Sindbad~EG File Manager
REABCD
REPQEF
EEPQAB
EFABCDPQEF
ANRRDAB+RRABC+RRBCD+RRCDA+CRACBD defn:rectangle
ANRRFPQ+RRPQE+RRQEF+RREFP+CRPEQF defn:rectangle
RRDAB
RRABC
RRPQE
RRCDA
CRACBD
NCDAB lemma:rightangleNC
NCPQE lemma:rightangleNC
NEAD lemma:NCdistinct
NEAB lemma:NCdistinct
NEQE lemma:NCdistinct
RRBCD defn:rectangle
NCBCD lemma:rightangleNC
NEBC lemma:NCdistinct
NECD lemma:NCdistinct
ANRABCe+EEBeQE lemma:layoff
RABCe
EEBeQE
RRFPQ defn:rectangle
NCFPQ lemma:rightangleNC
NEPF lemma:NCdistinct
ANRAADf+EEAfPF lemma:layoff
RAADf
EEAfPF
PGABCD lemma:rectangleparallelogram
PRADBC defn:parallelogram
COADf lemma:rayimpliescollinear
COBCe lemma:rayimpliescollinear
COCBe lemma:collinearorder
PRBCAD lemma:parallelsymmetric
EEPFAf lemma:congruencesymmetric
NEAf lemma:nullsegment3
NEfA lemma:inequalitysymmetric
PRBCDA lemma:parallelflip
CODAf lemma:collinearorder
PRBCfA lemma:collinearparallel
PRBCAf lemma:parallelflip
PRAfBC lemma:parallelsymmetric
EEQEBe lemma:congruencesymmetric
NEBe lemma:nullsegment3
NEeB lemma:inequalitysymmetric
PRAfCB lemma:parallelflip
PRAfeB lemma:collinearparallel
PRfAeB lemma:parallelflip
PRABCD defn:parallelogram
TPABCD lemma:paralleldef2B
SSCDAB defn:tarski_parallel
EQAA cn:equalityreflexive
COAAB defn:collinear
SSCfAB lemma:sameside2
SSfCAB lemma:samesidesymmetric
EQBB cn:equalityreflexive
COABB defn:collinear
SSfeAB lemma:sameside2
EEfAPF lemma:congruenceflip
PGPQEF lemma:rectangleparallelogram
EEPFQE proposition:34
EEfAQE lemma:congruencetransitive
EEQEBe lemma:congruencesymmetric
EEQEeB lemma:congruenceflip
EEfAeB lemma:congruencetransitive
ANPRfAeB+EEfAeB+SSfeAB
ANPRfeAB+EEfeAB proposition:33B
PRfeAB
EEfeAB
PRABfe lemma:parallelsymmetric
PRABef lemma:parallelflip
PRADBC defn:parallelogram
PRADCB lemma:parallelflip
COBCe lemma:rayimpliescollinear
COCBe lemma:collinearorder
PRADeB lemma:collinearparallel
PRADBe lemma:parallelflip
PRBeAD lemma:parallelsymmetric
PRBeDA lemma:parallelflip
COADf lemma:rayimpliescollinear
CODAf lemma:collinearorder
NEAf lemma:raystrict
NEfA lemma:inequalitysymmetric
PRBefA lemma:collinearparallel
PRBeAf lemma:parallelflip
PRAfBe lemma:parallelsymmetric
PGABef defn:parallelogram
TCBADDCB proposition:34
TCBAffeB proposition:34
EABAffeB proposition:34
RAADf
RRBAD lemma:8.2
RRBAf lemma:8.3
EAfeBBAf lemma:equalanglessymmetric
RRfeB lemma:equaltorightisright
RABCe
RRABC
RRABe lemma:8.3
PGBefA lemma:PGrotate
REBefA lemma:PGrectangle
CRBfeA defn:rectangle
ETBADDCB axiom:congruentequal
ETBAffeB axiom:congruentequal
ANBEAMC+BEBMD defn:cross
BEAMC
BEBMD
ANBEBmf+BEemA defn:cross
BEemA
BEAme axiom:betweennesssymmetry
BEBmf
COBMD defn:collinear
COBDM lemma:collinearorder
NCBDA lemma:NCorder
OSABDC defn:oppositeside
COBmf defn:collinear
COBfm lemma:collinearorder
NCBAf lemma:equalanglesNC
NCBfA lemma:NCorder
OSABfe defn:oppositeside
EEABAB cn:congruencereflexive
EEPFAf lemma:congruencesymmetric
RRFPQ
RRfAB lemma:8.2
EAFPQfAB lemma:Euclid4
TRFPQ defn:triangle
NCfAB lemma:parallelNC
TRfAB defn:triangle
EEFQfB proposition:04
EEFPfA lemma:congruenceflip
TCFPQfAB defn:trianglecongruence
ETFPQfAB axiom:congruentequal
ETFPQfBA axiom:ETpermutation
ETfBAFPQ axiom:ETsymmetric
ETfBAFQP axiom:ETpermutation
ETFQPfBA axiom:ETsymmetric
EEQEBe lemma:congruencesymmetric
PGPQEF
EEPQFE proposition:34
EEPQEF lemma:congruenceflip
EEABfe proposition:34
EEEFPQ lemma:congruencesymmetric
EEEFAB lemma:congruencetransitive
EEEFfe lemma:congruencetransitive
EEFEfe lemma:congruenceflip
TCFQEfBe defn:trianglecongruence
ETFQEfBe axiom:congruentequal
ANBEPpE+BEQpF lemma:diagonalsmeet
BEPpE
BEQpF
COQpF defn:collinear
COQFp lemma:collinearorder
PRPQEF defn:parallelogram
NCPQF lemma:parallelNC
NCQFP lemma:NCorder
OSPQFE defn:oppositeside
OSABfe
OSAfBe lemma:oppositesideflip
OSPFQE lemma:oppositesideflip
EFFPQEfABe axiom:paste3
EFFPQEABef axiom:EFpermutation
EFABefFPQE axiom:EFsymmetric
EFABefPQEF axiom:EFpermutation
EFPQEFABef axiom:EFsymmetric
EFABCDABef axiom:EFtransitive
RAADf
COADf lemma:rayimpliescollinear
COBCe lemma:rayimpliescollinear
RRCDA
RRADC lemma:8.2
RRDCB lemma:8.2
CODAf lemma:collinearorder
ORBEAfD|EQDf|BEADf lemma:ray1
EEADBC proposition:34
EEAfBe proposition:34
NEfD assumption
NEDf lemma:inequalitysymmetric
cases NECe:BEAfD|EQDf|BEADf
case 1:BEAfD
LTBeAD defn:lessthan
LTBeBC lemma:lessthancongruence
RABeC lemma:ray5
BEBeC lemma:lessthanbetween
EEfDeC lemma:differenceofparts
NEeC lemma:nullsegment3
NECe lemma:inequalitysymmetric
qedcase
case 2: EQDf
EQCe assumption
EQfD lemma:equalitysymmetric
NEfD
NECe reductio
qedcase
case 3:BEADf
EEBCAD lemma:congruencesymmetric
LTBCAf defn:lessthan
LTBCBe lemma:lessthancongruence
BEBCe lemma:lessthanbetween
EEDfCe lemma:differenceofparts
NECe lemma:nullsegment3
qedcase
NECe cases
NEeC lemma:inequalitysymmetric
RRfDC lemma:collinearright
COBCe lemma:rayimpliescollinear
RRBCD
RReCD lemma:collinearright
RRDCe lemma:8.2
PGABef
PGBefA lemma:PGrotate
REBefA lemma:PGrectangle
RRefA defn:rectangle
RRAfe lemma:8.2
RRBef defn:rectangle
COADf lemma:rayimpliescollinear
COAfD lemma:collinearorder
RRDfe lemma:collinearright
RRefD lemma:8.2
COBCe lemma:rayimpliescollinear
COBeC lemma:collinearorder
RRCef lemma:collinearright
BECMA axiom:betweennesssymmetry
BEfmB axiom:betweennesssymmetry
BEemA axiom:betweennesssymmetry
ORBEAfD|EQDf|BEADf lemma:ray1
cases CRDeCf:BEAfD|EQDf|BEADf
case 1:BEAfD
LTBeAD defn:lessthan
LTBeBC lemma:lessthancongruence
ANBEBhC+EEBhBe defn:lessthan
BEBhC
EEBhBe
NEBh lemma:betweennotequal
NEhB lemma:inequalitysymmetric
RABCh lemma:ray4
EQhe lemma:layoffunique
BEBeC cn:equalitysub
BEDMB axiom:betweennesssymmetry
BECeB axiom:betweennesssymmetry
NCBCD lemma:parallelNC
NCDBC lemma:NCorder
ANBEDJe+BECJM postulate:Pasch-inner
BEDJe
BECJM
BECMA
BECJA lemma:3.6b
BEDfA axiom:betweennesssymmetry
NCACD lemma:parallelNC
NCDAC lemma:NCorder
ANBEDKJ+BECKf postulate:Pasch-inner
BEDKJ
BECKf
BEDKe lemma:3.6b
ANBEDKe+BECKf
CRDeCf defn:cross
qedcase
case 2:EQDf
NOCRDeCf assumption
NEDf
CRDeCf reductio
qedcase
case 3:BEADf
LTBCAf defn:lessthan
LTBCBe lemma:lessthancongruence
ANBEBge+EEBgBC defn:lessthan
BEBge
EEBgBC
RABeC lemma:ray5
NEge lemma:betweennotequal
NEeg lemma:inequalitysymmetric
NEBg lemma:betweennotequal
RABge lemma:ray4
RABeg lemma:ray5
EQgC lemma:layoffunique
BEBCe cn:equalitysub
BEeCB axiom:betweennesssymmetry
PRABef defn:parallelogram
NCBef lemma:parallelNC
NCfBe lemma:NCorder
BEfmB axiom:betweennesssymmetry
BEeCB axiom:betweennesssymmetry
ANBEfJC+BEeJm postulate:Pasch-inner
BEfJC
BEeJm
PRABef defn:parallelogram
NCAef lemma:parallelNC
NCfAe lemma:NCorder
BEfDA axiom:betweennesssymmetry
BEeJm
BEemA axiom:betweennesssymmetry
BEeJA lemma:3.6b
ANBEfKJ+BEeKD postulate:Pasch-inner
BEfKJ
BEfJC
BEfKC lemma:3.6b
BECKf axiom:betweennesssymmetry
BEeKD
BEDKe axiom:betweennesssymmetry
CRDeCf defn:cross
qedcase
CRDeCf cases
ANRRfDC+RRDCe+RRCef+RRefD+CRDeCf
REDCef defn:rectangle
PGDCef lemma:rectangleparallelogram
EEDfCe proposition:34
EEAfBe proposition:34
EEADBC proposition:34
EEfDeC lemma:congruenceflip
cases EEADAf:BEAfD|EQDf|BEADf
case 1:BEAfD
NOEEADAf assumption
BEBeC lemma:betweennesspreserved
REfeCD lemma:rectanglereverse
NOEFABefABCD axiom:deZolt2
EFABCDABef
EFABefABCD axiom:EFsymmetric
EEADAf reductio
qedcase
case 2:EQDf
EEAfAf cn:congruencereflexive
EEADAf cn:equalitysub
qedcase
case 3:BEADf
NOEEADAf assumption
BEBCe lemma:betweennesspreserved
NOEFABCDABef axiom:deZolt2
EEADAf reductio
qedcase
EEADAf cases
EQDD cn:equalityreflexive
RAADD lemma:ray4
EEAfAD lemma:congruencesymmetric
EQfD lemma:layoffunique
EQfD reductio
EEADPF cn:equalitysub
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists