*9�
?^�
?��
���
�<͌
�;�
h@�
ET<�
�@a�
�Z��
R��
.9΍
!�
]�
?[:�
�P^�
�U��
t7��
�Zʎ
�M�
�
�6�
�HZ�
&~�
�>��
�cƏ
�c�
�7�
O2�
�*V�
�Mz�
@��
#Đ
k/�
1�
�E3�
�7X�
�`}�
"$��
x6ő
�Q�
0B�
�K3�
H]X�
�!}�
02��
�ǒ
�	�
��
,6�
�6[�
-U��
_��
Rɓ
#
�
�^�
�35�
�Y�
*}�
�V��
�Ŕ
@I�
�
�
�H1�
�U�
�Wy�
�H��
.C��
}]�
9	�
�W-�
Q�
bCu�
�Y��
��
�&�
�0�
�)�
<NM�
�q�
k��
���
�ݗ
�,�
�Z%�
�I�
4m�
�a��
M��
�E٘
�E��
~!�
$3E�
bi�
�M��
���
�ؙ
K)��
�3"�
�WG�
}Kl�
n,��
)��
3bۚ
�c�
�9%�
9VJ�
�No�
�(��
%	��
!?ޛ
�A�
�(�
�
M�
�r�
cI��
b��
��
A�
}+�
�
P�
�Tu�
ZI��
q	��
�(�
�M	�
�7.�
IYS�
_x�
E-��
�^ž
�9�
�;
�
� .�
2R�
�v�
n]��
S(��
��
�0�
+*�
{N�
�r�
3T��
�S��
SEޠ
Zc�
�D&�
�]J�

n�
lD��
���
�ۡ
_��
#�
�FG�
�Fk�
�\��
���
�#ע
Z��
=�
�XD�
i�
�!��
���
�;أ
�	��
�J"�
�&F�
�$j�
�!��
���
~_֤
m_��
�$�
]B�
�Cf�
% ��
SA��
Vҥ
�C��
)�
k?�
~Cd�
�3��
���
TӦ
�"��
md�
y	B�
=g�
!B��
���
�֧
�b��
� �
4aE�
�j�
�L��
u��
�?٨
V��
:#�
�	H�
�Lm�
���
�D��
Fܩ
�A�
�7&�
�K�
R6p�
$��
�B��
C<ߪ
�
`T)�
B;N�
�s�
4��
���
�W�
�%�
,�
XQ�
@v�
���
��
Z>�
�
�
N;/�
[KT�
Ly�
�0��
�8í
��
6
�
�2�
P-W�
|�
�_��
:
Ʈ
{4�
�M�
�Y5�
�-Z�
T�
1,��
�#ɯ
X�

�
�8�
�6]�
U��
���
�G̰
�R�
�G�
�;�
�'`�
>R��
���
Uϱ
��
3?�
�>�
�Gc�
3��
aW��
0RҲ
���
��
41A�
'f�
1��
&��
Nճ
�3��
:B�
�PD�
�Pi�
�H��
UV��
�ش
���
."�
�G�
�-l�
���
�>��
�E۵
�E�
�E%�
OJ�
�<o�
�4��
];��
pB޶
;8�
�5(�
"4M�
�br�
\��
�B��
=Y�
�L�
�F+�
�9P�
+8u�
�5��
4��
<2�
�[	�
�Z.�
�?S�

<x�
}%��
&T¹
�!�
�
U1�
qV�
?{�
�G��
zGź
��
��
�4�
�	Y�
�V~�
T��
�!Ȼ
��
�-�
�7�
�G\�
�G��
�>��
�	˼
��
��
�:�
)_�
x��
M��
�Bν
/`�
�]�
�=�
�b�
q?��
S?��
	Ѿ
Y��
�
�
�@�
eRe�
�V��
���
�]Կ
�?��
`�
�*C�
�-h�
�'��
�W��
`!�
G!��
b?!�
D?F�
^k�
���
(@��
�(�
�_��
$�
�I�
�n�
�6��
���
�K��
P�
�O'�
�L�
�Bq�
.��
0F��
�\��
.>�
8*�
OO�
�t�
�^��
�4��
�Z��
��
j-�
c`R�
�w�
�'��
*��
]%��
.	�
�0�
�$U�
%-z�
�*��
4��
�`��
�G�
)63�
 *X�
)}�
7P��
}-��
�F��
�W�
K86�
�Q[�
7U��
�$��
9d��
e'��
D/�
9�
@"^�
���
#��
�I��
 K��
E5�
�)<�
Aa�
�$��
�2��
�F��
a8��
�[�
�1?�
T/d�
S��
{��
+J��
��
	;�
�QB�
FUg�
U#��
�L��
�Z��
"��
� �
RGE�
*Vj�
J[��
3Q��
;(��
1D��
�O#�
�UH�
�0m�
�?��
O
��
_]��
�E�
L&�
�JK�
�p�
�4��
�2��
�G��
5�
�)�
'0N�
^
s�
vE��
f��
j ��

�
�Y,�
�Q�
iKv�
4I��
�'��
�;��
{d
�
�/�
�T�
�y�
���
�A��
z��
�
�
ta2�
�W�
LR|�
d��
24��
g#��
�[�
� 5�
�OZ�
a�
?��
���
2��
��
C98�
�.]�
�.��
�X��
�U��
�/��
�-�
�;�
PC`�
�E��
�
��
�L��
g>��
�]�
<$>�
sWc�
���
x��
���
JW��
|'�
�_A�
�Sf�
�
��
���
�&��
���
Z�
�dD�
"i�
P��
�;��
q��
���
2@"�
!PG�
�Hl�
9��
�J��
���
0�
t@%�
�
J�
qTo�
�c��
��
�;��
UU�
�D(�
�:M�
�%r�
�<��
�"��
o-��
C	�
�K+�
oP�
#u�
69��
�Q��
~��
�	�
�@.�
�S�
�x�

��
BQ��
�K��
=O�
',�
P�
8At�
���
���
d��
�`�
�((�
tL�
�6p�
�(��

.��
A
��
��
�8%�
[2I�
�m�
W��
��
6J��
�*��
�!�
RE�
JOi�
Z��
|D��
���
���
"#�
p(A�
~Ie�
c(��
%D��
w��
}(��
Q�
S=�
"a�
^��
�O��
���
���
�;�
�D:�
7:^�
���
�8��
�?��
s.��
�
�
6�
�NZ�
�A~�
{Z��
�<��
���
p=�
�2�
�V�
z�
S4��
�a��
vM��
�
�
3.�
�ES�
[w�
G��
���
a��
�)�
BS+�
	O�
s�
QW��
D��
�<��
?P�
d'�
2K�
1[o�
C6��
��

S��
0c��
BG#�
�8G�
�]k�
���
j��
�4��
v$��
�%�
�2C�
�g�
���
�N��
���
(��
�,�
�[B�
Vg�
 9��
H,��
�9��
O��
�I�
�#?�
�!c�
�Q��
R]��
&��
e,��
n�

c;�
dJ_�
�^��
=_��
D��
�[��
��
\7�
�[�
oV�
]N��
H��
�G��
�
/G3�
AAW�
�'{�
J��
�I��
XH��
9F�
E/�
US�
_"w�
���
�2��
�`��
P=�
�+�
hbO�
�8s�

J��
�\��
f��
H�
�?'�
�K�
lIo�
�&��
r6��
6<��
�N��
�%#�
�IG�
k�
B��
�c��
�3�
�6��
�)�
C�
dg�
[9��
�!��
'b�
�S��
��
Y?�
�@c�
�9��
Z.��
,�
�&�
�&�
R;�
� _�
�P��
5��
5�
�A�
(.�
]7�
D[�
)E�
'<��
J4�
u�
7�
;3�
YW�
�a{�
N^��
�2�
r"�
�T
�
 1�
�U�
Ty�
T��
�S��
�S�
�_	�
V.�
�LS�
�w�
�(��
�*��
KX�
�&�
�7+�
20O�

Xt�
���
%��
�M�

G�
�:)�
�.M�
	q�
�@��
Y8��
C�
�9��0�
';�R�
�*p�
�C{�
"
(&
?*
H4
J9
R>
ZC
cH
kM
sR
yW
�\
�a
�k @`�.symtab.strtab.shstrtab.rela.text.rela.data.bss.rela.debug_info.debug_abbrev.rela.debug_aranges.rela.debug_line.debug_str.debug_line_str.comment.note.GNU-stack.rela.eh_frame @@���+`�V &@���1�X;�X��6@�r0�G�X�ZRZ0U@�)0	n�Zi@�)Pz0�[�d�0D���0�(����x�@8+H����	8f�T�+�

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists