Sindbad~EG File Manager

Current Path : /usr/local/include/boost/geometry/algorithms/detail/disjoint/
Upload File :
Current File : //usr/local/include/boost/geometry/algorithms/detail/disjoint/multipoint_geometry.hpp

// Boost.Geometry (aka GGL, Generic Geometry Library)

// Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland.

// Copyright (c) 2014-2023, Oracle and/or its affiliates.

// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Licensed under the Boost Software License version 1.0.
// http://www.boost.org/users/license.html

#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISJOINT_MULTIPOINT_GEOMETRY_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISJOINT_MULTIPOINT_GEOMETRY_HPP

#include <algorithm>
#include <vector>

#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/range/size.hpp>
#include <boost/range/value_type.hpp>

#include <boost/geometry/core/assert.hpp>
#include <boost/geometry/core/tag.hpp>
#include <boost/geometry/core/tags.hpp>

#include <boost/geometry/geometries/box.hpp>

#include <boost/geometry/iterators/segment_iterator.hpp>

#include <boost/geometry/algorithms/envelope.hpp>
#include <boost/geometry/algorithms/expand.hpp>

#include <boost/geometry/algorithms/detail/partition.hpp>
#include <boost/geometry/algorithms/detail/disjoint/box_box.hpp>
#include <boost/geometry/algorithms/detail/disjoint/multirange_geometry.hpp>
#include <boost/geometry/algorithms/detail/disjoint/point_box.hpp>
#include <boost/geometry/algorithms/detail/disjoint/point_point.hpp>
#include <boost/geometry/algorithms/detail/disjoint/point_geometry.hpp>

#include <boost/geometry/algorithms/dispatch/disjoint.hpp>

#include <boost/geometry/policies/compare.hpp>


// TEMP
#include <boost/geometry/strategies/envelope/cartesian.hpp>
#include <boost/geometry/strategies/envelope/geographic.hpp>
#include <boost/geometry/strategies/envelope/spherical.hpp>


namespace boost { namespace geometry
{


#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace disjoint
{


class multipoint_multipoint
{
private:
    template <typename Iterator, typename Strategy>
    class unary_not_disjoint_predicate
        : geometry::less<void, -1, Strategy>
    {
    private:
        using less_type = geometry::less<void, -1, Strategy>;

    public:
        unary_not_disjoint_predicate(Iterator first, Iterator last)
            : less_type(), m_first(first), m_last(last)
        {}

        template <typename Point>
        inline bool operator()(Point const& point) const
        {
            return std::binary_search(m_first,
                                      m_last,
                                      point,
                                      static_cast<less_type const&>(*this));
        }

    private:
        Iterator m_first, m_last;
    };

public:
    template <typename MultiPoint1, typename MultiPoint2, typename Strategy>
    static inline bool apply(MultiPoint1 const& multipoint1,
                             MultiPoint2 const& multipoint2,
                             Strategy const&)
    {
        BOOST_GEOMETRY_ASSERT( boost::size(multipoint1) <= boost::size(multipoint2) );

        using less_type = geometry::less<void, -1, Strategy>;
        using point1_type = typename boost::range_value<MultiPoint1>::type;

        std::vector<point1_type> points1(boost::begin(multipoint1),
                                         boost::end(multipoint1));

        std::sort(points1.begin(), points1.end(), less_type());

        using predicate_type = unary_not_disjoint_predicate
            <
                typename std::vector<point1_type>::const_iterator,
                Strategy
            >;

        return none_of(boost::begin(multipoint2),
                       boost::end(multipoint2),
                       predicate_type(points1.begin(), points1.end()));
    }
};


template <typename MultiPoint, typename Linear>
class multipoint_linear
{
private:
    template <typename Strategy>
    struct expand_box_point
    {
        explicit expand_box_point(Strategy const& strategy)
            : m_strategy(strategy)
        {}

        template <typename Box, typename Point>
        void apply(Box& total, Point const& point) const
        {
            geometry::expand(total, point, m_strategy);
        }

        Strategy const& m_strategy;
    };

    template <typename Strategy>
    struct expand_box_segment
    {
        explicit expand_box_segment(Strategy const& strategy)
            : m_strategy(strategy)
        {}

        template <typename Box, typename Segment>
        void apply(Box& total, Segment const& segment) const
        {
            geometry::expand(total,
                             geometry::return_envelope<Box>(segment, m_strategy),
                             m_strategy);
        }

        Strategy const& m_strategy;
    };

    template <typename Strategy>
    struct overlaps_box_point
    {
        explicit overlaps_box_point(Strategy const& strategy)
            : m_strategy(strategy)
        {}

        template <typename Box, typename Point>
        bool apply(Box const& box, Point const& point) const
        {
            return ! detail::disjoint::disjoint_point_box(point, box,
                                                          m_strategy);
        }

        Strategy const& m_strategy;
    };

    template <typename Strategy>
    struct overlaps_box_segment
    {
        explicit overlaps_box_segment(Strategy const& strategy)
            : m_strategy(strategy)
        {}

        template <typename Box, typename Segment>
        bool apply(Box const& box, Segment const& segment) const
        {
            return ! dispatch::disjoint<Segment, Box>::apply(segment, box, m_strategy);
        }

        Strategy const& m_strategy;
    };

    template <typename Strategy>
    class item_visitor_type
    {
    public:
        item_visitor_type(Strategy const& strategy)
            : m_intersection_found(false)
            , m_strategy(strategy)
        {}

        template <typename Item1, typename Item2>
        inline bool apply(Item1 const& item1, Item2 const& item2)
        {
            if (! m_intersection_found
                && ! dispatch::disjoint<Item1, Item2>::apply(item1, item2, m_strategy))
            {
                m_intersection_found = true;
                return false;
            }
            return true;
        }

        inline bool intersection_found() const { return m_intersection_found; }

    private:
        bool m_intersection_found;
        Strategy const& m_strategy;
    };
    // structs for partition -- end

    class segment_range
    {
    public:
        typedef geometry::segment_iterator<Linear const> const_iterator;
        typedef const_iterator iterator;

        segment_range(Linear const& linear)
            : m_linear(linear)
        {}

        const_iterator begin() const
        {
            return geometry::segments_begin(m_linear);
        }

        const_iterator end() const
        {
            return geometry::segments_end(m_linear);
        }

    private:
        Linear const& m_linear;
    };

public:
    template <typename Strategy>
    static inline bool apply(MultiPoint const& multipoint, Linear const& linear, Strategy const& strategy)
    {
        item_visitor_type<Strategy> visitor(strategy);

        // TODO: disjoint Segment/Box may be called in partition multiple times
        // possibly for non-cartesian segments which could be slow. We should consider
        // passing a range of bounding boxes of segments after calculating them once.
        // Alternatively instead of a range of segments a range of Segment/Envelope pairs
        // should be passed, where envelope would be lazily calculated when needed the first time
        geometry::partition
            <
                geometry::model::box<typename point_type<MultiPoint>::type>
            >::apply(multipoint, segment_range(linear), visitor,
                     expand_box_point<Strategy>(strategy),
                     overlaps_box_point<Strategy>(strategy),
                     expand_box_segment<Strategy>(strategy),
                     overlaps_box_segment<Strategy>(strategy));

        return ! visitor.intersection_found();
    }

    template <typename Strategy>
    static inline bool apply(Linear const& linear, MultiPoint const& multipoint,
                             Strategy const& strategy)
    {
        return apply(multipoint, linear, strategy);
    }
};


template <typename MultiPoint, typename SingleGeometry>
class multi_point_single_geometry
{
public:
    template <typename Strategy>
    static inline bool apply(MultiPoint const& multi_point,
                             SingleGeometry const& single_geometry,
                             Strategy const& strategy)
    {
        typedef typename point_type<MultiPoint>::type point1_type;
        typedef typename point_type<SingleGeometry>::type point2_type;
        typedef model::box<point2_type> box2_type;

        box2_type box2;
        geometry::envelope(single_geometry, box2, strategy);
        geometry::detail::expand_by_epsilon(box2);

        for (auto it = boost::begin(multi_point) ; it != boost::end(multi_point) ; ++it)
        {
            // The default strategy is enough for Point/Box
            if (! detail::disjoint::disjoint_point_box(*it, box2, strategy)
                && ! dispatch::disjoint<point1_type, SingleGeometry>::apply(*it, single_geometry, strategy))
            {
                return false;
            }
        }

        return true;
    }

    template <typename Strategy>
    static inline bool apply(SingleGeometry const& single_geometry, MultiPoint const& multi_point,
                             Strategy const& strategy)
    {
        return apply(multi_point, single_geometry, strategy);
    }
};


template <typename MultiPoint, typename MultiGeometry>
class multi_point_multi_geometry
{
private:
    template <typename Strategy>
    struct expand_box_point
    {
        explicit expand_box_point(Strategy const& strategy)
            : m_strategy(strategy)
        {}

        template <typename Box, typename Point>
        void apply(Box& total, Point const& point) const
        {
            geometry::expand(total, point, m_strategy);
        }

        Strategy const& m_strategy;
    };

    template <typename Strategy>
    struct expand_box_box_pair
    {
        explicit expand_box_box_pair(Strategy const& strategy)
            : m_strategy(strategy)
        {}

        template <typename Box, typename BoxPair>
        void apply(Box& total, BoxPair const& box_pair) const
        {
            geometry::expand(total, box_pair.first, m_strategy);
        }

        Strategy const& m_strategy;
    };

    template <typename Strategy>
    struct overlaps_box_point
    {
        explicit overlaps_box_point(Strategy const& strategy)
            : m_strategy(strategy)
        {}

        template <typename Box, typename Point>
        bool apply(Box const& box, Point const& point) const
        {
            return ! detail::disjoint::disjoint_point_box(point, box, m_strategy);
        }

        Strategy const& m_strategy;
    };

    template <typename Strategy>
    struct overlaps_box_box_pair
    {
        explicit overlaps_box_box_pair(Strategy const& strategy)
            : m_strategy(strategy)
        {}

        template <typename Box, typename BoxPair>
        bool apply(Box const& box, BoxPair const& box_pair) const
        {
            return ! detail::disjoint::disjoint_box_box(box_pair.first, box,
                                                        m_strategy);
        }

        Strategy const& m_strategy;
    };

    template <typename Strategy>
    class item_visitor_type
    {
    public:
        item_visitor_type(MultiGeometry const& multi_geometry,
                          Strategy const& strategy)
            : m_intersection_found(false)
            , m_multi_geometry(multi_geometry)
            , m_strategy(strategy)
        {}

        template <typename Point, typename BoxPair>
        inline bool apply(Point const& point, BoxPair const& box_pair)
        {
            typedef typename boost::range_value<MultiGeometry>::type single_type;

            // The default strategy is enough for Point/Box
            if (! m_intersection_found
                && ! detail::disjoint::disjoint_point_box(point, box_pair.first, m_strategy)
                && ! dispatch::disjoint
                        <
                            Point, single_type
                        >::apply(point, range::at(m_multi_geometry, box_pair.second), m_strategy))
            {
                m_intersection_found = true;
                return false;
            }
            return true;
        }

        inline bool intersection_found() const { return m_intersection_found; }

    private:
        bool m_intersection_found;
        MultiGeometry const& m_multi_geometry;
        Strategy const& m_strategy;
    };
    // structs for partition -- end

public:
    template <typename Strategy>
    static inline bool apply(MultiPoint const& multi_point, MultiGeometry const& multi_geometry, Strategy const& strategy)
    {
        typedef typename point_type<MultiPoint>::type point1_type;
        typedef typename point_type<MultiGeometry>::type point2_type;
        typedef model::box<point1_type> box1_type;
        typedef model::box<point2_type> box2_type;
        typedef std::pair<box2_type, std::size_t> box_pair_type;

        std::size_t count2 = boost::size(multi_geometry);
        std::vector<box_pair_type> boxes(count2);
        for (std::size_t i = 0 ; i < count2 ; ++i)
        {
            geometry::envelope(range::at(multi_geometry, i), boxes[i].first, strategy);
            geometry::detail::expand_by_epsilon(boxes[i].first);
            boxes[i].second = i;
        }

        item_visitor_type<Strategy> visitor(multi_geometry, strategy);

        geometry::partition
            <
                box1_type
            >::apply(multi_point, boxes, visitor,
                     expand_box_point<Strategy>(strategy),
                     overlaps_box_point<Strategy>(strategy),
                     expand_box_box_pair<Strategy>(strategy),
                     overlaps_box_box_pair<Strategy>(strategy));

        return ! visitor.intersection_found();
    }

    template <typename Strategy>
    static inline bool apply(MultiGeometry const& multi_geometry, MultiPoint const& multi_point, Strategy const& strategy)
    {
        return apply(multi_point, multi_geometry, strategy);
    }
};


template <typename MultiPoint, typename Areal, typename Tag = typename tag<Areal>::type>
struct multipoint_areal
    : multi_point_single_geometry<MultiPoint, Areal>
{};

template <typename MultiPoint, typename Areal>
struct multipoint_areal<MultiPoint, Areal, multi_polygon_tag>
    : multi_point_multi_geometry<MultiPoint, Areal>
{};


}} // namespace detail::disjoint
#endif // DOXYGEN_NO_DETAIL




#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{


template <typename Point, typename MultiPoint, std::size_t DimensionCount>
struct disjoint
    <
        Point, MultiPoint, DimensionCount, point_tag, multi_point_tag, false
    > : detail::disjoint::multirange_constant_size_geometry<MultiPoint, Point>
{};


template <typename MultiPoint, typename Segment, std::size_t DimensionCount>
struct disjoint
    <
        MultiPoint, Segment, DimensionCount, multi_point_tag, segment_tag, false
    > : detail::disjoint::multirange_constant_size_geometry<MultiPoint, Segment>
{};


template <typename MultiPoint, typename Box, std::size_t DimensionCount>
struct disjoint
    <
        MultiPoint, Box, DimensionCount, multi_point_tag, box_tag, false
    > : detail::disjoint::multirange_constant_size_geometry<MultiPoint, Box>
{};


template
<
    typename MultiPoint1,
    typename MultiPoint2,
    std::size_t DimensionCount
>
struct disjoint
    <
        MultiPoint1, MultiPoint2, DimensionCount,
        multi_point_tag, multi_point_tag, false
    >
{
    template <typename Strategy>
    static inline bool apply(MultiPoint1 const& multipoint1,
                             MultiPoint2 const& multipoint2,
                             Strategy const& strategy)
    {
        if ( boost::size(multipoint2) < boost::size(multipoint1) )
        {
            return detail::disjoint::multipoint_multipoint
                ::apply(multipoint2, multipoint1, strategy);
        }

        return detail::disjoint::multipoint_multipoint
            ::apply(multipoint1, multipoint2, strategy);
   }
};


template <typename Linear, typename MultiPoint, std::size_t DimensionCount>
struct disjoint
    <
        Linear, MultiPoint, DimensionCount, linear_tag, multi_point_tag, false
    > : detail::disjoint::multipoint_linear<MultiPoint, Linear>
{};


template <typename MultiPoint, typename Linear, std::size_t DimensionCount>
struct disjoint
    <
        MultiPoint, Linear, DimensionCount, multi_point_tag, linear_tag, false
    > : detail::disjoint::multipoint_linear<MultiPoint, Linear>
{};


template <typename Areal, typename MultiPoint, std::size_t DimensionCount>
struct disjoint
    <
        Areal, MultiPoint, DimensionCount, areal_tag, multi_point_tag, false
    > : detail::disjoint::multipoint_areal<MultiPoint, Areal>
{};


template <typename MultiPoint, typename Areal, std::size_t DimensionCount>
struct disjoint
    <
        MultiPoint, Areal, DimensionCount, multi_point_tag, areal_tag, false
    > : detail::disjoint::multipoint_areal<MultiPoint, Areal>
{};


} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH


}} // namespace boost::geometry



#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISJOINT_MULTIPOINT_GEOMETRY_HPP

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists