Sindbad~EG File Manager

Current Path : /usr/home/beeson/MathXpert/bin/Localizer/chinese/
Upload File :
Current File : /usr/home/beeson/MathXpert/bin/Localizer/chinese/chinese_mtext.o

ELF	>�@@UH��}��E�H�H��H]�UH��}��E�H�H��]�arithmetic十进制计算计算十进制 $\sqrt $ 或 $^n\sqrt $十进制 $x^n$ 的值函数的十进制值因数整数在某一点数值计算π 的十进制值e 的十进制值计算函数值数值分解多项式精确计算伯努利数精确计算欧拉数十进制转分数表示为平方表示为立方表示为 ?-次幂表示为 ? 的幂将整数写为 a^nx = ? + (x-?)$i^2 = -1$i^(4n) = 1i^(4n+1) = ii^(4n+2) = -1i^(4n+3) = -i复数算术复数的幂复数算术和幂复数十进制计算整数的整数因数整数的复数因数分解 n+mi (n 不为零)取消双重负号 $-(-a)=a$推送负号 -(a+b) = -a-b-a-b = -(a+b)重组项将项按顺序排列去掉零项 x+0 = x取消 $\pm $ 项收集 $\pm $ 项(一次)收集和中的所有 $\pm $ 项a+b = b+aa(b-c) = -a(c-b)-ab = a(-b)-abc = ab(-c)a(-b)c = ab(-c)$x\times 0 = 0\times x = 0$$x\times 1 = 1\times x = x$a(-b) = -aba(-b-c) = -a(b+c)(-a-b)c = -(a+b)c重组因子收集数字排列因子收集幂a(b+c)=ab+ac$(a-b)(a+b) = a^2-b^2$$(a + b)^2 = a^2 + 2ab + b^2$$(a - b)^2 = a^2 - 2ab + b^2$$(a-b)(a^2+ab+b^2)=a^3-b^3$$(a+b)(a^2-ab+b^2)=a^3+b^3$ab = ba乘开和的积乘开分子乘开分母$na = a +...+ a$$0/a = 0$$a/1 = a$$a(1/a) = 1$分数相乘 $(a/c)(b/d)=ab/cd$$a(b/c) = ab/c$取消 ab/ac = b/c分数相加 $a/c \pm  b/c=(a\pm b)/c$分离 $(a \pm  b)/c = a/c \pm  b/c$分离并取消 $(ac\pm b)/c = a\pm b/c$多项式除法通过多项式除法取消$au/bv=(a/b)(u/v)$ (整数 a,b)$a/b = (1/b) a$$au/b=(a/b)u$ (实数 $a,b$)$ab/cd = (a/c)(b/d)$$ab/c = (a/c) b$取消负号 $(-a)/(-b) = a/b$$-(a/b) = (-a)/b$$-(a/b) = a/(-b)$$(-a)/b = -(a/b)$$a/(-b)= -a/b$$(-a-b)/c = -(a+b)/c$$a/(-b-c) = -a/(b+c)$$a/(b-c) = -a/(c-b)$$-a/(-b-c) = a/(b+c)$$-a/(b-c) = a/(c-b)$$-(-a-b)/c = (a+b)/c$$$(a-b)/(c-d) = (b-a)/(d-c)$$$ab/c = a (b/c)$$a/bc = (1/b) (a/c)$$(a/c)/(b/c) = a/b$$a/(b/c)=ac/b$ (反转并相乘)$1/(a/b) = b/a$$(a/b)/c = a/(bc)$$(a/b)/c = (a/b)(1/c)$$(a/b)c/d = ac/bd$因数分母分数中的公分母寻找公分母寻找公分母(仅分数)分数相乘 (a/b)(c/d)=ac/bd分数相乘 a(c/d)= ac/d分数相加 $a/c \pm  b/c=(a \pm  b)/c$公分母公分母(仅分数)公分母并简化分子公分母并简化(仅分数)分子和分母乘以 ?a^0 = 1  (a 不为零)a^1 = a0^b = 0  如果 b > 01^b = 1$(-1)^n = \pm 1$ (n 偶数或奇数)(a^b)^c = a^(bc) 如果 a>0 或 $c\in Z$$(-a)^n = (-1)^na^n$$(a/b)^n = a^n/b^n$$(ab)^n = a^nb^n$$(a+b)^2 = a^2+2ab+b^2$通过二项式定理展开a^(b+c) = a^b a^c$a^n/b^n = (a/b)^n$b^n/b^m = b^(n-m)ab^n/b^m = a/b^(m-n)a^2 = aaa^3 = aaaa^n = aaa...(n 次)a^n = a^?a^(n-?)$(a \pm  b)^2 = a^2 \pm  2ab + b^2$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3a^(bc) = (a^b)^c 如果 $a>0$ 或 $c\in Z$a^(bc) = (a^c)^b 如果 $a>0$ 或 $c\in Z$$$a^(b?) = (a^b)^?$$$1/a^n = (1/a)^n$a^(-n) = $1/a^n$ (n 常数)$a^(-n)/b = 1/(a^nb)$ (n 常数)a^(-1) = 1/a$a^(-n) = 1/a^n$$a^(-n)/b = 1/(a^nb)$a/b^(-n) = ab^n$a/b^n = ab^(-n)$a/b = ab^(-1)$(a/b)^(-n) = (b/a)^n$a^(b-c) = a^b/a^c$\sqrt x\sqrt y = \sqrt (xy)$$\sqrt (xy) = \sqrt x\sqrt y$$\sqrt (x^2y) = x\sqrt y$ 或 $|x|\sqrt y$$\sqrt (x^2)=x$ 如果 $x\ge 0$$\sqrt (x^2)=|x|$整数 x 的因数在 $\sqrt x$$\sqrt (x/y) = \sqrt x/\sqrt y$$\sqrt (x/y) = \sqrt |x|/\sqrt |y|$$\sqrt x/\sqrt y = \sqrt (x/y)$$x/\sqrt x = \sqrt x$$\sqrt x/x = 1/\sqrt x$$(\sqrt x)^2^n = x^n$ 如果 $x\ge 0$$(\sqrt x)^(2n+1) = x^n\sqrt x$计算 $\sqrt $ 为有理数计算 $\sqrt $ 为十进制简单算术在 $\sqrt u/\sqrt v$ 中显示公因数在 $\sqrt $ 下分解多项式有理化分母有理化分子$\sqrt (x^2)=|x|$ 或 $\sqrt (x^2^n)=|x|^n$取消 $\sqrt $:  $\sqrt (xy)/\sqrt y = \sqrt x$在 $\sqrt $ 下展开$a^2-b = (a-\sqrt b)(a+\sqrt b)$$^2\sqrt u = \sqrt u$$\sqrt u = ^2^n\sqrt u^n$$\sqrt u = (^2^n\sqrt u)^n$$\sqrt (u^2^n) = u^n$ 如果 $u^n\ge 0$$\sqrt (u^(2n+1)) = u^n\sqrt u$ 如果 $u^n\ge 0$$a\sqrt b = \sqrt (a^2b)$ 如果 $a\ge 0$有理化分母并简化$a ^ (\onehalf)  = \sqrt a$$$a^(n/2) = sqrt (a^n)$$$$a^(b/n) = root(n,a^b)$$$\sqrt a = a ^(\onehalf) $$$root(n,a)= a^(1/n)$$$$root(n,a^m) = a^(m/n)$$$$root(n,a)^m = a^(m/n)$$$$(sqrt a)^m = a^(m/2)$$$$1/(sqrt a) = a^(-(1/2))$$$$1/root(n,a)= a^(-1/n)$$evaluate $$(-1)^(p/q)$$factor integer a in$$a^(p/q)$$$$a/b^(p/q) = (a^q/b^p)^(1/q)$$$$a^(p/q)/b = (a^p/b^q)^(1/q)$$$$a^(n/2) = (sqrt a)^n$$$$a^(m/n) = (root(n,a))^m$$$$root(n,x) root(n,y) = root(n,xy)$$$$root(n,xy) = root(n,x) root(n,y)$$$$root(n,x^m) = (root(n,x))^m$$ 如果 $x\ge 0$ 或 n 为奇数$$root(n,x^n y) = x root(n,y)$$ 或 $|x|^n\sqrt y$$$root(n,x^n) = x$$ 如果 $x\ge 0$ 或 n 为奇数$$root(n,x^(nm))=x^m$$ 如果 $x\ge 0$ 或 n 为奇数$$root(2n,x^n) = sqrt x$$$$root(nm, x^m) = root(n,x)$$$$root(n,a)^n = x$$$$root(n,a)^m = root(n,a^m)$$$$root(n,a)^(qn+r) = a^q root(n,a^r)$$整数 x 的因数在 $^n\sqrt x$$$root(n,-a) = -root(n,a)$$ (n 为奇数)计算为有理数在 $$root(n,x)$$ 下分解多项式在 $^n\sqrt $ 下展开$\sqrt (\sqrt x) = ^4\sqrt x$$\sqrt (^n\sqrt x) = ^2^n\sqrt x$$^n\sqrt (\sqrt x) = ^2^n\sqrt x$$^n\sqrt (^m\sqrt x) = ^n^m\sqrt x$$^n\sqrt (x/y) = ^n\sqrt x/^n\sqrt y$$^n\sqrt x/^n\sqrt y = ^n\sqrt (x/y)$$x/^n\sqrt x = (^n\sqrt x)^(n-1)$$^n\sqrt x/x = 1/(^n\sqrt x)^(n-1)$在 $^n\sqrt : ^n\sqrt (ab)/^n\sqrt (bc)=^n\sqrt a/^n\sqrt b$ 下取消取消 $^n\sqrt $:  $^n\sqrt (xy)/^n\sqrt y = ^n\sqrt x$在 $^n\sqrt u/^n\sqrt v$ 中显示公因数$a(^n\sqrt b) = ^n\sqrt (a^nb)$ 如果 n 为奇数$a(^n\sqrt b) = ^n\sqrt (a^nb)$ 如果 $a\ge 0$$-^n\sqrt a = ^n\sqrt (-a)$ 如果 n 为奇数$a/^n\sqrt b = ^n\sqrt (a^n/b)$ (n 为奇数或 $a\ge 0$)$^n\sqrt a/b = ^n\sqrt (a/b^n)$ (n 为奇数或 $b>0$)$\sqrt a/b = \sqrt (a/b^2)$ 如果 $b>0$$a/\sqrt b = \sqrt (a^2/b)$ 如果 $a\ge 0$$(^m^n\sqrt a)^n = ^m\sqrt a$$(^2^n\sqrt a)^n = \sqrt a$1/i = -ia/i = -aia/(bi) = -ai/b$\sqrt (-1) = i$$\sqrt (-a) = i\sqrt a$ 如果 $a\ge 0$清除 i 的分母$(a-bi)(a+bi) = a^2+b^2$$a^2+b^2 = (a-bi)(a+bi)$$|u + vi|^2 = u^2 + v^2$$|u + vi| = \sqrt (u^2+v^2)$(u+vi)/w = u/w + (v/w)i写成 u+vi 形式$\sqrt(bi)= \sqrt(b/2)+\sqrt(b/2)i$, 如果 b >= 0$\sqrt(-bi)= \sqrt(b/2)-\sqrt(b/2)i$, 如果 b >= 0$\sqrt(a+bi)= \sqrt((a+c)/2)+\sqrt((a-c)/2)i$, 如果 b \ge 0 并且 $c^2=a^2+b^2$$\sqrt(a-bi)= \sqrt((a+c)/2)-\sqrt((a-c)/2)i$, 如果 b \ge 0 并且 $c^2=a^2+b^2$提取因数清除数值分母ab + ac = a(b+c)提取最高幂$a^2+2ab+b^2 = (a+b)^2$$a^2-2ab+b^2 = (a-b)^2$$a^2-b^2 = (a-b)(a+b)$因式分解二次三项式使用二次公式$a^2^n = (a^n)^2$$a^nb^n = (ab)^n$因式分解整数系数因式分解整数进行替换, u = ?消除已定义的变量将变量视为常数将其写为 ? 的函数将其写为 ? 和 ? 的函数a^(3n) = (a^n)^3$$a^(?n) = (a^n)^?$$a^3 - b^3 = (a-b)(a^2+ab+b^2)a^3 + b^3 = (a+b)(a^2-ab+b^2)$a^n-b^n = (a-b)(a^(n-1)+...+b^(n-1))$$a^n-b^n = (a+b)(a^(n-1)-...-b^(n-1))$ (n 为偶数)$a^n+b^n=(a+b)(a^(n-1)-...+b^(n-1))$ (n 为奇数)$x^4+a^4=(x^2-\sqrt 2ax+a^2)(x^2+\sqrt 2ax+a^2)$$x^4+(2p-q^2)x^2+p^2=(x^2-qx+p)(x^2+qx+p)$计算机进行替换猜一个因数搜索线性因数通过分组因式分解将其写为 ? 的多项式交换两边两边变号两边加 ?两边减 ?从左到右移项 ?从右到左移项 ?两边乘以 ?两边除以 ?两边平方从两边消去 $\pm $ 项消去两边的公因数减去以形成 u=0 的形式方程恒等成立a=-b 变为 $a^2=-b^2$ 如果 $a,b\ge 0$a=-b 变为 a=0 如果 $a,b\ge 0$a=-b 变为 b=0 如果 $a,b\ge 0$如果 ab=0 则 a=0 或 b=0二次公式$x = -b/2a \pm  \sqrt (b^2-4ac)/2a$完成平方两边取平方根交叉相乘$b^2-4ac < 0 意味着没有实根$[p=a,p=-a] 变为 p=|a| (对于 $p\ge 0$)数值求解交叉相乘 (a/b=c/d => ad=bc)如果 u=v 则 $u^n=v^n$两边取 $\sqrt $两边取 $^n\sqrt $两边应用函数 ?如果 ab=ac 则 a=0 或 b=c仅显示所选方程再次显示所有方程收集多个解拒绝不可解的方程在原方程中检查根立即求解线性方程u=x+b/3 in ax^3+bx^2+cx+d=0计算判别式再次显示三次方程维埃塔替换 x=y-a/3cy in cx^3+ax+b=0三次公式,一个实根三次公式,三个实根三次公式,复数根替换 x = f(u)替换 n = ?-k精确求根简化如果 u=v 则 a^u = a^v如果 ln u = v 则 u = e^v如果 log u = v 则 u = 10^v如果 $$log(b,u) = v$$ 则 $u = b^v$如果 a^u = a^v 则 u=v两边取 log两边取 ln拒绝方程——不可能的 log 或 ln克莱姆法则计算行列式变量左边,常数右边收集类似项对齐变量两方程相加两方程相减方程 ? 乘以 ?方程 ? 除以 ?选定方程的倍数加到方程 ?选定方程的倍数减去方程 ?交换两方程将解方程按顺序排列删除恒等式发生矛盾:无解a|b| = |ab| 如果 $0 \le  a$|b|/c = |b/c| 如果 0 < ca|b|/c = |ab/c| 如果 0 <a/c求解 ?将选定方程加到方程 ?从方程 ? 减去选定方程选定方程乘以 ?选定方程除以 ?将选定方程与方程 ? 交换选定方程求解 ?将选定行加到行 ?从行 ? 减去选定行选定行乘以 ?选定行除以 ?选定行的倍数加到行 ?选定行的倍数减去行 ?将选定行与行 ? 交换A = IA解方程 ? 的 ?简化方程从两边取消项方程 ? 两边加 ?方程 ? 两边减 ?替换变量矛盾在手:无解写成矩阵形式交换两行两行相加从一行减去另一行行乘以常数行除以常数一行的倍数加到另一行一行的倍数减去另一行矩阵相乘删除零列删除零行删除重复行转换为方程组AX = B  变为  X = A^(-1)B使用 2x2 逆矩阵公式计算精确矩阵逆计算十进制矩阵逆|u| = u  如果 $u\ge 0$假设 $u\ge 0$ 并设 |u| = u|u| = -u 如果 $u\le 0$|cu| = c|u| 如果 $c\ge 0$|u/c| = |u|/c 如果 c>0|u||v| = |uv||uv| = |u||v||u/v| = |u| / |v||u| / |v| = |u/v|$|u|^2^n=u^2^n$ 如果 u 是实数$|u^n|=|u|^n$ 如果 n 是实数$|\sqrt u| = \sqrt |u|$$|^n\sqrt u| = ^n\sqrt |u|$|ab|/|ac| = |b|/|c||ab|/|a| = |b|在 |u|/|v| 中显示公因数|u|=c 当且仅当 u=c 或 u = -c ($c\ge 0$)|u|/u = c 当且仅当 c = $\pm $1|u| < v 当且仅当 -v < u < v$|u| \le  v$ 当且仅当 $-v \le  u \le  v$u < |v| 当且仅当 v < -u 或 u < v$u \le  |v|$ 当且仅当 $v \le  -u$ 或 $u \le  v$|u| = u 当且仅当 $0 \le  u$|u| = -u 当且仅当 $u \le  0$$0 \le  |u|$ 是真|u| < 0  是假$-c \le  |u|$ 是真 ($c\ge 0$)-c < |u| 是真 (c>0)|u| < -c 是假 ($c\ge 0$)$|u| \le  -c$ 是假 (c>0)$|u| \le  -c$ 当且仅当 u=0 假设 $c\ge 0$|u| = -c 当且仅当 u=0 假设 $c\ge 0$v > |u| 当且仅当 -v < u < v$v \ge  |u|$ 当且仅当 $-v \le  u \le  v$|v| > u 当且仅当  v < -u 或 v > u$|v| \ge  u$ 当且仅当 $v \le  -u$ 或 $v \ge  u$$|u| \ge  0$ 是真0 > |u| 是假-c > |u| 是假 ($c\ge 0$)$-c \ge  |u|$ 是假 (c>0)$-c \ge  |u|$ 当且仅当 u=0 假设 c=0|u| > -c 是真 (c>0)$|u| \ge  -c$ 是真 ($c\ge 0$)$-v \le  u \le  v$ 当且仅当 $|u| \le  v$v < -u 或 u < v 当且仅当 u < |v|$u^(2n) = |u|^(2n)$ 如果 u 是实数$|u|^n =  |u^n|$ 如果 n 是实数将 u < v 变为 v > u将 -u < -v 变为  v < u将 -u < -v 变为  u > v两边乘以 ?^2评估数值不等式$a < x^2^n$ 是真 如果 $a < 0$$x^2^n < a$ 是假 如果 $a \le  0$平方双方 (非负)平方,如果一边是 $\ge $ 0u < v 或 u = v 当且仅当 $u \le  v$组合区间使用假设将 x > y 变为 y < x将 -u > -v 变为  u < v将 -u > -v 变为  v > u$x^2^n > a$ 是真 如果 $a < 0$$a > x^2^n$ 是假 如果 $a \le  0$u > v 或 u = v 当且仅当 $u \ge  v$将 $x \le  y$ 变为 $y \ge  x$将 $-u \le  -v$ 变为 $v \le  u$将 $-u \le  -v$ 变为 $u \ge  v$$a \le  x^2^n$ 是真 如果 $a \le  0$$x^2^n \le  a$ 是假 如果 $a < 0$平方双方$u \le  v$ 当且仅当 $u^2 \le  v^2$ 或 $u \le  0$ 假设 $0 \le  v$将 $x \ge  y$ 变为 $y \le  x$将 $-u \ge  -v$ 变为 $u \le  v$将 $-u \ge  -v$ 变为 $v \ge  u$$x^2^n \ge  a$ 是真 如果 $a \le  0$$a \ge  x^2^n$ 是假 如果 $a < 0$$v \ge  u$ 当且仅当 $v^2 \ge  u^2$ 或 $u \le  0$ 假设 $0 \le  v$$u^2 < a$ 当且仅当 $|u| < \sqrt a$$u^2 < a$ 当且仅当 $-\sqrt a < u < \sqrt a$$a < v^2$ 当且仅当 $\sqrt a < |v|$ 假设 $0\le a$$a < u^2$ 当且仅当 $u < -\sqrt a$ 或 $\sqrt a < u$$a < u^2 < b$ 当且仅当 $-\sqrt b<u<-\sqrt a$ 或 $\sqrt a<u<\sqrt b$$-a < u^2 < b$ 当且仅当 $u^2 < b$ 假设 0<a$-a < u^2 \le  b$ 当且仅当 $u^2 \le  b$ 假设 0<a$\sqrt u < v$ 当且仅当 $0 \le  u < v^2$$0 \le  a\sqrt u < v$ 当且仅当 $0 \le  a^2u < v^2$$a < \sqrt v$ 当且仅当 $a^2 < v$ 假设 $0\le a$$0 \le  u < v$ 当且仅当 $\sqrt u < \sqrt v$$a < x^2$  是真 如果 $a < 0$$x^2 < a$ 是假 如果 $a \le  0$$a < \sqrt u$  当且仅当 $0 \le  u$ 假设 $a < 0$$u^2 \le  a$ 当且仅当 $|u| \le  \sqrt a$$u^2 \le  a$ 当且仅当 $-\sqrt a \le  u \le  \sqrt a$$a \le  v^2$ 当且仅当 $\sqrt a \le  |v|$ 假设 $0\le a$$a \le  u^2$ 当且仅当 $u \le  -\sqrt a$ 或 $\sqrt a \le  u$$a \le  u^2 \le  b$ 当且仅当 $-\sqrt b\le u\le -\sqrt a$ 或 $\sqrt a\le u\le \sqrt b$$-a \le  u^2 \le  b$ 当且仅当 $u^2 \le  b$ 假设 $0\le a$$-a \le  u^2 < b$ 当且仅当 $u^2 < b$ 假设 $0\le a$$\sqrt u \le  v$ 当且仅当 $0 \le  u \le  v^2$$0 \le  a\sqrt u \le  v$ 当且仅当 $0 \le  a^2u \le  v^2$$a \le  \sqrt v$ 当且仅当 $a^2 \le  v$ 假设 $0\le a$$0 \le  u \le  v$ 当且仅当 $\sqrt u \le  \sqrt v$$x^2 > a$ 是真 如果 $a < 0$$a > x^2$ 是假 如果 $a \le  0$$a \le  \sqrt u$ 当且仅当 $0 \le  u$ 假设 $a \le  0$两边取倒数a < 1/x < b 当且仅当 1/b < x < 1/a, 对于 a,b > 0$a < 1/x \le  b$ 当且仅当 $1/b \le  x < 1/a$, 对于 a,b > 0-a < 1/x < -b 当且仅当 -1/b < x < -1/a, 对于 a,b > 0$-a < 1/x \le  -b$ 当且仅当 $-1/b \le  x < -1/a$, 对于 a,b > 0-a < 1/x < b 当且仅当 x < - 1/a 或 1/b < x, 对于 a,b > 0$-a < 1/x \le  b$ 当且仅当 x < -1/a 或 $1/b \le  x$, 对于 a,b > 0$a \le  1/x < b$ 当且仅当 $1/b < x \le  1/a$, 对于 a,b > 0$a \le  1/x \le  b$ 当且仅当 $1/b \le  x < 1/a$, 对于 a,b > 0$-a \le  1/x < -b$ 当且仅当 $-1/b < x \le  -1/a$, 对于 a,b > 0$-a \le  1/x \le  -b$ 当且仅当 $-1/b \le  x \le  -1/a$, 对于 a,b > 0$-a \le  1/x < b$ 当且仅当 $x \le  - 1/a$ 或 1/b < x, 对于 a,b > 0$-a \le  1/x \le  b$ 当且仅当 $x \le  -1/a$ 或 $1/b \le  x$, 对于 a,b > 0u < v 当且仅当 $^n\sqrt u < ^n\sqrt v$ (n 为奇数)$u^2^n < a$ 当且仅当 $|u| < ^2^n\sqrt a$$u^2^n < a$ 当且仅当 $-^2^n\sqrt a < u < ^2^n\sqrt a$$0 \le  a < u^2^n$ 当且仅当 $^2^n\sqrt a < |u|$$a < u^2^n$ 当且仅当 $u < -^2^n\sqrt a$  或 $^2^n\sqrt a < u$$a<u^2^n<b$ 当且仅当 $-^2^n\sqrt b<u<-^2^n\sqrt a$ 或 $^2^n\sqrt a<u<^2^n\sqrt b$$^2^n\sqrt u < v$ 当且仅当 $0 \le  u < v^2^n$$^n\sqrt u < v$ 当且仅当 $u < v^n$ (n 为奇数或 $u\ge 0$)$a(^n\sqrt u) < v$ 当且仅当 $a^nu < v^n$ 假设 $0 \le  a(^n\sqrt u)$$u < ^n\sqrt v$ 当且仅当 $u^n < v$  假设 $0 \le  u$$u < v$ 当且仅当 $u^n < v^n$ (n 为奇数, n>0)u < v 当且仅当 $u^n < v^n$ (n > 0 且 $0 \le  u$)$a < ^2^n\sqrt u$ 当且仅当 $0 \le  u$ 假设 $a < 0$$u \le  v$ 当且仅当 $^n\sqrt u \le  ^n\sqrt v$ (n 为奇数)$u^2^n \le  a$ 当且仅当 $|u| \le  ^2^n\sqrt a$$u^2^n \le  a$ 当且仅当 $-^2^n\sqrt a \le  u \le  ^2^n\sqrt a$$0 \le  a \le  u^2^n$ 当且仅当 $^2^n\sqrt a \le  |u|$$a \le  u^2^n$ 当且仅当 $u \le  -^2^n\sqrt a$  或 $^2^n\sqrt a \le  u$$a\le u^2^n\le b$ 当且仅当 $-^2^n\sqrt b\le u\le -^2^n\sqrt a$ 或 $^2^n\sqrt a\le u\le ^2^n\sqrt b$$^2^n\sqrt u \le  v$ 当且仅当 $0 \le  u \le  v^2^n$$^n\sqrt u \le  v$ 当且仅当 $u \le  v^n$ (n 为奇数或 $u\ge 0$)$a(^n\sqrt u) \le  v$ 当且仅当 $a^nu \le  v^n$ 假设 $0 \le  a(^n\sqrt u)$$u \le  ^n\sqrt v$ 当且仅当 $u^n \le  v$ 假设 $0 \le  u$$u \le  v$ 当且仅当 $u^n \le  v^n$ (n 为奇数, $n \ge  0$)$u \le  v$ 当且仅当 $u^n \le  v^n$ (n > 0 且 $0 \le  u$)$a \le  ^2^n\sqrt u$ 当且仅当 $0 \le  u$   假设 $a \le  0$去掉正因数0 < u/v 当且仅当 0 < v 假设 u > 0将 $0 < u/\sqrt v$ 变为 0 < uv0 < u/v 当且仅当 0 < uv将 $u/\sqrt v < 0$ 变为 uv < 0u/v < 0 当且仅当 uv < 0$ax \pm  b < 0$ 当且仅当 $a(x\pm b/a) < 0$(x-a)(x-b) < 0 当且仅当 a<x<b  (a<b 时)0 < (x-a)(x-b) 当且仅当 x<a 或 b<x (a<b 时)$0 \le  u/v$ 当且仅当 $0 \le  v$ 假设 $u \ge  0$$0 \le  u/\sqrt v$ 当且仅当 $0 \le  uv$$0 \le  u/v$ 当且仅当 0 < uv 或 u = 0$u/\sqrt v \le  0$ 当且仅当 $uv \le  0$$u/v \le  0$ 当且仅当 uv < 0 或 u = 0$ax \pm  b \le  0$ 当且仅当 $a(x\pm b/a) \le  0$将 $u \le  v$ 变为 $v \ge  u$$(x-a)(x-b) \le  0$ 当且仅当 $a\le x\le b$ ($a\le b$ 时)$0\le (x-a)(x-b)$ 当且仅当 $x\le a$ 或 $b\le x$ ($a\le b$ 时)$a > u^2$ 当且仅当 $\sqrt a > |u|$$a > u^2$ 当且仅当 $-\sqrt a < u < \sqrt a$$v^2 > a$ 当且仅当 $|v| > \sqrt a$ 假设 $a\ge 0$$u^2 > a$ 当且仅当 $u < -\sqrt a$  或 $u > \sqrt a$$v > \sqrt u$ 当且仅当 $0 \le  u < v^2$$v>a\sqrt u$ 当且仅当 $0\le a^2u<v^2$ 假设 $0\le a$$\sqrt v > a$ 当且仅当 $v > a^2$ 假设 $0\le a$v > u  当且仅当 $\sqrt v > \sqrt u$ 假设 $u\ge 0$$\sqrt u > a$  当且仅当 $u \ge  0$ 假设 $a < 0$$a \ge  u^2$ 当且仅当 $6\sqrt a \ge  |u|$$a \ge  u^2$ 当且仅当 $-\sqrt a \le  u \le  \sqrt a$$v^2 \ge  a$ 当且仅当 $|v| \ge  \sqrt a$ 假设 $0\le a$$u^2 \ge  a$ 当且仅当 $u \le  -\sqrt a$ 或 $\sqrt a \le  u$$v \ge  \sqrt u$ 当且仅当 $60 \le  u \le  v^2$$v \ge  a\sqrt u$ 当且仅当 $0\le a^2u\le v^2$ 假设 $0\le a$$\sqrt v \ge  a$ 当且仅当 $v \ge  a^2$ 假设 $0\le a$$v \ge  u$ 当且仅当 $\sqrt v \ge  \sqrt u$ 假设 $u\ge 0$$x^2 \ge  a$ 是真 如果 $a \le  0$$a \ge  x^2$ 是假 如果 $a < 0$$\sqrt u \ge  a$  当且仅当 $u \ge  0$ 假设 $a \le  0$$u > v$ 当且仅当 $^n\sqrt u > ^n\sqrt v$ (n 为奇数)$a > u^2^n$ 当且仅当 $^2^n\sqrt a > |u|$$a > u^2^n$ 当且仅当 $-^2^n\sqrt a < u < ^2^n\sqrt a$$u^2^n > a$ 当且仅当 $|u| > ^2^n\sqrt a$  假设 $a\ge 0$$u^2^n > a$ 当且仅当 $u < -^2^n\sqrt a$  或 $u > ^2^n\sqrt a$$v > ^2^n\sqrt u$  当且仅当 $0 \le  u < v^2^n$$v > ^n\sqrt u$ 当且仅当 $v^n> u$ (n 为奇数或 $u\ge 0$)$v > a(^n\sqrt u)$ 当且仅当 $v^n > a^nu$ 假设 $0 \le  a(^n\sqrt u)$$^n\sqrt v > a$ 当且仅当 $v > a^n$ 假设 $a\ge 0$u > v 当且仅当 $u^n > v^n$ (n 为奇数, n>0)u > v 当且仅当 $u^n > v^n$ (n > 0 且 $0 \le  u$)$^2^n\sqrt u > a$ 当且仅当 $u \ge  0$ 假设 $a < 0$$u \ge  v$ 当且仅当 $^n\sqrt u \ge  ^n\sqrt v$ (n 为奇数)$a \ge  u^2^n$ 当且仅当 $^2^n\sqrt a \ge  |u|$$a \ge  u^2^n$ 当且仅当 $-^2^n\sqrt a \le  u \le  ^2^n\sqrt a$$u^2^n \ge  a$ 当且仅当 $|u| \ge  ^2^n\sqrt a$ 假设 $a\ge 0$$u^2^n \ge  a$ 当且仅当 $u \le  -^2^n\sqrt a$  或 $u \ge  ^2^n\sqrt a$$v \ge  ^2^n\sqrt u$ 当且仅当 $0 \le  u \le  v^2^n$$v \ge  ^n\sqrt u$ 当且仅当 $v^n \ge  u$ (n 为奇数或 $u\ge 0$)$v \ge  a(^n\sqrt u)$ 当且仅当 $v^n \ge  a^nu$ 假设 $0 \le  a(^n\sqrt u)$$^n\sqrt v \ge  a$ 当且仅当 $a^n \le  v$ 假设 $a \ge  0$$u \ge  v$ 当且仅当 $u^n \ge  v^n$ (n 为奇数, $n \ge  0$)$u \ge  v$ 当且仅当 $u^n \ge  v^n$ (n > 0 且 $0 \le  u$)$^2^n\sqrt u \ge  a$ 当且仅当 $u \ge  0$  假设 $a \le  0$u/v > 0 当且仅当 v > 0 假设 u > 0将 $u/\sqrt v > 0$ 变为 uv > 0 u/v > 0 当且仅当 uv > 0将 $0 > u/\sqrt v$ 变为 0 > uv0 > u/v 当且仅当 0 > uv$0 > ax \pm  b$ 当且仅当 $0 > a(x\pm b/a)$0 > (x-a)(x-b) 当且仅当 a<x<b  (a<b 时)(x-a)(x-b) > 0 当且仅当 x<a 或 x>b (a<b 时)$u/v \ge  0$ 当且仅当 $v \ge  0$ 假设 $u \ge  0$$u/\sqrt v \ge  0$ 当且仅当 $uv \ge  0$$u/v \ge  0$ 当且仅当 uv > 0 或 u = 0$0 \ge  u/\sqrt v$ 当且仅当 $0 \ge  uv$$0 \ge  u/v$ 当且仅当 0 > uv 或 u = 0$0 \ge  ax \pm  b$ 当且仅当 $0 \ge  a(x\pm b/a)$$0 \ge  (x-a)(x-b)$ 当且仅当 $a\le x\le b$ ($a\le b$ 时)$(x-a)(x-b)\ge 0$ 当且仅当 $x\le a$ 或 $b\le x$ ($a\le b$ 时)按二项式定理展开带有 (n k) 的二项式定理$$binomial(n,k) = factorial(n)/ factorial(k) * factorial(n-k)$$n! = n(n-1)(n-2)...1计算阶乘计算二项式系数展开 $\sum $ 符号计算 $\sum $ 为有理数n! = n (n-1)!n!/n = (n-1)!n!/(n-1)! = nn!/k! = n(n-1)...(n-k+1)n/n! = 1/(n-1)!(n-1)!/n! = 1/nk!/n! =1/(n(n-1)...(n-k+1))a^3+3a^2b+3ab^2+b^3 = (a+b)^3a^3-3a^2b+3ab^2-b^3 = (a-b)^3a^4+4a^3b+6a^2b^2+4ab^3+b^4 = (a+b)^4a^4-4a^3b+6a^2b^2-4ab^3+b^4 = (a-b)^4a^n+na^(n-1)b+...b^n = (a+b)^na^n-na^(n-1)b+...b^n = (a-b)^n因式分解二次方程并显示步骤$\sum $ 1 = 项数$\sum $ -u = -$\sum $ u$\sum $ cu = c$\sum $ u (c 常数)$\sum (u\pm v) = \sum u \pm  \sum v$$\sum (u-v) = \sum u - \sum v$按 + 展开 $\sum $1+2+..+n = n(n+1)/2$1^2+..+n^2 = n(n+1)(2n+1)/6$$1+x+..+x^n=(1-x^(n+1))/(1-x)$分离前几个项计算带参数的 $\sum $ 为有理数计算带参数的 $\sum $ 为小数计算数值 $\sum $ 为有理数计算数值 $\sum $ 为小数将求和项表示为多项式望远镜求和平移求和上下限重命名索引变量$(\sum u)(\sum v) = \sum  \sum  uv$分离最后一项$1^3+..+n^3 = n^2(n+1)^2/4$$1^4+..+n^4=n(n+1)(2n+1)(3n^2+2n-1)/30$$d/dx \sum u = \sum  du/dx$$\sum  du/dx = d/dx \sum u$$\int  \sum u dx = \sum  \int u dx$$\sum  \int u dx = \int  \sum u dx$$c\sum u = \sum cu$$$sum(t,i,a,b)=sum(t,i,0,b)-sum(t,i,0,a-1)$$$$sum(t,i,a,b)=sum(t,i,c,b)-sum(t,i,c,a-1)$$选择归纳变量开始基例开始归纳步使用归纳假设因此如所愿$|sin u| \le  1$$|cos u| \le  1$$sin u \le  u$  若 $u\ge 0$$1 - u^2/2 \le  cos u$$|arctan u| \le  \pi /2$$arctan u \le  u$ 若 $u\ge 0$$u \le  tan u$  若 $0\le u\le \pi /2$取两边的自然对数取两边的对数u < ln v 当且仅当 e^u < vln u < v 当且仅当 u < e^vu < log v 当且仅当 10^u < vlog u < v 当且仅当 u < 10^vu < v 当且仅当 ?^u < ?^v$u \le  ln v$ 当且仅当 $e^u \le  v$$ln u \le  v$ 当且仅当 $u \le  e^v$$u \le  log v$ 当且仅当 $10^u \le  v$$log u \le  v$ 当且仅当 $u \le  10^v$$u \le  v$ 当且仅当 $?^u \le  ?^v$ln u > v 当且仅当 u > e^vu > ln v 当且仅当 e^u > vlog u > v 当且仅当 u > 10^vu > log v 当且仅当 10^u > vu > v 当且仅当 ?^u > ?^v$ln u \ge  v$ 当且仅当 $u \ge  e^v$$u \ge  ln v$ 当且仅当 $e^u \ge  v$$log u \ge  v$ 当且仅当 $u \ge  10^v$$u \ge  log v$ 当且仅当 $10^u \ge  v$$u \ge  v$ 当且仅当 $?^u \ge  ?^v$指数函数支配多项式代数函数支配对数函数$$10^(log a) = a$$$log 10^n = n$  ($n$ 实数)log 1 = 0log 10 = 1$log a = (ln a)/(ln 10)$$$u^v = 10^(v log u)$$完全分解数提取10的幂$$10^(n log a) = a^n$$log(a/b) = -log(b/a)log(b,a/c) = -log(b,c/a)$log a^n = n log a$$log ab = log a + log b$$log 1/a = -log a$$log a/b = log a - log b$$log a + log b = log ab$$log a - log b = log a/b$$log a + log b - log c =log ab/c$$n log a = log a^n (n 实数)$$log \sqrt a = \onehalf  log a$$log ^n\sqrt a = (1/n) log a$提取底数的幂$log u = (1/?) log u^?$数值计算对数$$e^(ln a) = a$$ln e = 1ln 1 = 0ln e^n = n (n 实数)$$u^v = e^(v ln u)$$$$e^((ln c) a) = c^a$$ln a^n = n ln a$ln ab = ln a + ln b$ln 1/a = -ln a$ln a/b = ln a - ln b$$ln a + ln b = ln ab$$ln a - ln b = ln a/b$$ln a + ln b - ln c = ln (ab/c)$$n ln a = ln a^n  (n 实数)$$ln \sqrt a = \onehalf  ln a$$ln ^n\sqrt a = (1/n) ln a$ln u = (1/?) ln u^?ln(a/b) = -ln(b/a)sin u cos v + cos u sin v = sin(u+v)sin u cos v - cos u sin v = sin(u-v)cos u cos v - sin u sin v = cos(u+v)cos u cos v + sin u sin v = cos(u-v)(sin u)/(1+cos u) = tan(u/2)(1-cos u)/sin u = tan(u/2)(1+cos u)/(sin u) = cot(u/2)sin u/(1-cos u) = cot(u/2)(tan u+tan v)/(1-tan u tan v) = tan(u+v)(tan u-tan v)/(1+tan u tan v) = tan(u-v)(cot u cot v-1)/(cot u+cot v) = cot(u+v)(1+cot u cot v)/(cot v-cot u) = cot(u-v)1-cos u = 2 sin^2(u/2)极坐标形式$$r e^(i theta ) = r (cos theta  + i sin theta )$$$$ abs(e^(i theta )) = 1$$$$abs(re^(i theta )) =r$$ 假设 $r\ge 0$$$abs(re^(i theta )) = abs(r)$$$$-a = ae^(pi i)$$$$root(n,-a) = e^(pi  i/n) root(n,a)$$ 假设 $a\ge 0$$$a/(ce^(ti)) = ae^(-ti)/c$$de Moivre定理代入具体整数$$b^(log(b,a)) = a$$$$b^(n log(b,a)) = a^n$$log(b,b) = 1log(b,b^n) = nlog xy = log x + log ylog (1/x) = -log xlog x/y = log x-log ylog(b,1) = 0分解底数: log(4,x)=log(2^2,x)$$log(b^n,x) = (1/n) log (b,x)$$log x^n = n log xlog x + log y = log xylog x - log y = log x/ylog x + log y - log z =log xy/zn log x = log x^n (n 实数)$$log(b,x) = (ln x) / ln b$$$$log(b,x) = (log x) / log b$$$$log(b,x) = log(a,x) / log(a,b)$$$$log(10,x) = log x$$$$log(e,x) = ln x$$log x = (ln x) / ln 10ln x = (log x) / log e$$u^v = b^(v log(b,u))$$sin 0 = 0cos 0 = 1tan 0 = 0$sin k\pi  = 0$$cos 2k\pi   = 1$$tan k\pi  = 0$找到小于 $360\deg $ 的同终角找到小于 $2\pi $ 的同终角角度是 $90\deg  $ 的倍数使用 1-2-$\sqrt 3$ 三角形使用 1-1-$\sqrt 2$ 三角形将弧度转换为度数将度数转换为弧度角度 = $a 30\deg   + b 45\deg  $ 等等数值计算tan u = sin u / cos ucot u = 1 / tan ucot u = cos u / sin usec u = 1 / cos ucsc u = 1 / sin usin u / cos u = tan ucos u / sin u = cot ucot u = csc u / sec u1 / sin u = csc u1 / cos u = sec u1 / tan u = cot u1 / tan u = cos u / sin u1 / cot u = tan u1 / cot u = sin u / cos u1 / sec u = cos u1 / csc u = sin usin u = 1 / csc ucos u = 1 / sec utan u = 1 / cot u$sin^2 u + cos^2 u = 1$$1 - sin^2 u = cos^2 u$$1 - cos^2 u = sin^2 u$$sin^2 u = 1 - cos^2 u$$cos^2 u = 1 - sin^2 u$$sec^2 u - tan^2 u = 1$$tan^2 u + 1 = sec^2 u$$sec^2 u - 1 = tan^2 u$$sec^2 u = tan^2 u + 1$$tan^2 u = sec^2 u - 1$$sin^(2n+1) u = sin u (1-cos^2 u)^n$$cos^(2n+1) u = cos u (1-sin^2 u)^n$$tan^(2n+1) u = tan u (sec^2 u-1)^n$$sec^(2n+1) u = sec u (tan^2 u+1)^n$(1-cos t)^n(1+cos t)^n = sin^(2n) t(1-sin t)^n(1+sin t)^n = cos^(2n) t$csc^2 u - cot^2 u = 1$$cot^2 u + 1 = csc^2 u$$csc^2 u - 1 = cot^2 u$$csc^2 u = cot^2 u + 1$$cot^2 u = csc^2 u - 1$$csc(\pi /2-\theta ) = sec \theta $$cot(\pi /2-\theta ) = tan \theta $$cot^(2n+1) u = cot u (csc^2 u-1)^n$$csc^(2n+1) u = csc u (cot^2 u+1)^n$sin(u+v)= sin u cos v + cos u sin vsin(u-v)= sin u cos v - cos u sin vcos(u+v)= cos u cos v - sin u sin vcos(u-v)= cos u cos v + sin u sin vtan(u+v)=(tan u+tan v)/(1-tan u tan v)tan(u-v)=(tan u-tan v)/(1+tan u tan v)cot(u+v)=(cot u cot v-1)/(cot u+cot v)cot(u-v)=(1+cot u cot v)/(cot v-cot u)$sin 2\theta  = 2 sin \theta  cos \theta $$cos 2\theta  = cos^2 \theta  - sin^2 \theta $$cos 2\theta  = 1 - 2 sin^2 \theta $$cos 2\theta  = 2 cos^2 \theta  - 1$$cos 2\theta  + 1 = 2cos^2 \theta $$cos 2\theta  - 1 = - 2 sin^2 \theta $$tan 2\theta  = 2 tan \theta /(1 - tan^2 \theta )$$cot 2\theta  = (cot^2 \theta  -1) / (2 cot \theta )$$sin \theta  cos \theta  = \onehalf  sin 2\theta $$2 sin \theta  cos \theta  =  sin 2\theta $$cos^2 \theta  - sin^2 \theta  = cos 2\theta  $$1 - 2 sin^2 \theta  = cos 2\theta $$2 cos^2 \theta  - 1 = cos 2\theta $$n\theta  = (n-1)\theta  + \theta $$n\theta  = ?\theta +(n-?)\theta $$sin 3\theta  = 3 sin \theta  - 4 sin^3 \theta $$cos 3\theta  = -3 cos \theta  + 4 cos^3 \theta $展开 $sin n\theta $ 在 $sin \theta $, $cos \theta $展开 $cos n\theta $ 在 $sin \theta $, $cos \theta $切换两边将 ? 从左移到右将 ? 从右移到左两边消去项两边同时乘幂两边同时开平方两边同时开根号两边同时应用函数数值检查做替换, u = ?$sin(u)=\onehalf$ 当且仅当 $u=\pi /6$ 或 $5\pi /6+2n\pi $$sin(u)=-\onehalf$ 当且仅当 $u=-\pi /6$ 或 $-5\pi /6+2n\pi $$sin(u)=\sqrt 3/2$ 当且仅当 $u=\pi /3$ 或 $2\pi /3+2n\pi $$sin(u)=-\sqrt 3/2$ 当且仅当 $4u=-\pi /3$ 或 $-2\pi /3+2n\pi $$cos(u)=\sqrt 3/2$ 当且仅当 $u=\pm \pi /6 + 2n\pi $$cos(u)=-\sqrt 3/2$ 当且仅当 $u=\pm 5\pi /6 + 2n\pi $$cos(u)=\onehalf$ 当且仅当 $u=\pm \pi /3+2n\pi $$cos(u)=-\onehalf$ 当且仅当 $u=\pm  2\pi /3+2n\pi $$tan(u)=1/\sqrt 3$ 当且仅当 $u= \pi /6 + n\pi $$tan(u)=-1/\sqrt 3$ 当且仅当 $u= -\pi /6 + n\pi $$tan(u)=\sqrt 3$ 当且仅当 $u= \pi /3 + n\pi $$tan(u)=-\sqrt 3$ 当且仅当 $u= 2\pi /3 + n\pi $$sin u = 1/\sqrt 2$ 若 $u=\pi /4$ 或 $3\pi /4 + 2n\pi $$sin u=-1/\sqrt 2$ 若 $u=5\pi /4$ 或 $7\pi /4 + 2n\pi $2$cos u = 1/\sqrt 2$ 若 $u=\pi /4$ 或 $7\pi /4 + 2n\pi $$cos u=-1/\sqrt 2$ 若 $u=3\pi /4$ 或 $5\pi /4 + 2n\pi $tan u = 1 若 $u= \pi /4$ 或 $5\pi /4 + 2n\pi $tan u = -1 若 $u=3\pi /4$ 或 $7\pi /4 + 2n\pi $sin u = 0 当且仅当 $u = n\pi $sin u = 1 当且仅当 $u = \pi /2+2n\pi $sin u = -1 当且仅当 $u = 3\pi /2+2n\pi $cos u = 0 当且仅当 $u = (2n+1)\pi /2$cos u = 1 当且仅当 $u = 2n\pi $cos u = -1 当且仅当 $u = (2n+1)\pi $tan u = 0 当且仅当 sin u = 0cot u = 0 当且仅当 cos u = 0sin u=c 当且仅当 $u= (-1)^narcsin c+n\pi $sin u=c 当且仅当 $u=arcsin(c)+2n\pi $ 或 $2n\pi +\pi -arcsin(c)$cos u=c 当且仅当 $u=\pm arccos c+2n\pi $tan u=c 当且仅当 $u=arctan c+n\pi $准确求值 arcsin准确求值 arccos准确求值 arctanarccot x = arctan (1/x)arcsec x = arccos (1/x)arccsc x = arcsin (1/x)arcsin(-x) = -arcsin x$arccos(-x) = \pi -arccos x$arctan(-x) = -arctan x将解写成周期形式若 |c|>1 则舍弃 sin u = c若 |c|>1 则舍弃 cos u = c$tan(arcsin x) = x/\sqrt (1-x^2)$$tan(arccos x) = \sqrt (1-x^2)/x$tan(arctan x) = xsin(arcsin x) = x$sin(arccos x) = \sqrt (1-x^2)$$sin(arctan x) = x/\sqrt (x^2+1)$$cos(arcsin x) = \sqrt (1-x^2)$cos(arccos x) = x$cos(arctan x) = 1/\sqrt (x^2+1)$$sec(arcsin x) = 1/\sqrt (1-x^2)$$sec(arccos x) = 1/x$$sec(arctan x) = \sqrt (x^2+1)$$arctan(tan \theta ) = \theta $6 if $-\pi /2\le \theta \le \pi /2$$arcsin(sin \theta ) = \theta $ if $-\pi /2\le \theta \le \pi /2$$arccos(cos \theta ) = \theta $ if $0\le \theta \le \pi $arctan(tan x) = x + c1arcsin x + arccos x = $\pi /2$$arctan x + arctan 1/x = \pi x/2|x|$$sin(\pi /2-\theta ) = cos \theta $$cos(\pi /2-\theta ) = sin \theta $$tan(\pi /2-\theta ) = cot \theta $$sec(\pi /2-\theta ) = csc \theta $$sin \theta  = cos(\pi /2-\theta )$$cos \theta  = sin(\pi /2-\theta )$$tan \theta  = cot(\pi /2-\theta )$$cot \theta  = tan(\pi /2-\theta )$$sec \theta  = csc(\pi /2-\theta )$$csc \theta  = sec(\pi /2-\theta )$$sin(90\deg -\theta ) = cos \theta $$cos(90\deg -\theta ) = sin \theta $$tan(90\deg -\theta ) = cot \theta $$cot(90\deg -\theta ) = tan \theta $$sec(90\deg -\theta ) = csc \theta $$csc(90\deg -\theta ) = sec \theta $$sin \theta  = cos(90\deg -\theta )$$cos \theta  = sin(90\deg -\theta )$$tan \theta  = cot(90\deg -\theta )$$cot \theta  = tan(90\deg -\theta )$$sec \theta  = csc(90\deg -\theta )$$csc \theta  = sec(90\deg -\theta )$$a\deg  + b\deg  = (a+b)\deg $$ca\deg  = (ca)\deg $$a\deg /c = (a/c)\deg $sin(-u) = - sin ucos(-u) = cos utan(-u) = - tan ucot(-u) = - cot usec(-u) = sec ucsc(-u) = - csc u$sin^2(-u) = sin^2 u$$cos^2(-u) = cos^2 u$$tan^2(-u) = tan^2 u$$cot^2(-u) = cot^2 u$$sec^2(-u) = sec^2 u$$csc^2(-u) = csc^2 u$$sin(u+2\pi ) = sin u$$cos(u+2\pi ) = cos u$$tan(u+\pi ) = tan u$$sec(u+2\pi ) = sec u$$csc(u+2\pi ) = csc u$$cot(u+\pi ) = cot u$$sin^2(u+\pi ) = sin^2 u$$cos^2(u+\pi ) = cos^2 u$$sec^2(u+\pi ) = sec^2 u$$csc^2(u+\pi ) = csc^2 u$$sin u = -sin(u-\pi )$$sin u = sin(\pi -u)$$cos u = -cos(u-\pi )$$cos u = -cos(\pi -u)$$sin^2(\theta /2) = (1-cos \theta )/2$$cos^2(\theta /2) = (1+cos \theta )/2$$sin^2(\theta ) = (1-cos 2\theta )/2$$cos^2(\theta ) = (1+cos 2\theta )/2$$tan(\theta /2) = (sin \theta )/(1+cos \theta )$$tan(\theta /2) = (1-cos \theta )/sin \theta $$cot(\theta /2) = (1+cos \theta )/(sin \theta )$$cot(\theta /2) = sin \theta /(1-cos \theta )$$sin(\theta /2) = \sqrt ((1-cos \theta )/2)$ if $sin(\theta /2)\ge 0$$sin(\theta /2) = -\sqrt ((1-cos \theta )/2)$ if $sin(\theta /2)\le 0$$cos(\theta /2) = \sqrt ((1+cos \theta )/2)$ if $cos(\theta /2)\ge 0$$cos(\theta /2) = -\sqrt ((1+cos \theta )/2)$ if $cos(\theta /2)\le 0$$\theta  = 2(\theta /2)$$sin x cos x = \onehalf  sin 2x$$sin x cos y = \onehalf [sin(x+y)+sin(x-y)]$$cos x sin y = \onehalf [sin(x+y)-sin(x-y)]$$sin x sin y = \onehalf [cos(x-y)-cos(x+y)]$$cos x cos y = \onehalf [cos(x+y)+cos(x-y)]$$sin x + sin y = 2 sin \onehalf (x+y) cos \onehalf (x-y)$$sin x - sin y = 2 sin \onehalf (x-y) cos \onehalf (x+y)$$cos x + cos y = 2 cos \onehalf (x+y) cos \onehalf (x-y)$$cos x - cos y = -2 sin \onehalf (x+y) sin \onehalf (x-y)$在三角函数中用u,v代替表达式数值试验$lim u\pm v = lim u \pm  lim v$$lim u-v = lim u - lim v$$$lim(t->a,c) = c$$ (c 为常数)$$lim(t->a,t) = a$$lim cu=c lim u (c 为常数)lim -u = -lim ulim uv = lim u lim v$lim u^n = (lim u)^n$lim c^v=c^(\lim v) (c 为常数 > 0)lim u^v=(lim u)^(\lim v)$lim \sqrt u=\sqrt (lim u)$ 如果 lim u>0$lim ^n\sqrt u = ^n\sqrt (lim u)$ 如果 n 为奇数$lim ^n\sqrt u = ^n\sqrt (lim u)$ 如果 lim u > 0$$lim(t->a,f(t))=f(a)$$ (多项式 f)lim |u| = |lim u|lim cu/v = c lim u/v (c 为常数)lim c/v  = c/lim v (c 为常数)lim u/v = lim u/lim v在 x \to a 的极限中提出 (x-a)^n有理函数的极限有理化分数提出非零有限极限提出常数分子和分母乘以?分子和分母除以?lim u/v = lim (u/?) / lim (v/?)(ab+ac+d)/q = a(b+c)/q + d/q$\sqrt a/b = \sqrt (a/b^2)$  如果 b>0$\sqrt a/b = -\sqrt (a/b^2)$ 如果 b<0$^n\sqrt a/b = ^n\sqrt (a/b^n)$ (b>0 或 n 为奇数)$^n\sqrt a/b = -^n\sqrt (a/b^n)$ (b<0, n 为偶数)$a/\sqrt b = \sqrt (a^2/b)$  如果 $a\ge 0$$a/\sqrt b = -\sqrt (a^2/b)$ 如果 $a\le 0$$a/^n\sqrt b = ^n\sqrt (a^n/b)$ ($a\ge 0$ 或 n 为奇数)$a/^n\sqrt b = -^n\sqrt (a^n/b)$ ($a\le 0$, n 为偶数)洛必达法则一步求导lim u ln v = lim (ln v)/(1/u)$lim u (ln v)^n = lim (ln v)^n/(1/u)$$lim x^(-n) u = lim u/x^n$lim u e^x = lim u/e^(-x)将三角函数移至分母lim ?v = lim v/(1/?)通分并简化分子(sin t)/t \to 1 当 t\to 0(tan t)/t \to 1 当 t\to 0(1-cos t)/t \to 0 当 t\to 0$(1-cos t)/t^2\to \onehalf $ 当 t\to 0$$lim(t->0,(1+t)^(1/t)) = e$$$(ln(1\pm t))/t \to \pm 1$ 当 t\to 0(e^t-1)/t \to 1 当 t\to 0(e^(-t)-1)/t \to -1 当 t\to 0$lim(t\to 0,t^nln |t|)=0 (n > 0)$$$lim(t->0,cos(1/t))$$ 未定义$$lim(t-> 0,sin(1/t))$$ 未定义$$lim(t-> 0,tan(1/t))$$ 未定义$lim(t-> \pm \infty, cos t)$ 未定义$lim(t-> \pm \infty, sin t)$ 未定义$lim(t-> \pm \infty, tan t)$ 未定义(sinh t)/t \to 1 当 t\to 0(tanh t)/t \to 1 当 t\to 0(cosh t - 1)/t \to 0 当 t\to 0(cosh t - 1)/t^2\to \onehalf 当 t\to 0lim ln u=ln lim u (如果 lim u > 0)lim f(u)=f(lim u), f 连续改变极限变量一步求极限$$lim(t->a, u^v) = lim(t->a, e^(v ln u))$$由于定义域未定义极限$$lim(t->a,u) = e^(lim(t->a, ln u))$$挤压定理: uv\to 0 如果 v\to 0 且 $|u|\le c$$lim \sqrt u-v=lim (\sqrt u-v)(\sqrt u+v)/(\sqrt u+v)$lim u/v = 主要项的极限主要项: lim(u+a)=lim(u) 如果 a/u\to 0用主要项代替和f(未定义) = 未定义$$lim(t->a,e^u) = e^(lim(t->a, u))$$lim(ln u) = ln(lim u)$$lim(t->0+,t ln t) = 0$$$$lim(t->0+,t^n ln t) = 0$$ 如果 $n\ge 1$$$lim(t->0+,t (ln t)^n) = 0$$ 如果 $n\ge 1$$$lim(t->0+,t^k (ln t)^n) = 0$$ 如果 $k,n\ge 1$$$lim(t->infinity ,ln(t)/t) = 0$$$$lim(t->infinity  ,ln(t)^n/t) = 0$$ 如果 $n\ge 1$$$lim(t->infinity ,ln(t)/t^n) = 0$$ 如果 $n\ge 1$$$lim(t->infinity ,ln(t)^k/t^n) = 0$$ 如果 $k,n\ge 1$$$lim(t->infinity ,t/ln(t)) = infinity $$$$lim(t->infinity ,t/ln(t)^n) = infinity$$ 如果 $n\ge 1$$$lim(t->infinity ,t^n/ln(t)) = infinity$$ 如果 $n\ge 1$$$lim(t->infinity ,t^n/ln(t)^k) = infinity$$ 如果 $k,n\ge 1$$$lim(t->infinity ,1/t^n) = 0$$ 如果 $n\ge 1$$$lim(t->infinity,t^n) = infinity$$ 如果 $n\ge 1$$$lim(t->infinity,e^t) = infinity$$$$lim(t->-infinity,e^t) = 0$$$$lim(t->infinity,ln t) = infinity $$$$lim(t->infinity,\sqrt t) = infinity $$$$lim(t->infinity,t^n\sqrt t) = infinity $$$lim(t\to\pm \infty ,arctan t) = \pm \pi /2$$$lim(t->infinity,arccot t) = 0$$$$lim(t->-infinity,arccot t) = pi $$$lim(t\to\pm \infty ,tanh t) = \pm 1$$lim \sqrt u-v=lim (\sqrt u-v)(\sqrt u+v)/\sqrt u+v)$lim sin u = sin(lim u)lim cos u = cos(lim u)将 $\infty $ 处的极限转化为 0 处的极限lim u/v = 主项极限$$lim(u->0, 1/u^(2n)) = infinity $$$lim(1/u^n)$ 未定义 如果 $u\to0$ 且 $n$ 是奇数$$lim(t->a+,1/u^n) = infinity $$ 如果 $u\to0$$$lim(t->a-,1/u^n)=-infinity $$ 如果 $u\to0$ 且 $n$ 是奇数$lim u/v$ 未定义 如果 $lim v =0$ 且 $lim u \neq 0$$$lim(t-> 0+,ln t) = -infinity $$$lim(t\to(2n+1)\pi /2\pm ,tan t) = \pm \infty $$lim(t\to n\pi \pm ,cot t) = \pm \infty $$lim(t\to(2n+1)\pi /2\pm ,sec t) = \pm \infty $$lim(t\to n\pi \pm ,csc t) = \pm \infty $$lim(uv) = lim(u/?) lim(?v)$$lim(uv) = lim(?u) lim(v/?)$$\pm \infty $/正数 = $\pm \infty $非零/$\pm \infty $ = 0正数$\times \pm \infty  = \pm \infty $$\pm \infty \times \infty  = \pm \infty $$\pm \infty $ + 有限值 = $\pm \infty $$\infty  + \infty  = \infty $$$u^infty  = infty $$ 如果 u > 1$$u^infty  = 0$$ 如果 0 < u < 1$$u^(-infty ) = 0$$ 如果 u > 1$$u^(-infty ) = infty $$ 如果 0 < u < 1$\infty ^n = \infty $ 如果 n > 0$\infty  - \infty  =$ 未定义$a/0+ = \infty $ 如果 $a>0$$a/0- = -\infty $ 如果 $a>0$a/0 = 未定义$\infty /0+ = \infty $$\infty /0- = -\infty $$\infty /0$ = 未定义$\infty /0^2 = \infty $$\infty /0^2^n = \infty $$a/0^2 = \infty $ 如果 $a > 0$$a/0^2 = -\infty $ 如果 $a < 0$$a/0^2^n = \infty $ 如果 $a > 0$$a/0^2^n = -\infty $ 如果 $a < 0$$ln \infty  = log \infty  = \infty $$\sqrt \infty  = \infty $$^n\sqrt \infty  = \infty $$arctan \pm \infty  = \pm \pi /2$$arccot \infty  = 0$$arccot -\infty  = \pi $$arcsec \pm \infty  = \pi /2$$arccsc \pm \infty  = 0$在 $\infty $ 的三角极限未定义$cosh \pm \infty  = \infty $$sinh \pm \infty  = \pm \infty $$tanh \pm \infty  = \pm 1$$ln 0 = -\infty $dc/dx=0 (c 不依赖于 x)dx/dx = 1$d/dx (u \pm  v) = du/dx \pm  dv/dx$d/dx (-u) = -du/dxd/dx(cu)=c du/dx (c 不依赖于 x)d/dx x^n = n x^(n-1)微分多项式f'(x) = d/dx f(x)$$diff(f,x) = lim(h->0,(f(x+h)-f(x))/h)$$d/dx (cu) = c du/dx (c 不依赖于 x)d/dx (u/c)=(1/c)du/dx (c 不依赖于 x)d/dx (uv) = u (dv/dx) + v (du/dx)d/dx (1/v) = -(dv/dx)/v^2d/dx (u/v)=[v(du/dx)-u(dv/dx)]/v^2$d/dx \sqrt x = 1/(2\sqrt x)$$$diff(root(n,x),x)= diff( x^(1/n),x)$$$$diff(c/x^n,x) = -nc/x^(n+1)$$d/dx |x| = x/|x|d/dx sin x = cos xd/dx cos x = - sin xd/dx tan x = sec^2 xd/dx sec x = sec x tan xd/dx cot x = - csc^2 xd/dx csc x = - csc x cot xd/dx e^x = e^xd/dx c^x = (ln c) c^x, c 常量$$diff(u^v,x) =  diff(e^(v ln u),x)$$d/dx ln x = 1/xd/dx ln |x| = 1/xdy/dx = y (d/dx) ln yd/dx e^u = e^u du/dxd/dx c^u=(ln c)c^u du/dx, c 常量d/dx ln u = (1/u)(du/dx)d/dx ln |u| = (1/u) du/dxd/dx ln(cos x) = -tan xd/dx ln(sin x) = cot x$d/dx arctan x = 1/(1+x^2)$$d/dx arcsin x = 1/\sqrt (1-x^2)$$d/dx arccos x = -1/\sqrt (1-x^2)$$d/dx arccot x = -1/(1+x^2)$$d/dx arcsec x = 1/(|x|\sqrt (x^2-1))$$d/dx arccsc x = -1/(|x|\sqrt (x^2-1))$$d/dx arctan u = (du/dx)/(1+u^2)$$d/dx arcsin u = (du/dx)/\sqrt (1-u^2)$$d/dx arccos u = -(du/dx)/\sqrt (1-u^2)$$d/dx arccot u = -(du/dx)/(1+u^2)$$d/dx arcsec u=(du/dx)/(|u|\sqrt (u^2-1))$$d/dx arccsc u=-(du/dx)/(|u|\sqrt (u^2-1))$d/dx u^n = nu^(n-1) du/dx$d/dx \sqrt u = (du/dx)/(2\sqrt u)$d/dx sin u = (cos u) du/dxd/dx cos u = -(sin u) du/dx$d/dx tan u = (sec^2 u) du/dx$d/dx sec u=(sec u tan u) du/dx$d/dx cot u = -(csc^2 u) du/dx$d/dx csc u=-(csc u cot u) du/dxd/dx |u| = (u du/dx)/|u|d/dx f(u) = f'(u) du/dx进行替换, $u = ?$消除已定义变量数值实验考虑 f'(x)=0 的点考虑区间的端点f'(x) 未定义的点考虑开放端点的极限拒绝区间外的点制作 y 值的十进制表制作 y 值的精确表选择最大值选择最小值一步计算导数解决简单方程一步计算极限消除整数参数函数是常数计算导数微分方程通过替换消除导数简化和乘积消除复合分数公分母和简化提取公因数因式分解表达式(非整数)乘积并简化在 u/v 中显示公因数写成多项式(在 ? 中)表达为多项式使首项系数为 1$x^(\onehalf) = \sqrt x$将分数指数转换为根号将根号转换为分数指数u=v => du/dx = dv/dx$d^2u/dx^2 = (d/dx)(du/dx)$$d^nu/dx^n= d/dx d^(n-1)u/dx^(n-1)$$d/dx du/dx = d^2u/dx^2$$d/dx d^nu/dx^n = d^(n+1)/dx^(n+1)$在一点处数值计算$\int 1 dt = t$$\int c dt = ct$ (c 为常数)$\int t dt = t^2/2$$\int cu dt = c\int u dt$ (c 为常数)$\int (-u)dt = -\int u dt$$\int u+v dt = \int u dt + \int v dt$$\int u-v dt = \int u dt - \int v dt$$\int au\pm bv dt = a\int u dt \pm b\int v dt$$$ integral( t^n,t)=t^(n+1)/(n+1)$$ (n \neq -1)$$integral( 1/t^(n+1),t)= -1/(nt^n)$$ (n \neq 0)积分多项式$\int (1/t) dt = ln |t|$$\int 1/(t\pm a) dt = ln |t\pm a|$将被积函数展开展开被积函数中的 $(a+b)^n$$\int |t| dt = t|t|/2$$\int sin t dt = -cos t$$\int cos t dt = sin t$$\int tan t dt = -ln |cos t|$$\int cot t dt = ln |sin t|$$\int sec t dt = ln |sec t + tan t|$$\int csc t dt = ln |csc t - cot t|$$\int sec^2 t dt = tan t$$\int csc^2 t dt = -cot t$$\int tan^2 t dt = tan t - t$$\int cot^2 t dt = -cot t - t$$\int sec t tan t dt = sec t$$\int csc t cot t dt = -csc t$$\int sin ct dt = -(1/c) cos ct$$\int cos ct dt = (1/c) sin ct$$\int tan ct dt = -(1/c) ln |cos ct|$$\int cot ct dt = (1/c) ln |sin ct|$$\int sec ct dt = (1/c) ln |sec ct + tan ct|$$\int csc ct dt = (1/c) ln |csc ct - cot ct|$$\int sec^2 ct dt = (1/c) tan ct$$\int csc^2 ct dt = -(1/c) cot ct$$\int tan^2 ct dt = (1/c) tan ct - t$$\int cot^2 ct dt = -(1/c) cot ct - t$$\int sec ct tan ct dt = (1/c) sec ct$$\int csc ct cot ct dt = -(1/c) csc ct$$\int e^t dt = e^t$$\int e^(ct) dt =(1/c) e^(ct)$$\int e^(-t)dt = -e^(-t)$$\int e^(-ct)dt = -(1/c) e^(-ct)$$$integral( e^(t/c),t) = c e^(t/c)$$$\int c^t dt = (1/ln c) c^t$$$ integral(u^v,t) = integral (e^(v ln u),t)$$$\int ln t = t ln t - t$$$integral(e^(-t^2),t) = sqrt(pi)/2 Erf(t)$$选择代换 u = ?计算机选择代换 u求方程的导数再次显示积分被积函数 = $f(u) \times  du/dx$$\int  f(u) (du/dx) dx = \int  f(u) du$消去定义的变量用代换积分 (u = ?)用代换法积分用代换法积分并展示步骤$\int u dv = uv - \int v du  (u = ?)$$\int u dv = uv - \int v du$设置当前行为原始将原始积分移至左侧使用换元法积分 (u = ?)通过换元法积分计算简单积分通过换元积分并显示步骤$$integral(f'(x),x,a,b)=f(b)-f(a)$$$$diff(integral(f(t),t,a,x),x) = f(x)$$$$eval(f(t),t,a,b) = f(b) - f(a)$$$$eval(ln f(t),t,a,b) = ln(f(b)/f(a))$$$$integral(u,t,a,b) = - integral(u,t,b,a)$$$$integral(u,t,a,b) + integral(u,t,b,c) = integral(u,t,a,c)$$$$integral(u,t,a,c) = integral(u,t,a,?) + integral(u,t,?,c)$$将 $\int |f(t)| dt$ 在 f 的零点处分开通过数值方法计算带参数的积分数值计算积分$$integral(u,t,a,a) = 0$$$$integral(u,x,a,infinity) = lim(t->infinity,integral(u,x,a,t))$$$$integral(u,x,-infinity,b) = lim(t->-infinity,integral(u,x,t,b))$$$$integral(u,x,a,b) = lim(t->a+,integral(u,x,t,b))$$$$integral(u,x,a,b) = lim(t->b-,integral(u,x,a,t))$$被积函数在 $\infty $ 处的极限不为零被积函数在 $-\infty $ 处的极限不为零$$integral(u,t,-a,a) = 0$$ (u 为奇函数)$$integral(u,t,-a,a) = 2 integral(u,t,0,a)$$ (u 为偶函数)$x = a sin \theta$ 用于 $\sqrt (a^2-x^2)$$x = a tan \theta$ 用于 $\sqrt (a^2+x^2)$$x = a sec \theta$ 用于 $\sqrt (x^2-a^2)$$x = a sinh \theta$ 用于 $\sqrt (a^2+x^2)$$x = a cosh \theta$ 用于 $\sqrt (x^2-a^2)$$x = a tanh \theta$ 用于 $\sqrt (a^2-x^2)$定义逆代换 x = ?求导数一步完成简单积分$sin^2 t = (1-cos 2t)/2$ 在积分中$cos^2 t = (1+cos 2t)/2$ 在积分中u=cos x 使用 $sin^2=1-cos^2$ 后u=sin x 使用 $cos^2=1-sin^2$ 后u=tan x 使用 $sec^2=1+tan^2$ 后u=cot x 使用 $csc^2=1+cot^2$ 后u=sec x 使用 $tan^2=sec^2-1$ 后u=csc x 使用 $cot^2=csc^2-1$ 后$tan^2 x = sec^2 x - 1$ 在被积式中$2cot^2 x = csc^2 x - 1$ 在被积式中简化 $\int sec^n x dx$简化 $\int csc^n x dx$u = tan(x/2) (Weierstrass 代换)分子和分母乘以 1+cos x分子和分母乘以 1-cos x分子和分母乘以 1+sin x分子和分母乘以 1-sin x分子和分母乘以 sin x+cos x分子和分母乘以 cos x-sin x分母因式分解 (如果容易)显示 u/v 中的公因子无平方因子分解展开成部分分数$\int 1/(ct\pm b) dt = (1/c) ln |ct\pm b|$$\int 1/(ct\pm b)^(n+1) dt = -1/nc(ct\pm b)^n$$\int 1/(t^2+a^2)dt=(1/a)arctan(t/a)$$\int 1/(t^2-a^2)dt=(1/a)arccoth(t/a)$$\int 1/(t^2-a^2)dt=(1/2a)ln|(t-a)/(t+a)|$$\int 1/(a^2-t^2)dt=(1/a)arctanh(t/a)$$\int 1/(a^2-t^2)dt=(1/2a)ln|(t+a)/(a-t)|$$\int 1/\sqrt (a^2-t^2)dt = arcsin(t/a)$$\int 1/\sqrt (t^2\pm a^2)dt)=ln|t+\sqrt (t^2\pm a^2)|$$\int 1/(t\sqrt (t^2-a^2))dt=(1/a)arccos(t/a)$进行有理化替换$\int arcsin z dz = z arcsin z + \sqrt (1-z^2)$$\int arccos z dz = z arccos z - \sqrt (1-z^2)$$\int arctan z dz = z arctan z - \onehalf ln(1+z^2)$$\int arccot z dz = z arccot z + \onehalf ln(1+z^2)$$\int arccsc z dz = z arccsc z+ln(z + \sqrt (z^2-1)) (z>0)$$\int arccsc z dz = z arccsc z-ln(z + \sqrt (z^2-1)) (z<0)$$\int arcsec z dz = z arcsec z-ln(z + \sqrt (z^2-1)) (z>0)$$\int arcsec z dz = z arcsec z+ln(z + \sqrt (z^2-1)) (z<0)$通分并简化提取公因式展开并简化显示 u/v 中的公因式通过替换改变积分一步求简单积分吸收常数中的数字$\int  sinh u du = cosh u$$\int  cosh u du = sinh u$$\int  tanh u du = ln cosh u$$\int  coth u du = ln sinh u$$\int  csch u du = ln tanh(u/2)$$\int  sech u du = arctan (sinh u)$$$1/(1-x) = sum(x^n,n,0,infinity)$$$1/(1-x) = 1+x+x^2+...$$1/(1-x) = 1+x+x^2+...x^n...$$$1/(1+x) = sum((-1)^n x^n,n,0,infinity)$$$1/(1+x) = 1-x+x^2+...$$1/(1+x) = 1-x+x^2+...(-1)^nx^n...$$$sum(x^n,n,0,infinity)=1/(1-x)$$$1+x+x^2+... = 1/(1-x)$$1+x+x^2+...x^n...= 1/(1-x)$$$sum((-1)^n x^n,n,0,infinity) = 1/(1+x)$$$1-x+x^2+... = 1/(1+x)$$1-x+x^2+...(-1)^nx^n... = 1/(1+x)$$$x/(1-x) = sum(x^n,n,1,infinity)$$$x/(1-x) = x+x^2+x^3+...$$x/(1-x) = x+x^2+...x^n...$$$x/(1+x) = sum((-1)^(n+1) x^n,n,1,infinity)$$$x/(1+x) = x-x^2+x^3+...$$x/(1+x) = x-x^2+...(-1)^(n+1)x^n...$$$sum(x^n,n,1,infinity)=x/(1-x)$$$x+x^2+x^3+...=x/(1-x)$$x+x^2+...x^n...=x/(1-x)$$$sum((-1)^(n+1) x^n,n,1,infinity)=x/(1+x) $$$x-x^2+x^3+...=x/(1+x) $$x-x^2+...(-1)^(n+1)x^n...=x/(1+x) $$$1/(1-x^k) = sum(x^(kn),n,0,infinity)$$$$1/(1-x^k) =  sum(x^(kn),n,0,infinity,-3)$$$$1/(1-x^k) =  sum(x^(kn),n,0,infinity,2)$$$$x^m/(1-x^k) = sum(x^(kn+m),n,0,infinity)$$$$x^m/(1-x^k) =  sum(x^(kn+m),n,0,infinity,-3)$$$$x^m/(1-x^k) =  sum(x^(kn+m),n,0,infinity,2)$$$$sum(x^(kn),n,0,infinity)=1/(1-x^k)$$$$sum(x^(kn),n,0,infinity,-3)=1/(1-x^k)$$$$sum(x^(kn),n,0,infinity,2)=1/(1-x^k)$$$$sum(x^(m+kn),n,0,infinity)=x^m/(1-x^k)$$$$sum(x^(m+kn),n,0,infinity,-3)=x^m/(1-x^k)$$$$sum(x^(m+kn),n,0,infinity,2)=x^m/(1-x^k)$$$$1/(1+x^k) = sum((-1)^n x^(kn),n,0,infinity)$$$$1/(1+x^k) = sum((-1)^n x^(kn),n,0,infinity,-3)$$$$1/(1+x^k) = sum((-1)^n x^(kn),n,0,infinity,2)$$$$x^m/(1+x^k) = sum((-1)^n x^(kn+m),n,0,infinity)$$$$x^m/(1+x^k) = sum((-1)^n x^(kn+m),n,0,infinity,-3)$$$$x^m/(1+x^k) =  sum((-1)^n x^(kn+m),n,0,infinity,2)$$$$sum((-1)^nx^(kn),n,0,infinity)=1/(1+x^k)$$$$sum((-1)^nx^(kn),n,0,infinity,-3)=1/(1+x^k)$$$$sum((-1)^nx^(kn),n,0,infinity,2)=1/(1+x^k)$$$$sum((-1)^nx^(m+kn),n,0,infinity)=x^m/(1+x^k)$$$$sum((-1)^nx^(m+kn),n,0,infinity,-3)=x^m/(1+x^k)$$$$sum((-1)^nx^(m+kn),n,0,infinity,2)=x^m/(1+x^k)$$$$x^k/(1-x) = sum(x^n,n,k,infinity)$$$$x^k/(1-x) = sum(x^n,n,k,infinity,-3)$$$$x^k/(1-x) = sum(x^n,n,k,infinity,2)$$$$x^k/(1+x) = sum((-1)^nx^n,n,k,infinity)$$$$x^k/(1+x) = sum((-1)^nx^n,n,k,infinity,-3)$$$$x^k/(1+x) = sum((-1)^nx^n,n,k,infinity,2)$$$$sum(x^n,n,k,infinity) = x^k/(1-x)$$$$sum(x^n,n,k,infinity,-3) = x^k/(1-x)$$$$sum(x^n,n,k,infinity,2) = x^k/(1-x)$$$$sum((-1)^nx^n,n,k,infinity) = x^k/(1+x)$$$$sum((-1)^nx^n,n,k,infinity,-3) = x^k/(1+x)$$$$sum((-1)^nx^n,n,k,infinity,2) = x^k/(1+x)$$$$ln(1-x) = -sum(x^n/n,n,1,infinity)$$$$ln(1-x) = -sum(x^n/n,n,1,infinity,-3)$$$$ln(1-x) = -sum(x^n/n,n,1,infinity,2)$$$$ln(1+x) = sum((-1)^(n+1) x^n/n,n,1,infinity)$$$$ln(1+x) = sum((-1)^(n+1) x^n/n,n,1,infinity,-3)$$$$ln(1+x) = sum((-1)^(n+1) x^n/n,n,1,infinity,2)$$$$sum(x^n/n,n,1,infinity) = -ln(1-x)$$$$sum(x^n/n,n,1,infinity,-3)=-ln(1-x)$$$$sum(x^n/n,n,1,infinity,2)=-ln(1-x)$$$$sum((-1)^(n+1) x^n/n,n,1,infinity)=ln(1+x)$$$$sum((-1)^(n+1) x^n/n,n,1,infinity,-3)=ln(1+x)$$$$sum((-1)^(n+1) x^n/n,n,1,infinity,2)=ln(1+x)$$$$ sin x = sum( (-1)^n x^(2n+1)/(2n+1)!,n,0,infinity)$$$sin x = x-x^3/3!+x^5/5!+...$$sin x = x-x^3/3!+x^5/5!+...+ (-1)^nx^(2n+1)/(2n+1)!+...$$$cos x = sum( (-1)^n x^(2n)/(2n)!,n,0,infinity)$$$cos x = 1-\onehalf x^2+x^4/4! + ...$$cos x = 1-\onehalf x^2+...+(-1)^nx^(2n)/(2n)!+...$$$sum((-1)^n x^(2n+1)/(2n+1)!,n,0,infinity) =  sin x$$$x-x^3/3!+x^5/5!+... = sin x$$x-x^3/3!+x^5/5!+...+ (-1)^nx^(2n+1)/(2n+1)!+... =  sin x$$$sum( (-1)^n x^(2n)/(2n)!,n,0,infinity) = cos x$$$1-\onehalf x^2+x^4/4! + ... = cos x$$1-\onehalf x^2+...+(-1)^nx^(2n)/(2n)!+... = cos x$$$e^x = sum(x^n/n!,n,0,infinity)$$$e^x = 1+x+x^2/2!+...$$e^x = 1+x+...+x^n/n!...$$$sum(x^n/n!,n,0,infinity)= e^x$$$1+x+x^2/2!+ x^3/3!+... = e^x$$1+x+...+x^n/n!... = e^x$$$e^(-x) = sum((-x)^n x^n/n!,n,0,infinity)$$$e^(-x) = 1-x+x^2/2!+...$$e^(-x) = 1-x+...(-1)^nx^n/n!...$$$sum((-1)^nx^n/n!,n,0,infinity)= e^(-x)$$$1-x+x^2/2!+ x^3/3!+... = e^(-x)$$1-x+...+(-1)^nx^n/n!... = e^(-x)$$$arctan x = sum(x^(2n+1)/(2n+1),n,0,infinity)$$$arctan x = x -x^3/3 + x^5/5 ...$$arctan x = x -x^3/3 +...+ x^(2n+1)/(2n+1)+...$$$sum(x^(2n+1)/(2n+1),n,0,infinity) = arctan x$$$x -x^3/3 + x^5/5 ...=arctan x$$x -x^3/3 +...+ x^(2n+1)/(2n+1)+...=arctan x$$$(1+x)^alpha = sum(binomial(alpha,n) x^n,n,0,infinity)$$$$(1+x)^alpha = sum(binomial(alpha,n) x^n,n,0,infinity,-3)$$$$(1+x)^alpha = sum(binomial(alpha,n) x^n,n,0,infinity,2)$$$$sum(binomial(alpha,n) x^n,n,0,infinity)= (1+x)^alpha$$$$sum(binomial(alpha,n) x^n,n,0,infinity,-3)= (1+x)^alpha$$$$sum(binomial(alpha,n) x^n,n,0,infinity,2)= (1+x)^alpha$$$$tan x = sum((-1)^(n-1) (2^(2n)(2^(2n)-1) bernoulli(2n))/(2n)! x^(2n-1),n,0,infinity)$$$$tan x = sum((-1)^(n-1) (2^(2n)(2^(2n)-1) bernoulli(2n))/(2n)! x^(2n-1),n,0,infinity,-3)$$$$tan x = sum((-1)^(n-1) (2^(2n)(2^(2n)-1) bernoulli(2n))/(2n)! x^(2n-1),n,0,infinity,2)$$$$x cot x = sum((-1)^n (2^(2n)  bernoulli(2n))/(2n)! x^(2n-1),n,0,infinity)$$$$x cot x = sum((-1)^n (2^(2n)  bernoulli(2n))/(2n)! x^(2n-1),n,0,infinity,-3)$$$$x cot x = sum((-1)^n (2^(2n)  bernoulli(2n))/(2n)! x^(2n-1),n,0,infinity,2)$$$$x/(e^x-1) = 1-x/2 + sum(( bernoulli(2n))/((2n)!) x^(2n),n,1,infinity)$$$$x/(e^x-1) = 1-x/2 + sum(( bernoulli(2n))/((2n)!) x^(2n),n,1,infinity,-3)$$$$x/(e^x-1) = 1-x/2 + sum(( bernoulli(2n))/((2n)!) x^(2n),n,1,infinity,2)$$$$sec x =   sum( (-1)^n (eulernumber(2n))/((2n)!) x^(2n),n,1,infinity)$$$$sec x  =  sum(( eulernumber(2n))/((2n)!) x^(2n),n,1,infinity,-3)$$$$sec x  =   sum(( eulernumber(2n))/((2n)!) x^(2n),n,1,infinity,2)$$$$zeta(s) = sum(1/n^s,n,1,infinity)$$$$zeta(s) = sum(1/n^s,n,1,infinity,-3)$$$$zeta(s) = sum(1/n^s,n,1,infinity,-2)$$$$sum((-1)^n/n,n,1,infinity) = ln 2$$将级数表示为 $a_0 + a_1 + ...$将级数表示为 $a_0 + a_1 + a_2 + ... $使用...和通项表示级数使用求和符号表示级数在...之前显示另一项在...之前显示 ? 项显示已计算阶乘的项不要计算项中的阶乘以小数形式显示系数不要以小数形式显示系数望远镜级数乘以级数乘以幂级数用多项式除以幂级数用幂级数除以多项式除以幂级数级数平方幂级数平方将 $(\sum a_k x^k)^n$ 表示为级数加级数减级数拆分前几项通过减去项来降低下限将 ? 加到索引变量从索引变量中减去 ?$\sum (u\pm v) = \sum u \pm \sum v$逐项微分幂级数$\sum du/dx = d/dx \sum u$逐项积分幂级数$\sum \int u dx = \int \sum u dx$计算前几项的和$$u = integral(diff(u,x),x)$$$$u = integral(diff(u,t),t,0,x) + u0$$$$u = diff(integral(u,x),x)$$求解积分常数$\sum a_k = \sum a_(2k) + \sum a_(2k+1)$$\sum u$ 如果 $lim u$ 不为零则发散积分测试比值测试根测试收敛比较测试发散比较测试极限比较测试冷凝测试完成发散测试完成积分测试完成比值测试完成根测试完成比较测试完成极限比较测试完成冷凝测试比较测试的正结果比较测试的负结果$$sum(1/k,k,1,infinity) = infinity$$$$sum(1/k^2,k,1,infinity) = pi^2/6$$$$sum(1/k^s,k,1,infinity) = zeta(s)$$$$zeta(2k) = (2^(2k-1) abs(bernoulli(2k)) pi^(2k))/factorial(2k)$$$$ln(u+iv) = ln(re^(i theta ))$$$$ln(re^(i theta ))=ln r + i theta$$  $(-\pi <\theta \le \pi )$$ln i = i\pi /2$$ln(-1) = i\pi $$ln(-a) = ln a + i\pi  (a > 0)$$$cos theta  = (e^(i theta ) + e^(-i theta ))/2$$$$sin theta  = (e^(i theta ) - e^(-i theta ))/(2i)$$$$sqrt(re^(i theta))=sqrt(r) e^(i theta/2)$$ $  (-\pi < \theta \le \pi )$$$root(n,re^(i theta))=root(n,r) e^(i theta/n)$$ $  (-\pi < \theta \le \pi )$$$e^(i theta ) = cos  theta  + i sin theta $$$$e^(x+iy) = e^x cos y + i e^x sin y$$$$e^(i pi ) = -1$$$$e^(-ipi ) = -1$$$$e^(2n pi i) = 1$$$$e^((2n pi  + theta )i) = e^(i theta )$$sin(it) = i sinh tcos(it) = cosh tcosh(it) = cos tsinh(it) = i sin ttan(it) =  i tanh tcot(it) = -i coth ttanh(it) = i tan tcoth(it) = -i cot tcos t + i sin t = e^(it)cos t - i sin t = e^(-it)$$(e^(i theta ) + e^(-i theta ))/2 = cos theta $$$$(e^(i theta ) - e^(-i theta ))/2i = sin theta $$$$e^(i theta ) + e^(-i theta ) = 2 cos theta $$$$e^(i theta ) - e^(-i theta ) = 2i sin theta $$cosh u = (e^u+e^(-u))/2e^u + e^-u = 2 cosh usinh u = (e^u-e^(-u))/2e^u-e^(-u) = 2 sinh u[e^u + e^-u]/2 = cosh u[e^u-e^(-u)]/2 = sinh ucosh(-u) = cosh usinh(-u) = -sinh ucosh u + sinh u = e^ucosh u - sinh u = e^(-u)cosh 0 = 1sinh 0 = 0$$e^x = cosh x + sinh x$$$$e^(-x) = cosh x - sinh x$$$sinh^2u + 1 = cosh^2 u$$cosh^2 u - 1 = sinh^2u $$cosh^2 u - sinh^2u = 1$$cosh^2 u = sinh^2u + 1$$sinh^2u = cosh^2 u - 1$$1 - tan^2u = sech^2u$$1 - sech^2u = tan^2u$tanh u = sinh u / cosh usinh u / cosh u = tanh ucoth u = cosh u / sinh ucosh u / sinh u = coth usech u = 1 / cosh u1 / cosh u = sech ucsch u = 1 / sinh u1 / sinh u = csch u$tanh^2 u + sech^2 u = 1$$tanh^2 u = 1 - sech^2 u$$sech^2 u = 1 - tanh^2 u $$sinh(u\pm v)=sinh u cosh v \pm  cosh u sinh v$$cosh(u\pm v)=cosh u cosh v \pm  sinh u sinh v$sinh 2u = 2 sinh u cosh u$cosh 2u = cosh^2 u + sinh^2 u$$tanh(ln u) = (1-u^2)/(1+u^2)$$arcsinh x = ln(x + \sqrt (x^2+1))$$arccosh x = ln(x + \sqrt (x^2-1))$$arctanh x = \onehalf ln((1+x)/(1-x))$$sinh(asinh x) = x$$cosh(acosh x) = x$$tanh(atanh x) = x$$coth(acoth x) = x$$sech(asech x) = x$$csch(acsch x) = x$d/du sinh u = cosh ud/du cosh u = sinh u$d/du tanh u = sech^2 u$$d/du coth u = -csch^2 u$d/du sech u = -sech u tanh ud/du csch u = -csch u coth ud/du ln sinh u = coth ud/du ln cosh u = tanh u$d/du arcsinh u = 1/\sqrt (u^2+1)$$d/du arccosh u = 1/\sqrt (u^2-1)$$d/du arctanh u = 1/(1-u^2)$$d/du arccoth u = 1/(1-u^2)$$d/du arcsech u= -1/(u\sqrt (1-u^2))$$d/du arccsch u= -1/(|u|\sqrt (u^2+1))$sg(x) = 1 if x > 0sg(x) = -1 if x < 0sg(0) = 0sg(-x) = -sg(x)-sg(x) = sg(-x)sg(x) = |x|/x (x 非零)sg(x) = x/|x| (x 非零)abs(x) = x sg(x)$sg(x)^(2n) = 1$sg(x)^(2n+1) = sg(x)1/sg(x) = sg(x)d/dx sg(u) = 0 (u 非零)$\int  sg(x) = x sg(x)$$\int  sg(u)v dx = sg(u)\int  v dx$ (u 非零)sg(x) = 1 假设 x > 0sg(x) = -1 假设 x < 0$sg(au) = sg(u)$ 如果 $a > 0$$sg(au) = -sg(u)$ 如果 $a < 0$sg(au/b) = sg(u) 如果 $a/b > 0$sg(au/b) = - sg(u) 如果 $a/b < 0$sg(x^(2n+1)) = sg(x)sg(1/u) = sg(u)sg(c/u) = sg(u) 如果 $c > 0$u sg(u) = |u||u| sg(u) = u$$diff(J(0,x),x) = -J(1,x)$$$$diff(J(1,x),x) = J(0,x) - J(1,x)/x$$$$diff(J(n,x),x)=J(n-1,x)-(n/x)J(n,x)$$$$diff(Y(0,x),x) = -Y(1,x)$$$$diff(Y(1,x),x) = Y(0,x) - Y(1,x)/x$$$$diff( Y(n,x),x)=Y(n-1,x)-(n/x)Y(n,x)$$$$diff(I(0,x),x) = -I(1,x)$$$$diff(I(1,x),x) = I0(x) - I1(x)/x$$$$diff(I(n,x),x)=I(n-1,x)-(n/x)I(n,x)$$$$diff( K(0,x),x) = -K1(x)$$$$diff(K(1,x),x) = -K0(x) - K1(x)/x$$$$diff(K(n,x),x)= -K(n-1,x)-(n/x)K(n,x)$$expandmultiply if cancelscancel square roots以不同形式表示数字复数运算简化和简化乘积展开分数有符号分数复合分数指数展开幂负指数平方根高级平方根分数指数n次方根根的根根和分数复数因式分解高级因式分解解方程二次方程数值研究方程高级方程三次方程对数或指数方程多线性方程仅选择模式按项选择线性方程代入法解方程矩阵方法高级矩阵方法绝对值绝对值不等式严格不等式不等式涉及平方的不等式涉及倒数的不等式根和幂的不等式一侧为零的不等式二项式定理因式分解二项式展开Σ符号高级Σ符号归纳法证明三角不等式对数和幂的不等式以10为底的对数对数自然对数和e自然对数反三角和公式复数极坐标形式任意底的对数对数换底计算三角函数基础三角函数三角函数的倒数三角函数的平方恒等式余割和余切恒等式三角和公式二倍角公式展开sin(nx)或cos(nx)验证恒等式30-60-90解法45-45-90解法三角函数的零点反三角函数简化反三角函数加反三角函数互补三角函数度数中的互补角奇偶三角函数三角函数的周期性半角恒等式乘积和因子恒等式极限商的极限根的商的极限特殊极限双曲函数的极限高级极限对数极限无穷处的极限无穷极限无穷零分母无穷处的函数多项式的导数导数三角函数的导数指数和对数的导数反三角函数的导数链式法则极大值和极小值隐函数求导相关率高阶导数基本积分三角函数积分三角函数的ct积分指数和对数的积分代换积分分部积分基本定理定积分广义积分奇偶被积函数反代换简化三角积分有理函数积分积分含有分母的平方根积分反三角函数双曲函数积分几何级数几何级数2几何级数3几何级数4几何级数5对数的幂级数正弦和余弦的幂级数指数函数的幂级数反正切的幂级数正切和余切的幂级数级数的外观级数的代数运算处理无穷级数收敛性测试完成收敛性测试复数函数复数函数恒等式双曲正弦和余弦双曲三角恒等式双曲函数反双曲函数双曲函数的导数反双曲函数的导数符号函数简化符号函数贝塞尔函数修正贝塞尔函数用户定义的函数不可见也是不可见<	.XEJ
5QE	��J�JX�
r	��J��
��	X	
��iX	#�lintS	:�:iS	"�l�!I/&I$>I4:!;9I!I.?:!;9'I@z:!;9I	%
4:;9I$>,.Y.�
	�t�1
t�menutextGNU C17 13.2.0 -mtune=generic -march=x86-64 -gunsigned intlong unsigned intChinese_menutitlecharChinese_cmdmenumenutitlesarithstr/home/beeson/MathXpertLocalizer/chinese/chinese_mtext.c/home/beeson/MathXpertLocalizer/chinesechinese_mtext.cchinese_mtext.cGCC: (FreeBSD Ports Collection) 13.2.0zRx�A�C
S<A�C
Q�U#��P

.>chinese_mtext.carithstrmenutextmenutitlesChinese_cmdmenuChinese_menutitle(�� H _(u0�8�@�H�P�X�`���(�8�H�[�n������ �(�0�8�@�HP(X>` hHp_x��X�u���������������)�3�D�P�^n��� �(�0�8�@�HPX+`Ihgp�x������������ ((80P8x@�H�P�X�`h(pExZ�p���������������+�@�V�t������ �(08+��A�X�w�������������	�:	R	i	q	�	 �	(�	0�	8�	@

H
P4
X�`P
hb
pv
x�
��
��
��
��
��
��(�P�������� /(E0U8g@uHv
P�
X��������
�0
�H
�h
��
��
��
��
��(�H�e������ (00a8x@�H�P�X�`hHpr������������&�@�Y�u����������!@h�� (@0w8�@�H�P�X`8hbpxx�������(	P	x	�	� 	�(	80	x8	�@	�H	P	@X	�`	�h	�p	x	2�	N�	W�	a�	p�	��	��	��	��	��	�	+�	C�	X�	��	��	 
s
�
�
� 
�(
�0
�8
�@
H
*P
<X
N`
gh
zp
�x
��
��
��
��
�
�
;�
`�
��
��
��
0�
[�
q�
��
��
����� �(0%84@CHPPkX�`�h�p�x�2�N�`������������
 � �8 �Q �d �y ���2�� �� �� �� �z���� �!�!
5!
Q!
a!
�! 
�!(
�!0
�!8
�!@
�H

"P
"X
`
&"�
-"�
F"�
b"�
�"�
�"�
�"�
�"�
�"
##�*#�F#�V#�c#�s#��#��#��#��#��#�$� $���0$F$d$$�$��$��$��$��$��#��#�%�:%�O%�g%��%��%��%��%��%��%F#&&"& 5&(J&0�#8_&@l&��&��%��&��&��&��&��&��&�'�''�4'�A'�N'�l&�^'''q'�'�' �'��'��'�(�((�D(�](�k(�y(��(��(��(��(�)�)�1)�@)`)�)�)�) *(0*0h*8�*@�*H�*P�*X�*`+h!+p@+xp+��+��+��+�,�M,�a,�p,��,��,��,��,�-�8-�`-��-�-���- �-(%0�-84@.H .PH.Xm.`�.h�.p�.x�.��.�	/�#/�@/�h/��.��/�/���/ 0(%0�-84@.H00PX0X}0`�0h�.p�.��0�1�(1�P1�x1��1�12@2x2 �2(30838p3@�3H�3P4X@4`h4h�4��4��4�85�x5��5� 6�`6��6��6�7�X7��7��7��78888 (8(`80�88�8@09Hp9�8�8�8�8��9�:�P:��:��:�8;�;�;<@< x<(�<0=8P=@�=H�=P(>X`>`�>��>� ?�X?��?��?�0@��@��@� A�pA��A��A�8ByB�B�B�B �B(C08C8�-@hCH�C�yB��C�D�8D�hD��D��D�E�(E�hE�E�EF@F �F(�F0�F8(G@�7H�7P`G��G��G�H�HH��H��H�I�PI��I��I��I8888�8�8�8�8 J`J�J�J K(XK0�K8�K@ LHXLP�LX�L�M�PM��M��M�N�hN��N��N�8O�xO��O�P@PhP�P�P �P(�P0Q8HQ��Q��Q��Q�R�HR�xR��R��R4SPSpS�S �S(0�S8�S@�SHTP(TX6T`DTh]TpmTx}T��T��T��T�U�(U�HU�hU�U�U�U�U V(/V0DV8XV@xVH�VP�VX�V`Wh(WpHWxgW�wW��W��W��W��W�X�(X�DX�`X��X��X��X��XY0Y=YMY `Y�pY��Y��Y��Y��Y��Y�Z 'Z @Z SZ qZ  �Z( �Z0 �Z� 'Z� @Z� �Z� [� @[� p[� �[!'Z!@Z!�[!�[ !\(!(\0!H\�!'Z�!@Z�!h\�!�\�!�\�!�\�!]�!?]�!`]"]"�]"�]"�] "�]("�]0"�]8"^@"^H"*^P"?^�"X^�"l^�"�^�"�^�"�^�"�^�"�^�"_�"0_�"P_�"�]�"�]�"n_�"�_�"�_�"�]#�_#�_#�_#�_ #�_(#�_�#`�#!`�#7`�#F`�#�_�#�]�#]`�#s`�#�`�#�`�#�`�#�`�#	a�#�_�#a$0a$Xa$�a$�a $�a($�a0$b8$"b@$@bH$pbP$�bX$�b`$�b�$c�$ c�$Sc�$pc�$�c�$�c�$�c�$d�$,d�$<d�$,d�$<d%Od%dd%}d%�d %�d(%�d0%�d8%�d@%�dH%eP%1eX%n_`%Ceh%Zep%xex%�e�%�e�%�e�%�e�%e�%f�%1f�%Ef�%\f�%sf&�f&�f&�f&�f &�f(&�f0&�f8&g@&0gH&PgP&pgX&�g`&�gh&�gp&�g�&�g�&h�&'h�&=h�&Oh�&ah�&wh�&�h'�h'�h'�h'�h '�h('i0'i8'1i@'CiH'UiP'gi�'yi�'�i�'�i�'�i�'�i�'�i�'	j�'!j�'9j�'Qj�'pj�'�j�'�j�'�j�'k�'8k(\k(tk(�k(�k (�k((�k0(l8((l@(Pl�(xl�(�l�(�l�(�l�(m�(@m�(hm�(�m)�m)�m)n)@n )hn()�n0)�n8)�n@)(oH)`oP)�oX)�o`)�o�)p�)8p�)`p�)�p�)�p�)q*�*?q*Lq*bq *�(*�0*%8*xq@*�qH*�qP*�qX*�q`*h*�qp*�q�*r�*@r�*�r�*�r�*s�*Hs�*�s�*�s�*�s�*0t�*ht�*�t+�t+u+Xu+�u +�u(+v�+Hv�+pv�+�v�+�v�+w�+(w�+Xw�+�w,�w,�w, x,Px ,xx(,�x0,�x8,�x@,�xH,�xP,�xX,y`,0yh,Gyp,`yx,~y�,�y�,�y�,�y�,�y�,z�,0z�,Xz�,xz�,�z�,�z�,�z�,�z�,{�,X{�,�{�,�{-�{-|�-@|�-h|�-�|�-l�-�|�-�k�-�|�-}�-0}�-X}�-�}�-�}.�}.�}. ~.H~ .p~(.�~0.�~8.�~@.H.8P.`X.�`.�h.�p.��.��.��.��.1��.C��.S��.e��.{��.���.���.���.Ӏ/�/�/�/-� /D�(/[�0/q�8/��@/��H/��P/فX/�`/�h/��/8��/`��/���/���/(o�/؂�/��/@��/x��/���/��/8��/���/DŽ0�0�08�0h� 0��(0ȅ00�80H�@0��H0Ȇ�0��0��0 ��0@��0b��0v��0���0���0���0Ї�0���0��0@��0x��0���0ֈ1�1�11�1H� 1o�(1b
01��81��@1��H1��P1ԉX1�`1��18��1`��1���1���1���1(��1X��1��2ы2�2�2� 26�(2Q�02j�82��@2���2���2̌�2��2��20��2P��2v��2���2���2��2��20��2X��2���2��3ώ3�3�3(��3P��3u��3���3���3���3���3��3��30��3h��3���3���3��3��3 ��3E�4[�4x�4��4ؑ 4�(48�04p�84��@4�H4�P4P�X4���4Г�4��48��4\��4���4���4ؔ�4��48��4`��4���4���4��4���4��4K�5h�5��5Ȗ5�� 5@�(5��05��85ؗ@5�H58�P5b�X5��5���5Ř�5��5��5@��5j��5���5���5ؙ�5��50��5X�6x�6��6��6ǚ 6ޚ(6��06�86&�@6@�H6h�P6��X6���6��6��6��6@��6b��6w��6���6���6Ȝ�6��6��61��6L�7^�7y�7��7�� 7��(7�07��87	��7 ��7���7���7���7P��7x��7��7���7ʞ�7��7��70��7X��7x��7	�8��8��8��8Ɵ 8ߟ(8���8��8 ��8@��8f��8v��8���8���8���8۠�8��8��8&�9=�9`�9��9�� 9ȡ(9�09�89@�@9h�H9��P9��X9��9��98��9\��9w��9���9���9أ�9���9��91��9I��9_�:u�:��:��:�� :Ĥ(:�0:��8:�@:+�H:;�P:K�X:^�`:q�h:��p:���:���:&"�:^�;��;K�;��;^��;ڥ�;��;���;��; ��;E��;U��;^��;p��;���;���;���;Ц�;�<�<$�<@�<d� <��(<K�0<���<���<Ч�<��<��<0��<P��<x��<���<Ш�<��<1��<A��<`��<���<���<é=ک=�=�=)� =H�(=p�0=��8=��@=ʪH=�P=�X=(��=H��=p��=���=���=��=��=@��=h��=���=���=��=�>0�>H�>g�>�� >��(>խ0>��8>'�@>@��>m��>���>���>K��>���>���>��>��>&��>>��>X�?��?��?ï?ܯ ?K�(?��0?�8?,�@?@��?h��?��@��@�@�@8� @x�(@��0@�8@�@@&��@@��@���@в�@��@@��@p�A��Aس�A��AH��Ax��A���Aش�A��A5��AK��AU�Bp�B��B��B� B�(B8�0B`�8B��@B��HBضPB�XB�`B8��BZ��Bx��B���B���Bط�B�C�C(�CJ�Ce� C�(C{�0C�8C��@CȸHC��PC �XCH�`Cx�hC���C��Cй�C��C8��Cg�D��D��D�D� DP�(D��0Dл8D��D&"�D��DL��D\��D ��Dl��D|��D^��D��D���D���D���DƼE߼E��E�E3� EX�(E���E���E̽�E��E��E3��EP��Ex��E���E���Eо�E���E�F@�Fd�F~�F�� FϿ(F�0F�8F:�@FR�HFp�PF��XF���F��F��F@��Fp��F���F��F��F0��F`��F���F���F��G �GP�G��G�� G��(G0�0Gh�8G��@G��HG��PG0�XGh��G���G���G���G ��GP��G���G���G���G��G0��G`��G��H��H��H�HH� H��(H��0H��8H�@H@�HHh�PH��XH���H��H@��H`��H���H���H��H8��Ho��H���H���H��H0�Ih�I��I��I�� I��(I�0I(�8IU�@Ip�HI��PI��XI���I��IP��Ix��I���I���I��I0��Ip��I���I���I0��Ip�J��J�Jp�J�� J �(Jx�0J��8J�@Jh�HJ��PJ�XJP�`J��hJ��pJ��xJ ��JH��Jp��J���J���J���J���J��J0��JL��Jh�K��K��K��K�� K��(K��0K��8K�@K �HKG�PKQ��K[��Kp��K���K���K�W�K���K���K��K��K8��KZ��Kp��K���K���K���K��L�LC�LP�L]� Lg�(Lz�0L��8L��@L��HL��PL��XL��`L��hL��pL	�xL"��L5��LN��Lh��L���L���L��M(�MP�M��M�� M��(M��0M�8MH�@M��HM��PM�XM?�`MR�hMe�pM��xM�_�M���M���M���M���M���M��M��M-��MA��MZ��Mx��M���M���M�NI�Na�Nw�N�� N��(N��0N��8N��@N��HN�PN)�XN4�`N?�hNY��Nv��N���N���N���N���N���N�O"�O;�OT�Om� O��(O��0O��8O��@O��HO��PO
�XO(�`OX�hO��pO��xO���O���O��O8��O_��Os��O���O���O���O��P��P��P�P� P4�(PQ�0Pn�8P���P���P���P���P��P(��PP�Qx�Q��Q��Q�� Q��(Q��0Q��8Q��@Q�HQ�PQ2�XQB�`Q\�hQx�pQ��xQ���Q���Q���Q ��QH��Ql��Q���Q���Q���Q��R��R��R�R@� R`�(R���R���R���R���R ��R@��Rh�S���S���S��T���T�����g���������������������	������ ������-���4���>���H���R���b��o��z������� ���(���0���8���@���H���P���X���`�
#h��p�"�x�2���K���^���k���~������������������������������������������������������������� ���(���0���8���@���H���P��X�&�`�B�h�K�p�Z�x�j���z���z���z���z����������������������������	����)��<���X��w���������� ���(���0���8���@��H��P�2�X�E�`�X�h�n�p���x���������������������ы����������
�����'��:��G��N��X��k���~������������� ���(���0��8�&"@�
�H��P�$�X�7�`�O�h�h�p�u�x���������������������$�����������������&"�%��8��E��S��a���o��}���������� ���(���0��8��@�0�H�@�P�V�X�c�`�y�h���p���x������������������������!���7���M���W��W�
	

	

*

1
8M
ET
i^
�j�
��
~����
W�
n
"
9&
P0
b5
r? @.symtab.strtab.shstrtab.rela.text.rela.data.bss.rela.rodata.rela.debug_info.debug_abbrev.rela.debug_aranges.rela.debug_line.debug_str.debug_line_str.comment.note.GNU-stack.rela.eh_frame @.@T0+�U &@@T@�1�U;�U� 6@��HPN@C@p�T�O�g0P0b@80{`P]v@hx
�0�P��0OQ��0�Q(��Q�RX�@�0XRh
	�SP�

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists