Sindbad~EG File Manager

Current Path : /home/beeson/Otter-Lambda/
Upload File :
Current File : //home/beeson/Otter-Lambda/simpsum.o

ELF�84(U���(�E$�D$�E��D$�E��D$�E �D$�E�$�E�D$�E�D$��}�u�}�u�E���}�u�}�u	�E��n�}�t#�}�u�$�����D$�E$�$����>�}�t�$�����D$�E$�$�����$�����D$�E$�$����E��E���U���x�Ef�E��E
f�EċE�E؋E�E܋E�E��E�����E��E��}�t7�E��$������E���������u�E���E��$����E��U�E��f�}Ƈt(f�}�=t!f�}�<tf�}�>tf�}�}tf�}�|t��E�UĉT$�UƉT$�$������E��E�9E�|�}�E �D$�E��D$�E��D$�M�U������A�D$�U����Ѝ��U�
�$�D
�D$�D
�D$����M�U�E���M�U�E���E���x����}u(�}u"�E�@�$����U�E��E�B�E�B�}��y�E�� ��E��$����cf�}�+t4�U�E��E�B�E�B�}��>�E�� ��E��$����(��}�t��E�D$�EȉD$�E؉D$�E܉D$�E�D$�$����E�}�uE�E �D$�E�D$��D$��D$��D$�E؉$�E܉D$�E�D$����E�}��n����EȉE؋ẺE܋EЉE�M�U�E���E��E����E�8u�E�8u�U�E��E�B�E�B�/�U�E؉�E܉B�E�B�U��$�B�D$�B�D$����}�t�E�� ��E��$�����U��VS��0�E�f�}+t�E���E�E��E
f�E��D$�E��$����E�}�u����E��Y�E�D$�E�D$�E�D$�E��D$�E�$����E�f;E��3�E�$�E�D$�E�D$���f�E�f�}�u$�D$�D$��D$�$&����D$�E��$����E��E��}�u����E���D$�E�D$�E�D$�E�$�E�D$�E�D$����D$�E��$����E�}�u����E��J�E�D$�E�D$�E�D$�E��D$�E�$����E�f;E�u(�}�t�E�$����E�$����E���f�}�u�M�U���B�A�B�A�f�}�u�U����B��B�v�U�E�D$�D$+�$������E��E�9E�|�F�M�U���Ѝ��q�U���Ѝ��U�
��D
�D�D
�D�E�믋U�E�@
���f�B�}�t�E�$����E�$����E��E�e�[^]�U����E �D$�E�D$�E�$�E�D$�E�D$�����E��}�t�E���E��D$�E�$�E�D$�E�D$����E��}�u�E��$�����w��$�����D$�E$�$����-�$�����D$�E$�$����E��D$�E$�$����E��E���U���Xf�}@u�E�$�����f�}/t�E��m�U����E؋B�E܋B�E�f�}�+uM�D$^�E؉$�E܉D$�E�D$�����t(�$�����D$�$����E��f�}�*tf�}�^t�E���f�}�*u/f�}�v(�$�����D$�$����E���E �D$�E�D$�E�D$�E�D$�E�$�E�D$�E�D$����E�}�u6�U ��D$�B�D$�B�D$�E�$�E�D$�E�D$�����u�	�E��5�$�����D$�E$�$����U �E �@
���f�B�E��E���U���h�E�$�E�D$�E�D$�����t�E��N�E�D$�E�$�E�D$�E�D$����Eă}�~3�E�$����$i����D$�$����E����}�t$�D$*�D$�D$�$9����U��EȋB�E̋B�EЋE�$����E؉D$�EȉD$�ẺD$�EЉD$�E�$�E�D$�E�D$����E�}����U �EȉD$�ẺD$�EЉD$�E؉D$�E܉D$�E�D$�$������E�D$�E�D$�E�D$�U ��$�B�D$�B�D$�����t3�$j����D$�$����E�$����E����$h����D$�E$�$����E���E؉D$�EȉD$�ẺD$�EЉD$�E�$�E�D$�E�D$����E�}�t	�E��Z�U �EȉD$�ẺD$�EЉD$�E؉D$�E܉D$�E�D$�$������$h����D$�E$�$����E��E���U��S�������t+�$�����D$�$���Džt����G�E�$�E�D$�E�D$�����tDžt�����E�D$�E�$�E�D$�E�D$����E��}�~6�E�$����$i����D$�$���Džt�����}�t$�D$I�D$1�D$�$9����U��EȋB�E̋B�EЋE�$����E؉D$�EȉD$�ẺD$�EЉD$�E�$�E�D$�E�D$����E�}�t+�$�����D$�$���Džt����
�E�f�E��U������E�P��E��B�E��B�E�f�}�uEf�}�u>�E�����u3�E��8u+�$�����D$�$���Džt�����U��E��D$�D$��$������E��E�H9E�|��]��E��D$�E��D$�E��D$�U���Ѝ��U�
�D$�D
�D$�D
�D$�$������U�����E��D$�E��$�E��D$�E��D$����E��n����U������E��P����B��B�] ��x����EȉD$�ẺD$�EЉD$�E��D$�E��D$�E��D$�$�������x����D$��|����D$�E��D$�E��D$�E��D$�E��D$�$������U �E �@
���f�B�$�����D$�E$�$���Džt�����t����]���U��S��Df�}+t�E���E
f�E��E��E�9E�|�-�U���Ѝ��Ef�<-t�E����E��ȍU��E�D$�D$+�$������E��E�9E�|�D�U���Ѝ��M�U���Ѝ��E�T���B�D�B�D�E�뱋E �D$�E؉$�E܉D$�E�D$����U �E �@
���f�B�D$S�E$�$����E��Eԋ]���U��VS��f�}@��f�}+��f�}
���Ef�8*���E��f�8*���E��E�@9E�|�&�M�U���Ѝ��Af�<+u��E��̋E�@9E�u�E��f�E��E���@9E�|��M���U���Ѝ��Af�<+uh�]���U���Ѝ��S�
�D$�D
�D$�D
�D$�]�U���Ѝ��S�
�$�D
�D$�D
�D$������u�
�E��Z����E���@9E�u�E���E$�D$�E��D$�E�D$�E�D$�E�D$�U����$�B�D$�B�D$����E�}�uc�M �E��D$�E��D$�E��D$�U��D$�B�D$�B�D$�$�����f�E�+f�E�f�E��Eȉ$����E����E$�D$�E��D$�E�D$�E�D$�E�D$�U��$�B�D$�B�D$����E�}�uf�M �U����D$�B�D$�B�D$�E��D$�E��D$�E��D$�$�����f�E�+f�E�f�E��Eȉ$����E��D�E��8f�}@��f�}+��f�}
���E��}�~�|�}�uG�M��U����D$�B�D$�B�D$�U����D$�B�D$�B�D$�$�������}�uA�M��U��$��D$�B�D$�B�D$�U��D$�B�D$�B�D$�$������?�M��U����D$�B�D$�B�D$�U��D$�B�D$�B�D$�$������E��D$�E��D$�E��D$�E��D$�E��D$�U���Ѝ��U�
�$�D
�D$�D
�D$������F�E$�D$�E��D$�E�D$�E�D$�E�D$�U���Ѝ��U�
�$�D
�D$�D
�D$����E�}����E �D$�D$+�$������E��}�~��M �U������E��I�M��E�;E�t=�U���Ѝ��U�
�]��u���D
�]��u��D�D
�U��M��D�&�E��]��u���E��U��M��D�E��]��u��D�E��h���f�E�+�E�@f�E�f�E��Eȉ$����E���E��y����E��}f�}*t�E��j�E
f�E��E��E�9E�|�u�U���Ѝ��U�
�E��D
�E��D
�E�f�}�+u@�E��E�9E�|�#�U���Ѝ��E�f�<-u��E����E�9E�}��E���E�9E�u�E����U��E�D$�D$*�$������E��E�9E�|�F�E�;E�tA�U���Ѝ��u��U���Ѝ��U�
��D
�D�D
�D���]��U���Ѝ��U�
�D$�D
�D$�D
�D$�$�����f�}�+u]f�}�uV�E�f�8-uM�E���f�8-tA�M��U���D$�B�D$�B�D$�U�����D$�B�D$�B�D$�$������0f�}�+u)f�}�v"�E�f�8-u�E��$�E��D$�E��D$����U���Ѝ��U��E��
�E��D
�E��D
�E�����E �D$�E��$�E��D$�E��D$����U �E �@
���f�B�D$a�E$�$����E��E��e�[^]�%:;I$>$>:;
:;I8
I!I/	I
:;(
:;

:;I
:;I
8

:;I
8
'II:;
:;I8
&I.?:;'I@
:;I
:;I
4:;I
.:;'@
4:;I
.:;'I@
.?:;'I@
:;I
:;I
4:;I
 4:;I
!4:;I?<�wyyy/algebra/simpsum.c/home/beeson/Otter-LambdaGNU C 3.3.5 (Debian 1:3.3.5-13)size_t�w'__u_char"�unsigned char__u_short#�short unsigned int__u_int$w__u_long%�long unsigned int__int8_t(
signed char__uint8_t)�__int16_t*;short int__uint16_t+�__int32_t,kint__uint32_t-w__int64_t2�long long int__uint64_t3�long long unsigned int__quad_t;�__u_quad_t<�__dev_t��__uid_t�w__gid_t�w__ino_t��__ino64_t��__mode_t�w__nlink_t�w__off_t�qlong int__off64_t��__pid_t�k��__val��#�k�'__fsid_t��__clock_t�q__rlim_t��__rlim64_t��__id_t�w__time_t�q__useconds_t�w__suseconds_t�q__daddr_t�k__swblk_t�q__key_t�k__clockid_t�k__timer_t�k__blksize_t�q__blkcnt_t�q__blkcnt64_t��__fsblkcnt_t��__fsblkcnt64_t��__fsfilcnt_t��__fsfilcnt64_t��__ssize_t�k__loff_t�}__qaddr_t�k	�__caddr_t��	�char__intptr_t�k__socklen_t�w
N1_ISupper�_ISlower�_ISalpha�_ISdigit�_ISxdigit� _ISspace��_ISprint��_ISgraph��_ISblank_IScntrl_ISpunct_ISalnumunitZj��digitw�lnw#val�#	jbignumw�signk#n�#d�#bigrat�arg#�,argtag#
t-z
i.q
d/�
b0�t*symbol&�#arity'�#info(�#args)t#	�term*,double"0fractw#varaddw#intexpw#negexpw#ratexpw#rootsw#purew#gcdw#absw#relopw#factorialw#matrix w#inverse"w#functions#w#sums$w#flt%w#complex'w#complexpowers*w#+w
#mod,w#aflag0�� 	
left	z#right	z#line	k
#permanent	k#visible	k#reverse	k#oldeigen		k#defn	
/actualop
�	��kzz��	z2	
men

w#choice
w#operation
	�	b
status
w#choice
w#used
w#inhibited
w#men
w#hashbucket
C	
inh
Aindex
A;#F
B;#kind
D;#link
E
#	�	inhibition
F�	�
,scopew#multorderw#typew#dp�#locusz#F	k#realpart
�#imagpart�# name�
#(�
��varinf#
dldata�#]#	�
dlist�
� #addr�#increment�#indexk#functorw#Fk#name �#history!�#	�	parameter#"�02varlist&�#4'k#maxvariables(k#eigenvariable)k#currentline*k#parameters+�#nparameters,k#maxparameters-k#varinfo.�# nextdefn/k#$defns0�#(maxdefns1k#,	�	�
	�vardata2�D)factork#functionk#difk#intlineark#gcdk#zeropowerk#fractexpk#negexpk#rootproductk# k#$infractionk#(complex!k#,domainflag#k#0ringflag%k#4orderflag&k#8arith'"#<hwnd(�#@polyflags)�Za
prop
z#line
k#link
Z#	"assumption
"eqnsolver
	�	��kzz��,
$assumptions
�#maxassumptions
;#nextassumption
;#theorems
�#maxtheorems
;#nexttheorem
;#history
�#permhistory
�#maxhistory
w#workspace
�#maxworkspace
�# nextworkspace
!w#$solver
#r#(	�	`	w	�proverdata
$�topick$,>line<$#nlines=k#(44�		:�message>�
�	unknownminmaxdamped_oscillationdom_errorbounded_oscillationunbounded_oscillationcomplex_approachapproachNtl�data�z#]�#prev�#	�termlist��POLYnomialz�collectall(k�Ut'z�arg'z�]'�� ?'��$(k�|Q(k�x�collect_aux>��Ut7z�]7��7��Q7��?7�� err>k�tcancel_occurred>k�ptemp?z�Xnew?z�Hf@��FnA��DiBk�@ppBk��qqBk��mathmodeBk��changedarithBk��arithflagC"��	k�additivecancel3�k��Ut�z����]���k���vm���ti�k�pbuf1�k�lbuffer1���hbuffer2���dadditivecancel�k��Ut�z�arg�z�]��� ?���$�z�hstr���err�k��"��O�partialfractionsop�k�.	Ut�z�arg�z�]�� ?͂�$err�k�tdenom�z�XCunivariatepoly�k.	�Ut�z�arg�z�]�� ?��$err�k�t���ptemp�z�Xx�z�H4�k�D(monicpolyk�AUtz�argz�]�� ?��$ik�terrk�p ��ltemp z�Xx z�Ha z��anspoly z�� 4!k��n"����pullminusoutOkAkUtMz�argMz�]M�� ?M��$iOk�tnP��ruQz�X�pullminusout2dkkwUtbz�argbz�]b�� ?b��$idk�tjdk�pkdk�lerrdk�hne��fpathf��Hugz��vgz�� gz�����!one�z!zero�'4�
yyy/algebra/usr/lib/gcc-lib/i486-linux/3.3.5/include/usr/include/bits/usr/includeyyysimpsum.cstddef.htypes.hctype.hheap.hbignum.hterms.harith.hdefns.hmodel.hvaux.hpolyval.hproverdl.hglobals.hprover.hpolynoms.hconstant.h'd5������d��r	Uer�r�rd�d�t0�Y� ��;�d�Wr:�d�e�2dE�ƞ�W:�dd�1�sr�d�ddV�(��+drdV�/ddV�(�d���r�r��?t,d��r��*d�#r��rUer�r�d,��Ը���8<��,rZg��#d���*:�8�84�����8d�8�r\������#d���*:�8d��$����Vy�*y,���tr����u�=s�,,r��>H�)u����'��Dd:ddd��Ad=ddd�����YT����d�d�r���r��'s�)u�w+q���H�<W8#Ad�t'��,,r
additivecancel3yyy/algebra/simpsum.ck>0univariatepolynvariables == 1monicpoly-a-b = -(a+b)a(b-c) = -a(c-b)����|��A�B
�A�B
��A�B
E����A�B
��A�B
.	�A�B
��A�B
G�A*A�B
D�kA�B
H����?collectall�additivecancel"partialfractionsop�univariatepolyCmonicpoly(pullminusout�pullminusout2wcancelflagatomlistcomdenomcancelledunsigned intnvariablesreasonlinenumbercollectflagnextGCC: (GNU) 3.3.5 (Debian 1:3.3.5-13).symtab.strtab.shstrtab.rel.text.data.bss.debug_abbrev.rel.debug_info.rel.debug_line.rodata.rel.debug_frame.rel.debug_pubnames.rel.debug_aranges.debug_str.note.GNU-stack.comment4w	�B0%�+�0��B��>	�F�RT2+N	�H^5rj�5f	�H�{�6�w	8I
��7 �	@I��7b�	8�	8&/8��<�	|@��
��
'�2:AN\jtz�������������	��.7>OV.	�es����������A*��k����simpsum.ccollect_auxadditivecancel3collectallenglishstrcpyget_mathmodeget_arithflagset_arithflagmake_termfree2collect1zeroadditivecanceladditive_sortargscallocatenospaceadditivecancel_auxcount_summands__assert_failsum_auxmstringstrlenstrcatpartialfractionsopget_eigenvariablecontainserrbufpartialfractionsequalsunivariatepolyseminumericalvariablesinmakepolypoly_termpolyformmonicpolymake_fractionpolyvaloneproductpullminusouttnegpullminusout2eqtestsumset_pathtailcancelstrongnegate|�����
%J�Z�� )2O��7Ey� �	�	�	�!��2"FT��������#-$@O]l~%�'�()Wg)�*�+�	I	-y	.�	�	�	)�		�		�		�	!�	3
/u
0�
+�
�
)�
�
�
;1�0�����)-7.KWg)�	�	�	�!��/	

)�
�
)�
3M4o5v5~5�0�6(�28M	X�:9L;l<�9�;<�;�;4;�=�9	�<�T>�;�<8W	bx��	�
p��
�W[|��������	�$�����BFgu����5[_���
CGjy���A04HLhl����������

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists