Sindbad~EG File Manager
TRabc
NCJDN
NCABR
NEAB lemma:NCdistinct
NCabc defn:triangle
NEbc lemma:NCdistinct
ANBEbmc+EEmbmc proposition:10
BEbmc
EEmbmc
EEbmmc lemma:congruenceflip
MIbmc defn:midpoint
NEmc lemma:betweennotequal
ANBEABE+EEBEmc postulate:extension
BEABE
EEBEmc
NEBE lemma:betweennotequal
COABE defn:collinear
COBAE lemma:collinearorder
EQBB cn:equalityreflexive
COBAB defn:collinear
NCBAR lemma:NCorder
NCBER lemma:NChelper
ANRABEe+EAgBeJDN+SSgRBE proposition:23C
EAgBeJDN
RABEe
SSgRBE
ORBEBeE|EQEe|BEBEe lemma:ray1
cases BEABe:BEBeE|EQEe|BEBEe
case 1:BEBeE
BEABE
BEABe axiom:innertransitivity
qedcase
case 2:EQEe
BEABe cn:equalitysub
qedcase
case 3:BEBEe
BEABe lemma:3.7b
qedcase
BEABe cases
NEBA lemma:inequalitysymmetric
ANBEBAP+EEAPBA postulate:extension
BEBAP
EEAPBA
BEPAB axiom:betweennesssymmetry
EEPAAB lemma:congruenceflip
MIPAB defn:midpoint
NEBE lemma:betweennotequal
NEEB lemma:inequalitysymmetric
NEbm lemma:betweennotequal
ANBEEBQ+EEBQbm postulate:extension
BEEBQ
EEBQbm
EEbmmc lemma:congruenceflip
EEBQmc lemma:congruencetransitive
EEmcBE lemma:congruencesymmetric
EEBQBE lemma:congruencetransitive
BEQBE axiom:betweennesssymmetry
EEQBBE lemma:congruenceflip
MIQBE defn:midpoint
EEEBmc lemma:congruenceflip
NCABR
NCBAR lemma:NCorder
EQAA cn:equalityreflexive
COBAA defn:collinear
COABE defn:collinear
COBAE lemma:collinearorder
NEBE lemma:betweennotequal
NEEB lemma:inequalitysymmetric
NCBER lemma:NChelper
NCRBE lemma:NCorder
ANPGGBEF+EFabmcGBEF+EAEBGJDN+SSRGBE proposition:42B
PGGBEF
EFabmcGBEF
EAEBGJDN
SSRGBE
ANPGABML+EAABMJDN+EFBEFGLMBA+BEGBM proposition:44A
foo
PRGFBE defn:parallelogram
NCGBE lemma:parallelNC
NEGB lemma:NCdistinct
ANBEGBq+EEBqGB postulate:extension
BEGBq
EEBqGB
NCEBG lemma:NCorder
COABE defn:collinear
COEBA lemma:collinearorder
EQBB cn:equalityreflexive
COEBB defn:collinear
NCABG lemma:NChelper
COGBq defn:collinear
NCGBA lemma:NCorder
NEGq lemma:betweennotequal
NEqG lemma:inequalitysymmetric
EQGG cn:equalityreflexive
COGBG defn:collinear
NEBq lemma:betweennotequal
NCqGA lemma:NChelper
NCGqA lemma:NCorder
ANBEHAh+EAhABABG+EAhABGBA+EABAhGBA+EAHABABq+EAHABqBA+EABAHqBA+PRHhGq+EEHABq+EEAhGB+EEATTB+EEHTTq+EEGTTh+BEHTq+BEGTh+BEATB proposition:31
BEHAh
EAHABABq
PRHhGq
BEHTq
BEATB
EEHABq
PRHhqG lemma:parallelflip
COGBq defn:collinear
COqGB lemma:collinearorder
NEBG lemma:NCdistinct
PRHhBG lemma:collinearparallel
PRHhGB lemma:parallelflip
PRGBHh lemma:parallelsymmetric
PRGBhH lemma:parallelflip
COHAh defn:collinear
COhHA lemma:collinearorder
NEHA lemma:betweennotequal
NEAH lemma:inequalitysymmetric
PRGBAH lemma:collinearparallel
PRGBHA lemma:parallelflip
PRHAGB lemma:parallelsymmetric
EEHAGB lemma:congruencetransitive
EQBB cn:equalityreflexive
COABB defn:collinear
COATB defn:collinear
COABT lemma:collinearorder
NCBHA lemma:parallelNC
NCABH lemma:NCorder
NCHAB lemma:parallelNC
NCABH lemma:NCorder
ANCOABT+COABB+BEHTq+BEGBq+NCABH+NCABG
SSHGAB defn:sameside
ANPRHGAB+EEHGAB proposition:33B
PRHGAB
EEHGAB
PRABHG lemma:parallelsymmetric
PRABGH lemma:parallelflip
PGGBEF
ANPRGBEF+PRGFBE defn:parallelogram
PRGBEF
PRGFBE
PRGFEB lemma:parallelflip
COABE defn:collinear
COEBA lemma:collinearorder
PRGFAB lemma:collinearparallel
PRABGF lemma:parallelsymmetric
COGHF lemma:Playfair
PRHABG lemma:parallelflip
PRGBFE lemma:parallelflip
PRFEGB lemma:parallelsymmetric
PGHABG defn:parallelogram
ANBEHjB+BEAjG lemma:diagonalsmeet
BEHjB
BEAjG
PGGBEF
ANBEGkE+BEBkF lemma:diagonalsmeet
BEGkE
BEBkF
PRGBEF defn:parallelogram
PRGBFE lemma:parallelflip
PRFEGB lemma:parallelsymmetric
PRHAGB lemma:parallelflip
NCFEG lemma:parallelNC
NCEFG lemma:NCorder
COFGH lemma:collinearorder
EQFF cn:equalityreflexive
COFGF defn:collinear
PRHAGB
PRFEGB
BEEBA axiom:betweennesssymmetry
EQEE cn:equalityreflexive
EQBB cn:equalityreflexive
EQAA cn:equalityreflexive
COFEE defn:collinear
COGBB defn:collinear
COHAA defn:collinear
NCFEB lemma:parallelNC
NEFE lemma:NCdistinct
NCAGB lemma:parallelNC
NEGB lemma:NCdistinct
NCHAG lemma:parallelNC
NEHA lemma:NCdistinct
PRHAFE proposition:30
EEHAGB
EEGBFE proposition:34
EEHAFE lemma:congruencetransitive
PGHABG
PRHGAB defn:parallelogram
PGGBEF
PRGFBE defn:parallelogram
PRHGAB defn:parallelogram
PRBEGF lemma:parallelsymmetric
PRABHG lemma:parallelsymmetric
TPBEGF lemma:paralleldef2B
TPABHG lemma:paralleldef2B
SSGFBE defn:tarski-parallel
SSHGAB defn:tarski-parallel
COABE defn:collinear
NEAE lemma:betweennotequal
SSHGAE lemma:samesidecollinear
SSGFEB lemma:samesideflip
COEBA lemma:collinearorder
NEEA lemma:inequalitysymmetric
SSGFEA lemma:samesidecollinear
SSGFAE lemma:samesideflip
SSHFAE lemma:samesidetransitive
ANPRHAFE+EEHAFE+SSHFAE
PRHFAE proposition:33B
PRHAEF lemma:parallelflip
PGHAEF defn:parallelogram
NCHFE lemma:parallelNC
NCEFH lemma:NCorder
NCFEH lemma:NCorder
ANMIHtE+MIAtF lemma:diagonalsbisect
MIHtE
MIAtF
ANBEHtE+EEHttE defn:midpoint
BEHtE
EEHttE
ANBEAtF+EEAttF defn:midpoint
BEAtF
EEAttF
EEAtFt lemma:congruenceflip
NCHAB lemma:parallelNC
NCAHB lemma:NCorder
BEAtF
BEHtE
BEABE
EEHtEt lemma:congruenceflip
EEtAtF lemma:congruenceflip
ANBEHBK+BEFEK postulate:Euclid5
BEHBK
BEFEK
COFEK defn:collinear
COEFK lemma:collinearorder
NEFK lemma:betweennotequal
NEKF lemma:inequalitysymmetric
PRHAKF lemma:collinearparallel
PRHAFK lemma:parallelflip
PRFKHA lemma:parallelsymmetric
PRFKAH lemma:parallelflip
EQHH cn:equalityreflexive
COAHH defn:collinear
ANPGHLKF+COAHL lemma:triangletoparallelogram
PGHLKF
COAHL
NCBEF lemma:parallelNC
NEBE lemma:NCdistinct
NEEB lemma:inequalitysymmetric
PRHLKF defn:parallelogram
NCLKF lemma:parallelNC
NELK lemma:NCdistinct
NEKL lemma:inequalitysymmetric
PGGBEF
PRGBEF defn:parallelogram
PRGBFE lemma:parallelflip
COFEE defn:collinear
COFEK defn:collinear
NEEK lemma:betweennotequal
PRGBEK lemma:collinearparallel2
PREKGB lemma:parallelsymmetric
COGBB defn:collinear
ANPGBMKE+COGBM lemma:triangletoparallelogram
PGBMKE
COGBM
%Now set up to apply 43
PGHLKF
PGLKFH lemma:PGrotate
PGKLHF lemma:PGflip
PGLHFK lemma:PGrotate
PGHFKL lemma:PGrotate
BEHBK
BEFEK
BEABE
PRHLKF defn:parallelogram
PGHABG
PGAHGB lemma:PGflip
PRAHGB defn:parallelogram
PRAHBG lemma:parallelflip
PGGBEF
PRGBEF defn:parallelogram
PREFGB lemma:parallelsymmetric
PRFEGB lemma:parallelflip
EQKK cn:equalityreflexive
EQEE cn:equalityreflexive
EQFF cn:equalityreflexive
BEHBK
PGBMKE
PRBEMK defn:parallelogram
PRMKBE lemma:parallelsymmetric
PRKMEB lemma:parallelflip
PGGBEF
PRGFBE defn:parallelogram
PRFGEB lemma:parallelflip
NCEMK lemma:parallelNC
NCBEK lemma:parallelNC
NCGFB lemma:parallelNC
PRMKBE lemma:parallelflip
PRGFBE lemma:parallelflip
BEKEF axiom:betweennesssymmetry
COMKK defn:collinear
COBEE defn:collinear
COGFF defn:collinear
NEMK lemma:NCdistinct
NEBE lemma:NCdistinct
NEGF lemma:NCdistinct
PRMKGF proposition:30
PRKMFG lemma:parallelflip
PRFGKM lemma:parallelsymmetric
PGHLKF
PRHFLK defn:parallelogram
PRLKHF lemma:parallelsymmetric
PRKLHF lemma:parallelflip
COHFG lemma:collinearorder
PRKLGF lemma:collinearparallel
PRKLFG lemma:parallelflip
PRFGKL lemma:parallelsymmetric
COKML lemma:Playfair
COMKL lemma:collinearorder
PRBEMK defn:parallelogram
PRBEKM lemma:parallelflip
NELK lemma:inequalitysymmetric
PRBELK lemma:collinearparallel
PRLKBE lemma:parallelsymmetric
PRLKEB lemma:parallelflip
COABE defn:collinear
COEBA lemma:collinearorder
PRLKAB lemma:collinearparallel
PRABLK lemma:parallelsymmetric
PRABKL lemma:parallelflip
BEKBH axiom:betweennesssymmetry
COLAH lemma:collinearorder
BELAH lemma:parallelbetween
BEHAL axiom:betweennesssymmetry
PGHABG
PRHABG defn:parallelogram
PRHAGB lemma:parallelflip
COGBM
NCBMK lemma:parallelNC
NEMB lemma:NCdistinct
PRHAMB lemma:collinearparallel
PRMBHA lemma:parallelsymmetric
PRMBAH lemma:parallelflip
COAHL lemma:collinearorder
PGHLKF
PRHLKF defn:parallelogram
NCHLK lemma:parallelNC
NELH lemma:NCdistinct
PRMBLH lemma:collinearparallel
PRMBHL lemma:parallelflip
COLMK lemma:collinearorder
BELMK lemma:parallelbetween
PGGBEF
PRGBEF defn:parallelogram
COFEK defn:collinear
COEFK lemma:collinearorder
NEFK lemma:betweennotequal
NEKF lemma:inequalitysymmetric
PRGBKF lemma:collinearparallel
COFGH lemma:collinearorder
BEFGH lemma:parallelbetween
BEHGF axiom:betweennesssymmetry
PGHABG
PGABGH lemma:PGrotate
PGBGHA lemma:PGrotate
PGGHAB lemma:PGrotate
PGMKEB lemma:PGrotate
PGKEBM lemma:PGrotate
PGEBMK lemma:PGrotate
EFBEFGLMBA proposition:43
EFabmcBEFG axiom:EFpermutation
EFabmcLMBA axiom:EFtransitive
PGHLKF
BEHGF
BEHAL
BELMK
BEHBK
PGAHGB lemma:PGflip
PGMBEK lemma:PGflip
PGABML proposition:43B
PRABML defn:parallelogram
EAEBGJDN
BEABE
COHGF lemma:collinearorder
COLMK
NEHF lemma:betweennotequal
NELK lemma:betweennotequal
NEHG lemma:betweennotequal
NEMK lemma:betweennotequal
PRHFLK defn:parallelogram
NOMEHFLK defn:parallel
BEHBK
COGMB lemma:collinearorder
BEGBM lemma:collinearbetween
EAABMGBE proposition:15
EAGBEEBG lemma:ABCequalsCBA
EAABMEBG lemma:equalanglestransitive
EAABMJDN lemma:equalanglestransitive
EFabmcABML axiom:EFpermutation
SSRGBE
COBEA lemma:collinearorder
NEBA
SSRGBA lemma:samesidecollinear
SSRGAB lemma:samesideflip
BEGBM
OSGABM defn:oppositeside
SSGRAB lemma:samesidesymmetric
OSRABM lemma:planeseparation
OSMABR lemma:oppositesidesymmetric
ANPGABML+EAABMJDN+EFabmcABML+MIbmc+OSMABR
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists