Sindbad~EG File Manager

Current Path : /home/beeson/Otter-Lambda/
Upload File :
Current File : //home/beeson/Otter-Lambda/trigsum.o

ELF�\4(U��VS���]�u���x�����D$��D$��D$�$�������h�����D$��D$��D$�$�������x����D$��|����D$�E��D$��h����D$��l����D$��p����D$�4$�������X�����H�����D$��D$��D$�$�������8�����D$��D$��D$�$�������H����D$��L����D$��P����D$��8����D$��<����D$��@����D$�4$������E��D$�E��D$�E��D$��X����D$��\����D$��`����D$�$������]؍�(�����D$��D$��D$��D$��D$��D$�$�������(����D$��,����D$��0����D$�$������E��D$(�E��D$$�E؉D$�E܉D$�E�D$ �E�D$�E�D$�E�D$�E�$�E�D$�E�D$����E��}�t>�E�$�E�D$�E�D$����E؉$�E܉D$�E�D$���Dž$����P�E �D$�E��$�E��D$�E��D$����D$�E$�$����U �E �@
���f�BDž$�����$����e�[^]�U��WVS��<�]؍�x�����h�����X�����D$��D$��D$�$�������H�����D$��D$��D$�$�������X����D$��\����D$��`����D$��H����D$��L����D$��P����D$�<$�������h����D$��l����D$��p����D$�4$�������8�����(�����D$��D$��D$�$������������D$��D$��D$�$�������(����D$��,����D$��0����D$������D$������D$�� ����D$�4$�������x����D$��|����D$�E��D$��8����D$��<����D$��@����D$�$������]ȍ������������D$��D$��D$�$������������D$�������D$������D$��D$��D$��D$�4$�����������D$������D$������D$�$������E��D$(�E��D$$�EȉD$�ẺD$�EЉD$ �E؉D$�E܉D$�E�D$�E�$�E�D$�E�D$����E��}�t>�E؉$�E܉D$�E�D$����Eȉ$�ẺD$�EЉD$���Dž��P�E �D$�E��$�E��D$�E��D$����D$@�E$�$����U �E �@
���f�BDž�����e�[^_]�U��WVS��,�]؍�x�����h�����X�����D$��D$��D$�$�������H�����D$��D$��D$�$�������X����D$��\����D$��`����D$��H����D$��L����D$��P����D$�<$�������h����D$��l����D$��p����D$�4$�������8�����(�����D$��D$��D$�$������������D$��D$��D$�$�������(����D$��,����D$��0����D$������D$������D$�� ����D$�4$�������x����D$��|����D$�E��D$��8����D$��<����D$��@����D$�$������]ȍ������D$��D$��D$��D$��D$��D$�$�����������D$������D$������D$�$������E��D$(�E��D$$�EȉD$�ẺD$�EЉD$ �E؉D$�E܉D$�E�D$�E�$�E�D$�E�D$����E��}�t>�E؉$�E܉D$�E�D$����Eȉ$�ẺD$�EЉD$���Dž����P�E �D$�E��$�E��D$�E��D$����D$��E$�$����U �E �@
���f�BDž���������e�[^_]�U��VS�� �]�u���x�����D$��D$��D$�$�������h�����D$��D$��D$�$�������x����D$��|����D$�E��D$��h����D$��l����D$��p����D$�4$�������X�����H�����D$��D$��D$�$�������8�����D$��D$��D$�$�������H����D$��L����D$��P����D$��8����D$��<����D$��@����D$�4$������E��D$�E��D$�E��D$��X����D$��\����D$��`����D$�$������]؍�(����������D$��D$��D$�$�����������D$������D$�� ����D$��D$��D$��D$�4$�������(����D$��,����D$��0����D$�$������E��D$(�E��D$$�E؉D$�E܉D$�E�D$ �E�D$�E�D$�E�D$�E�$�E�D$�E�D$����E��}�t>�E�$�E�D$�E�D$����E؉$�E܉D$�E�D$���Dž����P�E �D$�E��$�E��D$�E��D$����D$��E$�$����U �E �@
���f�BDž���������e�[^]�U��S��f�}/tDžt�����U��E�B�E�B�E�U����E؋B�E܋B�E�f�}�+uf�}�+uf�}�u	f�}�u�Džt����b�E�f�8u1�E�f�xu'�E��@����u�E�@�8u�E�f�8-u�Džt�����U��EȋB�E̋B�EЋU����E��B�E��B�E��E��P��E��B�E��B�E�f�}�uf�}�uf�}�*u	f�}�u�Džt�����UЋ�E��B�E��B�E��U���E��B�E��B�E��U���D$�B�D$�B�D$�Eȉ$�ẺD$�EЉD$�����t7�U�����D$�B�D$�B�D$�E��$�E��D$�E��D$�����ut�U�����D$�B�D$�B�D$�Eȉ$�ẺD$�EЉD$��������U���D$�B�D$�B�D$�E��$�E��D$�E��D$�����u��] ��x����E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$�������x����D$��|����D$�E��D$�$������U �E �@
���f�B�D$�E$�$���Džt����
Džt�����t����]���U��VS��f�}/tDžd����a�U��E�B�E�B�E�U����E؋B�E܋B�E�f�}�+uf�}�+uf�}�u	f�}�u�Džd����	�E�f�8u�E�f�8-u�E��@f�8u�Džd������E�P��E��B�E��B�E��E��@�P��E��B�E��B�E��E�f�8u<�E�f�xu2�E��@����u$�E�@�8u�U����E��B�E��B�E��]�E�f�8uB�E�f�xu5�E��@����u$�E��@�8u�U��E��B�E��B�E��Džd����f�}�*u	f�}�u�Džd������U���EȋB�E̋B�EЋU�����E��B�E��B�E��U��D$�B�D$�B�D$�Eȉ$�ẺD$�EЉD$�����t:�E��P��D$�B�D$�B�D$�E��$�E��D$�E��D$�����uw�U��D$�B�D$�B�D$�E��$�E��D$�E��D$�������E��P��D$�B�D$�B�D$�Eȉ$�ẺD$�EЉD$�����u���] ��x�����h����E��D$�E��D$�E��D$�$�������h����D$��l����D$��p����D$�E��D$�E��D$�E��D$�4$�������x����D$��|����D$�E��D$�$������U �E �@
���f�B�D$@�E$�$���Džd����
Džd�����d����e�[^]�U��S��f�}/tDžt�����U��E�B�E�B�E�U����E؋B�E܋B�E�f�}�+uzf�}�+usf�}�ulf�}�ue�E�f�8-uY�E��@f�8uJ�E��@f�xu:�E��@�@����u&�E��@�@�8u�E�f�8*u�E�f�xu�Džt�����U��EȋB�E̋B�EЋU����E��B�E��B�E�f�}� u	f�}� u�Džt�����UЋ�E��B�E��B�E��U���E��B�E��B�E��U��E��B�E��B�E��U���D$�B�D$�B�D$�Eȉ$�ẺD$�EЉD$�����t7�U�����D$�B�D$�B�D$�E��$�E��D$�E��D$�����ut�U���D$�B�D$�B�D$�E��$�E��D$�E��D$��������U�����D$�B�D$�B�D$�Eȉ$�ẺD$�EЉD$�����u��] ��x����E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$�������x����D$��|����D$�E��D$�$������U �E �@
���f�B�D$��E$�$���Džt����
Džt�����t����]���U��VS��f�}/tDžd����H�U��E�B�E�B�E�U����E؋B�E܋B�E�f�}�+u#f�}�+uf�}�uf�}�u�E�f�8-u�Džd������U��E��B�E��B�E��E��P��E��B�E��B�E�f�}� u	f�}� u�Džd�����U���EȋB�E̋B�EЋU���E��B�E��B�E��E�f�8u<�E�f�xu2�E��@����u$�E�@�8u�U����E��B�E��B�E��]�E�f�8uB�E�f�xu5�E��@����u$�E��@�8u�U��E��B�E��B�E��Džd�����f�}�*u	f�}�u�Džd�����E��D$�E��D$�E��D$�U���$�B�D$�B�D$�����t7�E��D$�E��D$�E��D$�U�����$�B�D$�B�D$�����ut�E��D$�E��D$�E��D$�U���$�B�D$�B�D$�������E��D$�E��D$�E��D$�U�����$�B�D$�B�D$�����u���] ��x�����h����E��D$�E��D$�E��D$�$�������h����D$��l����D$��p����D$�EȉD$�ẺD$�EЉD$�4$�������x����D$��|����D$�E��D$�$������U �E �@
���f�B�D$��E$�$���Džd����
Džd�����d����e�[^]�U��S��f�}/t�E���U��E�B�E�B�E�U����E؋B�E܋B�E�f�}�t�E����U��EȋB�E̋B�E�f�}�+u	f�}�u��E���U��E��B�E��B�E��U����E��B�E��B�E�f�}�uUf�}�uN�E�����uC�E��8u;f�}�u4�EȉD$�ẺD$�EЉD$�U���$�B�D$�B�D$�����uuf�}���f�}����E��������E��8��f�}����EȉD$�ẺD$�EЉD$�U���$�B�D$�B�D$�����u��] �U���D$��D$��D$�EȉD$�ẺD$�EЉD$�$������E��D$�E��D$�E��D$�$������U �E �@
���f�B�D$�E$�$����E���E��E��]���U��S��f�}/t�E���U��E�B�E�B�E�U����E؋B�E܋B�E�f�}�t�E��W�U��EȋB�E̋B�E�f�}�+uAf�}�u:�E�f�8u1�E�f�xu'�E��@����u�E�@�8u�E�f�8-u��E����E��P��E��B�E��B�E�f�}�u4�EȉD$�ẺD$�EЉD$�U���$�B�D$�B�D$�����u�E���] �U���D$��D$��D$�EȉD$�ẺD$�EЉD$�$������E��D$�E��D$�E��D$�$������U �E �@
���f�B�D$ �E$�$����E��E��]���U��S��tf�}/t�E���U��E�B�E�B�E�U����E؋B�E܋B�E�f�}�t�E����U��EȋB�E̋B�E�f�}�+u	f�}�u��E���E�f�8um�E�f�xuc�E��@����uU�E�@�8uJ�E�f�8u>�E��P��D$�B�D$�B�D$�Eȉ$�ẺD$�EЉD$��������E�f�8��E�f�x��E��@�������E��@�8���E�f�8���E�P��D$�B�D$�B�D$�Eȉ$�ẺD$�EЉD$�����u��] �U���D$��D$��D$�EȉD$�ẺD$�EЉD$�$������E��D$�E��D$�E��D$�$������U �E �@
���f�B�D$@�E$�$����E���E��E��]���U��S��f�}/t�E���U��E�B�E�B�E�U����E؋B�E܋B�E�f�}�t�E��W�U��EȋB�E̋B�E�f�}�+uAf�}�u:�E�f�8u1�E�f�xu'�E��@����u�E�@�8u�E�f�8-u��E����E��P��E��B�E��B�E�f�}�u4�EȉD$�ẺD$�EЉD$�U���$�B�D$�B�D$�����u�E���] �U���D$��D$��D$�EȉD$�ẺD$�EЉD$�$������E��D$�E��D$�E��D$�$������U �E �@
���f�B�D$`�E$�$����E��E��]���%:;I$>$>:;
:;I8
I!I/	I
:;(
:;

:;I
:;I
8

:;I
8
'II:;
:;I8
&I(
:;!I/.?:;'I@
:;I
:;I
4:;I
4:;I
.?:;'I@
:;I
 :;I
!4:;I
"4:;I
#4:;I?<0U!yyy/trigcalc/trigsum.c/home/beeson/Otter-LambdaGNU C 3.3.5 (Debian 1:3.3.5-13)size_t�xN__u_char"�unsigned char__u_short#�short unsigned int__u_int$x__u_long%�long unsigned int__int8_t(signed char__uint8_t)�__int16_t*<short int__uint16_t+�__int32_t,lint__uint32_t-x__int64_t2�long long int__uint64_t3�long long unsigned int__quad_t;�__u_quad_t<�__dev_t��__uid_t�x__gid_t�x__ino_t��__ino64_t��__mode_t�x__nlink_t�x__off_t�rlong int__off64_t��__pid_t�l��__val��#�l�N__fsid_t��__clock_t�r__rlim_t��__rlim64_t��__id_t�x__time_t�r__useconds_t�x__suseconds_t�r__daddr_t�l__swblk_t�r__key_t�l__clockid_t�l__timer_t�l__blksize_t�r__blkcnt_t�r__blkcnt64_t��__fsblkcnt_t��__fsblkcnt64_t��__fsfilcnt_t��__fsfilcnt64_t��__ssize_t�l__loff_t�~__qaddr_t�l	�__caddr_t��	�char__intptr_t�l__socklen_t�x
O1_ISupper�_ISlower�_ISalpha�_ISdigit�_ISxdigit� _ISspace��_ISprint��_ISgraph��_ISblank_IScntrl_ISpunct_ISalnumunit[k��digitx�lnx#val�#	kbignumx�signl#n�#d�#bigrat�arg#�-argtag#
t-{
i.r
d/�
b0�u*symbol&�#arity'�#info(�#args)u#	�term*-double#0fractx#varaddx#intexpx#negexpx#ratexpx#rootsx#purex#gcdx#absx#relopx#factorialx#matrix x#inverse"x#functions#x#sums$x#flt%x#complex'x#complexpowers*x#&+x
#mod,x#aflag0�� 	
left	{#right	{#line	l
#permanent	l#visible	l#reverse	l#oldeigen		l#defn	
0actualop
�	��l{{��	{3	
men

x#choice
x#operation
	�	b
status
x#choice
x#used
x#inhibited
x#men
x#hashbucket
D	

inh
A
A<#t
B<#kind
D<#link
E

#	�	inhibition
F�	�
,scopex#multorderx#typex#dp�#locus{#t	l#realpart
�#imagpart�# name�
#(�
��varinf"
dldata�#�#	�
dlist�
� #addr�#increment�#l#functorx#tl#name �#history!�#	�	parameter#!�02varlist&�#nvariables'l#maxvariables(l#eigenvariable)l#currentline*l#�+�#,l#maxparameters-l#varinfo.�# nextdefn/l#$defns0�#(maxdefns1l#,	�	�
	�vardata2�D)factorl#l#difl#intlinearl#gcdl#zeropowerl#fractexpl#negexpl#rootproductl# &l#$infractionl#(complex!l#,domainflag#l#0ringflag%l#4orderflag&l#8arith'##<hwnd(�#@polyflags)�Ja
prop
{#line
l#link
J#	assumption
eqnsolver
	s	y�l{{��,
$assumptions
�#maxassumptions
<#nextassumption
<#theorems
�#maxtheorems
<#nexttheorem
<#history
�#permhistory
�#maxhistory
x#workspace
�#maxworkspace
�# nextworkspace
!x#$solver
#b#(	�	P	x	�proverdata
$�topicl,>line<#:=l#(!!�		'�message>�
�
dummyanytermpair_of_termsvariablevariablesnotzeronotzerodivnotzeromulnotzeropowernotzerobase	notzerodenom
indexpair
realnonzerorealpositive_realtworealsindex_and_termterm_and_indexindex_and_varindex_and_nonzero_termposnonnegnegnonposintervalpositive_integerspecific_positive_integermsubstrevsubstrelrates_subtlist term_and_indexpair!positiveoddinteger"nonnegativeoddinteger#prod$reallist%trigsubst&functiondefn'functionredefn(absolutelyanyterm)notzeroinlimit*relrates1+relrates2,twoprompts-twoprompts1.integer/constant_condition0nonzero_constant1condition@;gr8

l#/�#color1�#color2�#color3�#ncolorsl#:l#spacingPointsl#thickness1l# thickness2l#$titlebackgroundcolor�#(�#,��#0�#4GraphPaper ��@�graphtype*l#numberofpoints,l#linewidth-�#graphcolor.�#//�#fillcolor0�#border1�#�2�# 3�#$4�#(ticks5x#,labels7x#,savezooms<x#,saveparams=x#,grid>x#,showtitles?x#,tool@x#,whichgraphBl#0F{#4fprimeG{#@gprimeH{#LxfunctionI{#XyfunctionJ{#dindependent_variableK{#pdependent_variableN{#|rvariableP�#�xvariableQ�#�yvariableR�#�tminS�#�tmaxS�#�tselectedU�#�xminV�#�xmaxV�#�yminV�#�ymaxV�#�slistW�#�dimslist[l#�jumplist\�#�dimjumplist]l#�openlist^�#�dimopen_l#�closedlist`�#�dimclosedal#�srestrictionsb�#�dimsrestrictionsdl#�jumprestrictionse�#�dimjumprestrictionsgl#�elisth�#�dimelistkl#�singularitiesl�#�nsingularitiesml#�initial_valuesn�#�jumpsp�#�njumpsql#�dxminr�#�dyminr�#�dxmaxs�#�dymaxs�#�pxmintl#�pxmaxtl#�pyminwl#�pymaxwl#�titlex{#�txminz�#�tyminz�#�txmaxz�#�tymaxz�#�xminsym{{#�xmaxsym{{#�yminsym{{#�ymaxsym{{#�selectedx~�#�selectedy~�#�pencil_left�#�pencil_top�#�pencil_right�#�pencil_bottom�#�whichparams��#����#�newaxes�x#�erase�x#�crosshairsflag�x#�rectangle_flag�x#�dfield�l#�dfield_applicable�x#�update�x#��x#�riemannflag�x#�root_xcoords��#�root_ycoords��#�nroots�l#�nintervals�{#�left��#�right��#�area��#�spot�x#�zoom_disabled�l#�tempsing�l#�grpaper�#�zvariable��#�independent_variable2�{#�zfunction�{#�zmin��#�zmax��#�umin��#�umax��#�vmin��#�vmax��#�rendermode�l#�camera��#�camera_rotation��#�focus��#�lamp1��#�lamp2��#�lamp1flag�l#�lamp2flag�l#�lamp1color��#�lamp2color��#�points��#���#�normals��#�npoints�l#�nindex�l#�	��l�	l���graph�coord<2,x*#y+#YPAIR,�1formula.2#reasonrect/2#comment02#line1?�4OcxChar4l#cyChar5l#width7<#height8<#
top:<#left;<#right<<#bottom=<#clientRight@<#clientBottomA<#leftmarginB<#rightmarginC<#topmarginE<#bottommarginF<#reasonsH<# linesI�#$:J<#(selectedK�#,selectedlineMl#0	�PapyrusO�^ \mX^ #commentY^ #controlflagsZ�#eigenindex[�#
	�linedata\	 �#�;�mathmode`x#display_onax#memoryflagbx#complex_frozencx#checksolutionsflagdx#substitutionflagex#logcollectflagfx#comdenomflaggx#linebreakshx#nfailedopsix#radicalflagjl#finishedflagkx#assumptions_visiblelx#definitions_visiblemx
#expandflagnl#trigexpandflagol#factorflagpl#selected_equationql#arl#Asl#minmax_intervalt{#pendingu�#(modelv�##,inhibitionsw�##�vsuccessivefailuresxl#�vlocalfailureszl#�vautosteps{l#�vopseq|�##�wfailedops}�##�wlinedatahistory~�##�wnlinedatax#�wplan��##�whwnd��#�wshowstepflag�l#�w�#�	��	
	3	�#��	d �#3	�controldata�t �'l=�kind�x#problemsource�x#docnumber�l#a�l#A�l#originaltopic�l#version�l#hwnd��#papyrus��'#brotherdoc��# progresshwnd��#$magnification�l#(backgroundcolor��#,textcolor��#0highlightcolor��#4reasoncolor��#8selectioncolor��#<backgroundpattern�l#@textweight�x#Dinitialized�x#Djustsaved�x#Dproblemready�x#Dsaveas��#HDocControlData��##LDocPolyData�#�xanddisplay�x#�xordisplay�x#�xfalsedisplay�x#�xbreakcol�#�xmaxfract�#�xheap��'#�xheapsize�x#�xDocVarData��#�xhomework��'#�yproblemnumbers��'#�yDocProverData��#�zmainchoice�l#�zactive_parameter�l#�z�{#�zgraphs��'#�zdisplay3d�r#�zviewport3d�r#�zngraphs�l#�znuserfunctions�l#�zdefns�(#�z	�	O�'l��'�'�	�	�DOCDATA�#PDOCDATA�*(	(�(sinsumrev$l�Ut"{�arg"{��"�� m"��$lhs${�hrhs${�Xa$�(��temp${��err%l���({��)sindifrev8l�\Ut6{�arg6{��6�� m6��$lhs8{�Xrhs8{�Ha8�(��temp8{��err9l�� *cossumrevLl\�	UtJ{�argJ{��J�� mJ��$lhsL{�XrhsL{�HaL�(��tempL{��errMl���*cosdifrev^l�	�Ut\{�arg\{��\�� m\��$lhs^{�hrhs^{�Xa^�(��temp^{��err_l��t+tansumrevpl��Utn{�argn{��n�� mn��$nump{�h[p{�Xap{�Hbp{��cp{��up{��vp{��(,tandifrev�l�,Ut�{�arg�{����� m���$num�{�h[�{�Xa�{�Hb�{��c�{��u�{��v�{���,cotsumrev�l,Ut�{�arg�{����� m���$num�{�h[�{�Xa�{�Hb�{��c�{��u�{��v�{���-cotdifrev�l�Ut�{�arg�{���� m׃�$num�{�h[�{�Xu�{�Hv�{��a�{��b�{��c�{��,.tanhalf1rev�l��Ut�{�arg�{����� m���$num�{�h[�{�Xu�{�Ha�{��b�{���.tanhalf2revl�mUt{�arg{� ���  m��$!num{�h"[{�X!u{�H!b{��N/cothalf1rev0lm�Ut.{�arg.{� �.��  m.��$!num0{�h"[0{�X!u0{�H�/cothalf2revIl�U!UtG{�argG{� �G��  mG��$!numI{�h"[I{�X!uI{�H!bI{��#two�/{#var0�/#var1�/�E�
yyy/trigcalc/usr/lib/gcc-lib/i486-linux/3.3.5/include/usr/include/bits/usr/includeyyytrigsum.cstddef.htypes.hctype.hheap.hbignum.hterms.harith.hdefns.hmodel.hvaux.hpolyval.hproverdl.hglobals.hcheckarg.hgraphstr.hdocument.hconstant.h#��sTd����,,�ɹ��Td����,,�ٹ�sTd����,,�׫��Td����,,�ɜr�:d��:�:d���::�d,,����r�:d��&�d�,�8W���:d��,,��ɜr�:d��:d��:::�d,,����r�:d*�:���::,�8W�����,,��ɜr�:dr�:�:d�a,,�r��r�:dr�:H��;�a,,r�rr�:dr�:��a,,�r��r�:dr�:H��;�a,,rsin u cos v +        cos u sin v=sin(u+v)sin u cos v -        cos u sin v=sin(u-v)cos u cos v -        sin u sin v=cos(u+v)cos u cos v +        sin u sin v=cos(u-v)(tan u+tan v)/       (1-tan u tan v) =    tan(u+v)(tan u-tan v)/       (1+tan u tan v) =    tan(u-v)(cot u cot v-1)/     (cot u+cot v) =       cot(u+v)(1+cot u cot v)/      (cot v-cot u) =       cot(u-v)$(sin �)/(1+cos �) =  tan(�/2)$$(1-cos �)/sin � =    tan(�/2)$$(1+cos �)/(sin �) =  cot(�/2)$$sin �/(1-cos �) =    cot(�/2)$����|��A�B
H���dA�B
I���\5A�B
I����	'A�B
H����A�B
G���A�B
H��,�A�B
G�vA�B
H���&A�B
G���A�B
G�m.A�B
D���A�B
G��00(sinsumrev�(sindifrev�)cossumrev *cosdifrev�*tansumrevt+tandifrev(,cotsumrev�,cotdifrev�-tanhalf1rev,.tanhalf2rev�.cothalf1revN/cothalf2revU!nparametersfunctionindextitlecolorcomdenombackgroundnlinescurrenttopicunsigned intdenomproblemtypereasonlinenumberaxeslabelcolorparametersnextaxescolorGCC: (GNU) 3.3.5 (Debian 1:3.3.5-13).symtab.strtab.shstrtab.rel.text.data.bss.debug_abbrev.rel.debug_info.rel.debug_line.rodata.rel.debug_frame.rel.debug_pubnames.rel.debug_aranges.debug_str.note.GNU-stack.comment4U!	0d`%�!+�!0�!�Bn#0>	�jR�S�N	�m^�V� jY|f	�m�{|Z�w	`n
�>[ �	hn�^[��\�\&,\��`�	8c��

�$)15;HPW�dai\5s�	'}��������,���v��&������m.���trigsum.csinsumrevvar1sin1var0cos1productsummatchdestroy_termpolyvalstrcpysindifrevtnegatecossumrevcosdifrevtansumrevequalstan1tandifrevcotsumrevcot1cotdifrevtanhalf1revtwomake_fractiontanhalf2revcothalf1revcothalf2rev!*6DMVb��������K���������Pr����#,8FOXd�����&2y�����!*6_���"-~�������8LU^jx����!2;DMV_k��
	#	O	W	b	�	�	�	�	�	�	�	�	7
K
T
]
i
w
�
�
�
�
1:COu~���2Kw�?v��)O mx��Cx�� ���$_��#���5i��=#[f�&$&-&N'n ����&�&�&'1 OZ_�&&&6'V#t� � &� &� &� '!#7!B!y��	�	�
Mm.<�q
��
k���v���z1��� X"f"B$P$I'G(K(l(z(�(�()*)�)�)�)�)7*;*\*j*�*�*�*
+&+�+�+�+�+�+?,C,d,r,�,�,�,-&-B-�-�-�-�-�-F.J.m.|.�.�.�.//2/h/l/�/�/�/R	8	<X	\x	|�	��	��	��	�	,	0H	Ld	h

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists