Sindbad~EG File Manager

Current Path : /home/beeson/public_html/michaelbeeson/research/papers/programs/junk/
Upload File :
Current File : //home/beeson/public_html/michaelbeeson/research/papers/programs/junk/Prop29.prf

PRABCD
BEAGB
BECHD
BEEGH
BEGHF
OSAGHD
COAGB  defn:collinear
COCHD  defn:collinear
COEGH  defn:collinear
ANBEARD+COGHR+NCGHA  defn:oppositeside
BEARD
COGHR
NCGHA
ANNEAB+NECD+NOMEABCD+SSCDAB  defn:parallel
NEAB
NECD
NOMEABCD
SSCDAB
COGHD  assumption
 COHDG  lemma:collinearorder
 COHDC  lemma:collinearorder
 NEHD  lemma:betweennotequal
 CODGC  lemma:collinear4
 COCDG  lemma:collinearorder
 COAGB  defn:collinear
 COABG  lemma:collinearorder
 MEABCD defn:meet
NCGHD  reductio
EQGH  assumption
 COABG  lemma:collinearorder
 COCDH  lemma:collinearorder
 COCDG  cn:equalitysub
 MEABCD  defn:meet
NEGH  reductio
ANBEGSH+EESGSH  proposition:10
BEGSH
BEHSG  axiom:betweennesssymmetry
EESGSH
EQDS  assumption
 COGSH defn:collinear
 COGDH cn:equalitysub
 COGHD lemma:collinearorder
NEDS reductio
ANBEDSP+EESPDS postulate:extension
BEDSP
EESPDS
CODSH  assumption
 COGSH defn:collinear
 COSHG lemma:collinearorder
 COSHD  lemma:collinearorder
 NESH  lemma:betweennotequal
 COHGD lemma:collinear4
 COGHD lemma:collinearorder
NCDSH reductio
BEPSD  axiom:betweennesssymmetry
BEGSH
EADSHGSP  proposition:15
EAGSPDSH  lemma:equalanglessymmetric
COPSG  assumption
 COPSD defn:collinear
 NEPS  lemma:betweennotequal
 COSGD lemma:collinear4
 COGHS defn:collinear
 COSGH lemma:collinearorder
 NEGS lemma:betweennotequal
 NESG lemma:inequalitysymmetric
 COGDH lemma:collinear4
 COGHD lemma:collinearorder
 NCGHD
NCPSG reductio
TRPSG  defn:triangle
EAPSGGSP lemma:ABCequalsCBA
EAPSGDSH  lemma:equalanglestransitive
TRDSH  defn:triangle
EESPSD lemma:congruenceflip
EESGSH
ANEEPGDH+EASPGSDH+EASGPSHD proposition:04
EEPGDH
EASPGSDH
EASGPSHD
EQPG assumption
 COPSG  defn:collinear
NEPG reductio
NECH lemma:betweennotequal
NCSDH  lemma:equalanglesNC
EQCS assumption
 COGSH  defn:collinear
 COGCH  cn:equalitysub
 COCHD  defn:collinear
 COCHG  lemma:collinearorder
 NECH lemma:betweennotequal
 COHDG lemma:collinear4
 COGHD lemma:collinearorder
 COGHS lemma:collinearorder
 NEGH lemma:betweennotequal
 COHDS lemma:collinear4
 COSDH lemma:collinearorder
 NCSDH 
NECS reductio
ANBECSQ+EESQCS postulate:extension
BECSQ
EESQCS
EECSSQ lemma:congruencesymmetric
MICSQ  defn:midpoint
EESHSG lemma:congruencesymmetric
EEHSSG lemma:congruenceflip
MIHSG  defn:midpoint
EESDSP  lemma:congruencesymmetric
EEDSSP lemma:congruenceflip
MIDSP defn:midpoint
EECDQP  lemma:pointreflectionisometry
EECHQG  lemma:pointreflectionisometry
EEHDGP  lemma:pointreflectionisometry
BEQGP   lemma:betweennesspreserved
BEPGQ  axiom:betweennesssymmetry
BEPGQ
EEQGCH lemma:congruencesymmetric
EEGQCH  lemma:congruenceflip
BEHSG  axiom:betweennesssymmetry
NEHS lemma:betweennotequal
RAHSG lemma:ray4
EQDD  cn:equalityreflexive
NEHD lemma:angledistinct
RAHDD lemma:ray4
EASGPGHD  lemma:equalangleshelper
EAGHDSGP  lemma:equalanglessymmetric
NEGS  lemma:betweennotequal
RAGSH lemma:ray4
EQPP  cn:equalityreflexive
NEGP lemma:angledistinct
RAGPP lemma:ray4
EAGHDHGP lemma:equalangleshelper
EAHGPGHD  lemma:equalanglessymmetric
COPGH assumption
 COGHS defn:collinear
 COHGS lemma:collinearorder
 COHGP lemma:collinearorder
 NEGH lemma:betweennotequal
 NEHG lemma:inequalitysymmetric
 COGSP lemma:collinear4
 COPSG lemma:collinearorder
 NCPSG
NCPGH reductio
EAPGHHGP  lemma:ABCequalsCBA
EAPGHGHD lemma:equalanglestransitive
BEPSD
COGSH  defn:collinear
COGHS  lemma:collinearorder
COGHP assumption
 COPGH lemma:collinearorder
NCGHP reductio
OSPGHD   defn:oppositeside
PRPQCD  proposition:27
NOMEPQCD  defn:parallel

 
AOHGAHGP   assumption
 EQPP   cn:equalityreflexive
 NEGP  lemma:raystrict
 RAGPP lemma:ray4

 SSAPGH  defn:sameside
 EQHH  cn:equalityreflexive
 NEGH  lemma:betweennotequal
 RAGHH  lemma:ray4
 RAGPP
 ANBEPMH+RAGAM  lemma:crossbar2
 BEPMH
 RAGAM 
 BEPSD
 BEGSH
 BEPMH
 EEGSHS  lemma:congruenceflip
 EESPSD   lemma:congruenceflip
 EEGPHD  lemma:congruenceflip
 ANBEGMK+BEDHK  postulate:Euclid5
 BEGMK
 BEDHK
 COGAM  lemma:rayimpliescollinear
 COGMK  defn:collinear
 COMGA  lemma:collinearorder
 COMGK  lemma:collinearorder
 NEGM   lemma:raystrict
 NEMG   lemma:inequalitysymmetric
 COGAK  lemma:collinear4
 COAGB defn:collinear
 COAGK  lemma:collinearorder
 COGAB  lemma:collinearorder
 COGAK  lemma:collinearorder
 NEAG   lemma:betweennotequal
 NEGA   lemma:inequalitysymmetric
 COABK  lemma:collinear4
 COHDK  defn:collinear
 COCHD  defn:collinear
 COHDC  lemma:collinearorder
 NEHD   lemma:betweennotequal
 CODKC  lemma:collinear4
 COCDK  lemma:collinearorder
 ANCOABK+COCDK 
 MEABCD  defn:meet
NOAOHGAHGP reductio

AOHGPHGA  assumption
 EAPGHHGP lemma:ABCequalsCBA
 AOPGHHGA lemma:angleorderrespectscongruence2
 COHGA  assumption
  COGHA lemma:collinearorder
  NCGHA
 NCHGA reductio
 EAHGAAGH lemma:ABCequalsCBA
 EAAGHHGA lemma:equalanglessymmetric
 AOPGHAGH lemma:angleorderrespectscongruence
 EQHH  cn:equalityreflexive
 NEGH  
 RAGHH  lemma:ray4
 BEPGQ
 SUPGHHQ  defn:supplement
 BEDHC  axiom:betweennesssymmetry
 EQGG  cn:equalityreflexive
 NEHG  lemma:inequalitysymmetric
 RAHGG lemma:ray4
 SUDHGGC   defn:supplement
 EAPGHGHD 
 EAGHDDHG  lemma:ABCequalsCBA
 EAPGHDHG  lemma:equalanglestransitive
 EAHGQGHC  lemma:supplements
 SUAGHHB  defn:supplement
 AOHGBHGQ  lemma:supplementinequality
 BEBGA   axiom:betweennesssymmetry
 EQGG   cn:equalityreflexive
 COGHG   defn:collinear 
 COGHB  assumption
  COAGB  defn:collinear
  COBGA  lemma:collinearorder
  COBGH  lemma:collinearorder
  NEGB  lemma:betweennotequal
  NEBG  lemma:inequalitysymmetric
  COGAH  lemma:collinear4
  COHGA  lemma:collinearorder
 NCGHB  reductio
 OSBGHA   defn:oppositeside
 OSAGHB   lemma:oppositesidesymmetric
 SSAPGH   defn:sameside
 SSPAGH  lemma:samesidesymmetric
 OSPGHB  lemma:planeseparation
 ANBEPLB+COGHL+NCGHP defn:oppositeside
 BEPLB
 BEBLP  axiom:betweennesssymmetry
 COGHL
 NCGHP
 EAGHCHGQ lemma:equalanglessymmetric
 NCHGQ  lemma:equalanglesNC
 COGHQ assumption
  COHGQ lemma:collinearorder
 NCGHQ  reductio
 NCGHB
 BEQGP  axiom:betweennesssymmetry 
 SSBQGH  defn:sameside
 AOHGBHGQ
 SSBQGH
 RAGHH
 EQQQ  cn:equalityreflexive
 NEQG  lemma:betweennotequal
 NEGQ  lemma:inequalitysymmetric
 RAGQQ  lemma:ray4
 ANBEQMH+RAGBM  lemma:crossbar2
 BEQMH
 RAGBM 
 EEGQHC   lemma:congruenceflip
 EEGSHS   lemma:congruenceflip
 BEQSC   axiom:betweennesssymmetry
 BEGSH
 BEQMH
 EESQCS lemma:congruencesymmetric
 EESQSC lemma:congruenceflip
 EEQGCH lemma:congruencesymmetric
 EEGQHC lemma:congruenceflip
 ANBEGMK+BECHK  postulate:Euclid5
 BEGMK
 BECHK
 COGBM  lemma:rayimpliescollinear
 COGMK  defn:collinear
 COMGB  lemma:collinearorder
 COMGK  lemma:collinearorder
 NEGM   lemma:raystrict
 NEMG   lemma:inequalitysymmetric
 COGBK  lemma:collinear4
 COBGA defn:collinear
 COBGK  lemma:collinearorder
 COGBA  lemma:collinearorder
 COGBK  lemma:collinearorder
 NEBG   lemma:betweennotequal
 NEGB   lemma:inequalitysymmetric
 COBAK  lemma:collinear4
 COABK  lemma:collinearorder
 COHCK  defn:collinear
 CODHC  defn:collinear
 COHCD  lemma:collinearorder
 NEHC   lemma:betweennotequal
 COCKD  lemma:collinear4
 COCDK  lemma:collinearorder
 ANCOABK+COCDK 
 MEABCD  defn:meet
NOAOHGPHGA reductio
COHGP assumption
 COGHP lemma:collinearorder
NCHGP reductio
COHGA assumption
 COGHA lemma:collinearorder
 NCGHA  defn:oppositeside
NCHGA reductio
NOEAHGAHGP assumption
 AOHGAHGP lemma:angletrichotomy2 
 NOAOHGAHGP
EAHGAHGP reductio
EAHGPPGH  lemma:ABCequalsCBA
EAPGHGHD
EAHGPGHD lemma:equalanglestransitive
EAGHDDHG  lemma:ABCequalsCBA
EAHGPDHG lemma:equalanglestransitive
EAHGADHG lemma:equalanglestransitive
COAGH assumption
 COGHA lemma:collinearorder
 NCGHA
NCAGH  reductio
EAAGHHGA lemma:ABCequalsCBA
EAAGHDHG  lemma:equalanglestransitive
NCDHG  lemma:equalanglesNC
EADHGGHD  lemma:ABCequalsCBA
EAAGHGHD  lemma:equalanglestransitive
BEAGB
BEEGH
BEHGE  axiom:betweennesssymmetry
NCAGH 
EAAGHEGB  proposition:15
EAEGBAGH  lemma:equalanglessymmetric
EAEGBGHD   lemma:equalanglestransitive
EAAGHGHD
EQHH    cn:equalityreflexive
RAGHH  lemma:ray4
SUAGHHB   defn:supplement
COBGH assumption
 COAGB  defn:collinear
 COBGA  lemma:collinearorder
 NEGB  lemma:betweennotequal
 NEBG  lemma:inequalitysymmetric
 COGHA  lemma:collinear4
 COAGH  lemma:collinearorder
 NCAGH
NCBGH reductio
EABGHBGH  lemma:equalanglesreflexive
EAGHDAGH  lemma:equalanglessymmetric
EAAGHHGA  lemma:ABCequalsCBA
EAGHDHGA  lemma:equalanglestransitive
SUBGHHA  lemma:supplementsymmetric
RTBGHGHD  defn:tworightangles
ANEAAGHGHD+EAEGBGHD+RTBGHGHD

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists