Sindbad~EG File Manager

Current Path : /home/beeson/Otter-Lambda/
Upload File :
Current File : //home/beeson/Otter-Lambda/loglim.o

ELF�X4(U���f�}�t�E��Of�}
t�E��<�E�@��f�8us�E�@��f�xuc�E�@���@����u�E�@���@�8u�H�E�@���@����u'�E�@���@�8u�E�@���@�@�8u��E��f�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�*u	f�}�u��E��[�E�P��E�B�E�B�E�U��EȋB�E̋B�EЋU����E��B�E��B�E�f�}�#tf�}�#t�E��f�}�#t6�EȉE��ẺE��EЉE��E��EȋE��E̋E��EЋE��E��E��E��E��E��E�D$�E�D$�E�D$�U���$�B�D$�B�D$�����u�E���E�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����u	�E��G�U ����B��B�U �E �@
���f�B�D$�E$�$����E��E���U���f�}�t�E��f�}
t�E���E�@��f�8us�E�@��f�xuc�E�@���@����u�E�@���@�8u�H�E�@���@����u'�E�@���@�8u�E�@���@�@�8u��E��f�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�*u	f�}�u��E���E�P��E�B�E�B�E�U��EȋB�E̋B�EЋU����E��B�E��B�E�f�}�#tf�}�#t�E��Qf�}�#t6�EȉE��ẺE��EЉE��E��EȋE��E̋E��EЋE��E��E��E��E��E��E�D$�E�D$�E�D$�U���$�B�D$�B�D$�����u�E����E�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����t�V�E�f�E�f�}�"u9�E�D$�E�D$�E�D$�UЋ�$�B�D$�B�D$�����t�f�}��uo�E�D$�E�D$�E�D$�UЃ���$�B�D$�B�D$�����t8�E�f�8u/�E�f�xu%�E��@�������E��@������f�}�^u4�E�D$�E�D$�E�D$�UЋ�$�B�D$�B�D$�����u�E���E�D$�UЃ���$�B�D$�B�D$�����t	�E��e�UЃ���$�B�D$�B�D$����U ����B��B�U �E �@
���f�B�D$�E$�$����E��E���U���f�}�t�E���f�}
t�E����E�@��f�8us�E�@��f�xuc�E�@���@����u�E�@���@�8u�H�E�@���@����u'�E�@���@�8u�E�@���@�@�8u��E��Gf�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�*u	f�}�u��E����E�P��E�B�E�B�E�U��EȋB�E̋B�EЋU����E��B�E��B�E��E�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����u>�E�D$�E�D$�E�D$�E��$�E��D$�E��D$�����u�E��B�E�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����u6�EȉE��ẺE��EЉE��E��EȋE��E̋E��EЋE��E��E��E��E��E�f�}�^t�E����E�f�8#t�E���E�D$�E�D$�E�D$�E��P��$�B�D$�B�D$�����u	�E��r�U�����$�B�D$�B�D$�����u	�E��G�U ����B��B�U �E �@
���f�B�D$2�E$�$����E��E���U���f�}�t�E��=f�}
t�E��*�E�@��f�8us�E�@��f�xuc�E�@���@����u�E�@���@�8u�H�E�@���@����u'�E�@���@�8u�E�@���@�@�8u��E��f�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�*u	f�}�u��E��I�E�P��E�B�E�B�E�U��EȋB�E̋B�EЋU����E��B�E��B�E�f�}�^tf�}�"t�E���f�}�^tf�}�"t�E����E�D$�E�D$�E�D$�UЋ�$�B�D$�B�D$�����u@�E�D$�E�D$�E�D$�U���$�B�D$�B�D$�����u�E��_�E�D$�E�D$�E�D$�UЋ�$�B�D$�B�D$�����u6�EȉE��ẺE��EЉE��E��EȋE��E̋E��EЋE��E��E��E��E��E��E�f�8#t�E����E�D$�E�D$�E�D$�E��P��$�B�D$�B�D$�����u�E���U�����$�B�D$�B�D$�����u	�E��r�UЃ���$�B�D$�B�D$�����u	�E��G�U ����B��B�U �E �@
���f�B�D$N�E$�$����E��E���U���xf�}�t�E��f�}
t�E����D$��D$��D$�E�P����$�B�D$�B�D$�����u�E��Uf�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�/t�E���E�P��E�B�E�B�E�U��EȋB�E̋B�EЋU����E��B�E��B�E��E�D$�E�D$�E�D$�E��$�E��D$�E��D$�����u�E��f�}�#u4�E�D$�E�D$�E�D$�UЋ�$�B�D$�B�D$�����u	�E��G�U ����B��B�U �E �@
���f�B�D$��E$�$����E��E���U���xf�}�t�E���f�}
t�E�����D$��D$��D$�E�P����$�B�D$�B�D$�����u�E��yf�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�/t�E��/�E�P��E�B�E�B�E�U��EȋB�E̋B�EЋU����E��B�E��B�E��E�D$�E�D$�E�D$�E��$�E��D$�E��D$�����u�E��f�}�^t�E���E�f�8#t�E���E�D$�E�D$�E�D$�EЋP��$�B�D$�B�D$�����u	�E��G�U ����B��B�U �E �@
���f�B�D$��E$�$����E��E���U���xf�}�t�E��f�}
t�E�����D$��D$��D$�E�P����$�B�D$�B�D$�����u�E��f�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�/t�E��W�E�P��E�B�E�B�E�U��EȋB�E̋B�EЋU����E��B�E��B�E�f�}�^t�E���E�D$�E�D$�E�D$�U���$�B�D$�B�D$�����u�E���f�}�#t�E���E�D$�E�D$�E�D$�UЋ�$�B�D$�B�D$�����u	�E��r�U�����$�B�D$�B�D$�����u	�E��G�U ����B��B�U �E �@
���f�B�D$��E$�$����E��E���U���xf�}�t�E���f�}
t�E�����D$��D$��D$�E�P����$�B�D$�B�D$�����u�E��f�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�/t�E��D�E�P��E�B�E�B�E�U��EȋB�E̋B�EЋU����E��B�E��B�E�f�}�^t�E����E�D$�E�D$�E�D$�U���$�B�D$�B�D$�����u�E��f�}�^t�E���E�f�8#t�E���E�D$�E�D$�E�D$�EЋP��$�B�D$�B�D$�����u	�E��G�U ����B��B�U �E �@
���f�B�D$ �E$�$����E��E���U���xf�}�t�E��f�}
t�E����D$��D$��D$�E�P����$�B�D$�B�D$�����u�E��Uf�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�/t�E���E�P��E�B�E�B�E�U��E��B�E��B�E��U����EȋB�E̋B�EЋE�D$�E�D$�E�D$�E��$�E��D$�E��D$�����u�E��f�}�#u4�E�D$�E�D$�E�D$�UЋ�$�B�D$�B�D$�����u	�E��G�U ����B��B�U �E �@
���f�B�D$`�E$�$����E��E���U���xf�}�t�E���f�}
t�E�����D$��D$��D$�E�P����$�B�D$�B�D$�����u�E��yf�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�/t�E��/�E�P��E�B�E�B�E�U��E��B�E��B�E��U����EȋB�E̋B�EЋE�D$�E�D$�E�D$�E��$�E��D$�E��D$�����u�E��f�}�^t�E���E�f�8#t�E���E�D$�E�D$�E�D$�EЋP��$�B�D$�B�D$�����u	�E��G�U ����B��B�U �E �@
���f�B�D$��E$�$����E��E���U���xf�}�t�E��f�}
t�E�����D$��D$��D$�E�P����$�B�D$�B�D$�����u�E��f�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�/t�E��W�E�P��E�B�E�B�E�U��E��B�E��B�E��U����EȋB�E̋B�E�f�}�^t�E���E�D$�E�D$�E�D$�U���$�B�D$�B�D$�����u�E���f�}�#t�E���E�D$�E�D$�E�D$�UЋ�$�B�D$�B�D$�����u	�E��r�U�����$�B�D$�B�D$�����u	�E��G�U ����B��B�U �E �@
���f�B�D$��E$�$����E��E���U���xf�}�t�E���f�}
t�E�����D$��D$��D$�E�P����$�B�D$�B�D$�����u�E��f�}
u�U����E؋B�E܋B�E���U����E؋B�E܋B�E�f�}�/t�E��D�E�P��E�B�E�B�E�U����EȋB�E̋B�EЋU��E��B�E��B�E�f�}�^t�E����E�D$�E�D$�E�D$�U���$�B�D$�B�D$�����u�E��f�}�^t�E���E�f�8#t�E���E�D$�E�D$�E�D$�EЋP��$�B�D$�B�D$�����u	�E��G�U ����B��B�U �E �@
���f�B�D$�E$�$����E��E���%:;I$>$>:;
:;I8
I!I/	I
:;(
:;

:;I
:;I
8

:;I
8
'II:;
:;I8
&I(
:;!I/.?:;'I@
:;I
:;I
4:;I

:;.?:;'I@
:;I
 :;I
!4:;I
"4:;I?<�0�yyy/trigcalc/loglim.c/home/beeson/Otter-LambdaGNU C 3.3.5 (Debian 1:3.3.5-13)size_t�wN__u_char"�unsigned char__u_short#�short unsigned int__u_int$w__u_long%�long unsigned int__int8_t(
signed char__uint8_t)�__int16_t*;short int__uint16_t+�__int32_t,kint__uint32_t-w__int64_t2�long long int__uint64_t3�long long unsigned int__quad_t;�__u_quad_t<�__dev_t��__uid_t�w__gid_t�w__ino_t��__ino64_t��__mode_t�w__nlink_t�w__off_t�qlong int__off64_t��__pid_t�k��__val��#�k�N__fsid_t��__clock_t�q__rlim_t��__rlim64_t��__id_t�w__time_t�q__useconds_t�w__suseconds_t�q__daddr_t�k__swblk_t�q__key_t�k__clockid_t�k__timer_t�k__blksize_t�q__blkcnt_t�q__blkcnt64_t��__fsblkcnt_t��__fsblkcnt64_t��__fsfilcnt_t��__fsfilcnt64_t��__ssize_t�k__loff_t�}__qaddr_t�k	�__caddr_t��	�char__intptr_t�k__socklen_t�w
N1_ISupper�_ISlower�_ISalpha�_ISdigit�_ISxdigit� _ISspace��_ISprint��_ISgraph��_ISblank_IScntrl_ISpunct_ISalnumunitZj��digitw�lnw#val�#	jbignumw�signk#n�#d�#bigrat�arg#�,argtag#
t-z
i.q
d/�
b0�t*symbol&�#arity'�#info(�#args)t#	�term*,double"0fractw#varaddw#intexpw#negexpw#ratexpw#rootsw#purew#gcdw#absw#relopw#factorialw#matrix w#inverse"w#functions#w#sums$w#flt%w#complex'w#complexpowers*w#&+w
#mod,w#aflag0�� 	
left	z#right	z#line	k
#permanent	k#visible	k#reverse	k#oldeigen		k#defn	
/actualop
�	��kzz��	z2	
men

w#choice
w#operation
	�	b
status
w#choice
w#used
w#inhibited
w#men
w#hashbucket
C		
inh
A
A;#n
B;#kind
D;#link
E	
#	�	inhibition
F�	�
,scopew#multorderw#typew#dp�#locusz#n	k#realpart
�#imagpart�# name�
#(�
��varinf!

dldata�#�
#	�
dlist�
� #addr�#increment�#k#functorw#nk#name �#history!�#	�	parameter# �02varlist&�#nvariables'k#maxvariables(k#eigenvariable)k#currentline*k#�+�#,k#maxparameters-k#varinfo.�# nextdefn/k#$defns0�#(maxdefns1k#,	�	�
	�vardata2�D)factork#k#difk#intlineark#gcdk#zeropowerk#fractexpk#negexpk#rootproductk# &k#$infractionk#(complex!k#,domainflag#k#0ringflag%k#4orderflag&k#8arith'"#<hwnd(�#@polyflags)�Ia
prop
z#line
k#link
I#	assumption
eqnsolver
	r	x�kzz��,
$assumptions
�#maxassumptions
;#nextassumption
;#theorems
�#maxtheorems
;#nexttheorem
;#history
�#permhistory
�#maxhistory
w#workspace
�#maxworkspace
�# nextworkspace
!w#$solver
#a#(	�	O	w	�proverdata
$�topick,>line<#:=k#(  �		&�message>�
�	unknownminmaxdamped_oscillationdom_errorbounded_oscillationunbounded_oscillationcomplex_approachapproach:tl�data�z#��#prev�#	�termlist��
�
dummyanytermpair_of_termsvariablevariablesnotzeronotzerodivnotzeromulnotzeropowernotzerobase	notzerodenom
indexpair
realnonzerorealpositive_realtworealsindex_and_termterm_and_indexindex_and_varindex_and_nonzero_termposnonnegnegnonposintervalpositive_integerspecific_positive_integermsubstrevsubstrelrates_subtlist term_and_indexpair!positiveoddinteger"nonnegativeoddinteger#prod$reallist%trigsubst&functiondefn'functionredefn(absolutelyanyterm)notzeroinlimit*relrates1+relrates2,twoprompts-twoprompts1.integer/constant_condition0nonzero_constant1condition@�gr8

k#/�#color1�#color2�#color3�#ncolorsk#:k#spacingPointsk#thickness1k# thickness2k#$titlebackgroundcolor�#(�#,��#0y�#4GraphPaper ��@�graphtype*k#numberofpoints,k#linewidth-�#graphcolor.�#//�#fillcolor0�#border1�#�2�# y3�#$4�#(ticks5w#,labels7w#,savezooms<w#,saveparams=w#,grid>w#,showtitles?w#,tool@w#,whichgraphBk#0Fz#4fprimeGz#@gprimeHz#LxfunctionIz#XyfunctionJz#dindependent_variableKz#pdependent_variableNz#|rvariableP�#�xvariableQ�#�yvariableR�#�tminS�#�tmaxS�#�tselectedU�#�xminV�#�xmaxV�#�yminV�#�ymaxV�#�slistW�#�dimslist[k#�jumplist\�#�dimjumplist]k#�openlist^�#�dimopen_k#�closedlist`�#�dimclosedak#�srestrictionsb�#�dimsrestrictionsdk#�jumprestrictionse�#�dimjumprestrictionsgk#�elisth�#�dimelistkk#�singularitiesl�#�nsingularitiesmk#�initial_valuesn�#�jumpsp�#�njumpsqk#�dxminr�#�dyminr�#�dxmaxs�#�dymaxs�#�pxmintk#�pxmaxtk#�pyminwk#�pymaxwk#�titlexz#�txminz�#�tyminz�#�txmaxz�#�tymaxz�#�xminsym{z#�xmaxsym{z#�yminsym{z#�ymaxsym{z#�selectedx~�#�selectedy~�#�pencil_left�#�pencil_top�#�pencil_right�#�pencil_bottom�#�whichparams��#����#�newaxes�w#�erase�w#�crosshairsflag�w#�rectangle_flag�w#�dfield�k#�dfield_applicable�w#�update�w#��w#�riemannflag�w#�root_xcoords��#�root_ycoords��#�nroots�k#�nintervals�z#�left��#�right��#�area��#�spot�w#�zoom_disabled�k#�tempsing�k#�grpaper��#�zvariable��#�independent_variable2�z#�zfunction�z#�zmin��#�zmax��#�umin��#�umax��#�vmin��#�vmax��#�rendermode�k#�camera��#�camera_rotation��#�focus��#�lamp1��#�lamp2��#�lamp1flag�k#�lamp2flag�k#�lamp1color��#�lamp2color��#�points��#���#�normals��#�npoints�k#�nindex�k#�	��k�	k���graph��coord;,x*�#y+�#YPAIR,�_1formula.#reasonrect/#comment0#line1� 4OcxChar4k#cyChar5k#width7;#height8;#
top:;#left;;#right<;#bottom=;#clientRight@;#clientBottomA;#leftmarginB;#rightmarginC;#topmarginE;#bottommarginF;#reasonsH;# linesI� #$:J;#(selectedK�#,selectedlineMk#0	_PapyrusOk<!\gX<!#commentY<!#controlflagsZ�#eigenindex[�#
	�linedata\� $�;�mathmode`w#display_onaw#memoryflagbw#complex_frozencw#checksolutionsflagdw#substitutionflagew#logcollectflagfw#comdenomflaggw#linebreakshw#nfailedopsiw#radicalflagjk#finishedflagkw#assumptions_visiblelw#definitions_visiblemw
#expandflagnk#trigexpandflagok#factorflagpk#selected_equationqk#[rk#Ask#minmax_intervaltz#pendingu�#(modelv$#,inhibitionsw�$#�vsuccessivefailuresxk#�vlocalfailureszk#�vautosteps{k#�vopseq|�$#�wfailedops}�$#�wlinedatahistory~�$#�wnlinedataw#�wplan��$#�whwnd��#�wshowstepflag�k#�w�$�	��	
	2	�$��	B!�$2	�controldata�R!�(l=�kind�w#problemsource�w#docnumber�k#[�k#A�k#originaltopic�k#version�k#hwnd��#papyrus��(#brotherdoc��# progresshwnd��#$magnification�k#(backgroundcolor��#,textcolor��#0highlightcolor��#4reasoncolor��#8selectioncolor��#<backgroundpattern�k#@textweight�w#Dinitialized�w#Djustsaved�w#Dproblemready�w#Dsaveas��#HDocControlData��$#LDocPolyData�#�xanddisplay�w#�xordisplay�w#�xfalsedisplay�w#�xbreakcol��#�xmaxfract��#�xheap��(#�xheapsize�w#�xDocVarData��#�xhomework��(#�yproblemnumbersĽ(#�yDocProverData��#�zmainchoice�k#�zactive_parameter�k#�z�z#�zgraphs��(#�zdisplay3d�q#�zviewport3d�q#�zngraphs�k#�znuserfunctions�k#�zdefns��(#�z	� 	N�(k��(�(�	�	�DOCDATA��$PDOCDATA�)	�(POLYnomialz�)limtlnt,kqUt*z�arg*z��*�� g*��$x,z�hw,z�Xu,z�Hv,z��temp,z��k*limtpowerlntMkq4UtKz�argKz��K�� gK��$outs�xMz�hwMz�XuMz�HvMz��tempMz��gN���+limtlntpower|k4>	Utzz�argzz��z�� gz��$x|z�hw|z�Xu|z�Hv|z��temp|z���+limtpowerlntpower�k>	�Ut�z�arg�z����� g���$x�z�hw�z�Xu�z�Hv�z��temp�z��3,limlntovert�k�pUt�z�arg�z���� gȂ�$x�z�hw�z�Xu�z�Hv�z���,limlntpowerovert�kpgUt�z�arg�z���� g��$x�z�hw�z�Xu�z�Hv�z��\-limlntovertpowerkg�Utz�argz� ���  g��$!xz�h!wz�X!uz�H!vz���-limlntpowerovertpower"k��Ut z�arg z� � ��  g ��$!x"z�h!w"z�X!u"z�H!v"z���.limtoverlntBk�eUt@z�arg@z� �@��  g@��$!xBz�h!wBz�X!uBz�H!vBz��'/limtoverlntpower\ke\UtZz�argZz� �Z��  gZ��$!x\z�h!w\z�X!u\z�H!v\z���/limtpoweroverlnt{k\{Utyz�argyz� �y��  gy��$!x{z�h!w{z�X!u{z�H!v{z��^0limtpoweroverlntpower�k{�Ut�z�arg�z� ����  g���$!x�z�h!w�z�X!u�z�H!v�z��"zerol0z"infinityl0�^�
yyy/trigcalc/usr/lib/gcc-lib/i486-linux/3.3.5/include/usr/include/bits/usr/includeyyyloglim.cstddef.htypes.hctype.hheap.hbignum.hterms.harith.hdefns.hmodel.hvaux.hpolyval.hproverdl.hglobals.hprover.hcheckarg.hgraphstr.hdocument.hpolynoms.hconstant.h+���r���7�d:dԸr4�2��,,rZ���r���7�d:dԸr4�2Vr;Vw;�*���,,rY���r���7�d:dd�2r���7����,,rZ���r���7�d:dԸԸh�4��7������,,rZd��r�@�7r�d:d2�;��,,rZd��r�@�7r�d:d2�r���7��,,rZd��r�@�7r�d:dr�4�r�4����,,rZd��r�@�7r�d:dr�4�r���7��,,rZd��r�@�7r�d:d2�;��,,rZd��r�@�7r�d:d2�r���7��,,r[d��r�@�7r�d:dr�4�r�4����,,r[d��r�@�7r�dd:r�4�r���7��,,r$$lim(t->0+,t ln t)=0$$$$lim(t->0+,t^n ln t)=0$$$$lim(t->0+,t (ln t)^n)=0$$$$lim(t->0+,t^k (ln t)^n)=0$$$$lim(t->infinity,ln(t)/t)=0$$$$lim(t->infinity,ln(t)^n/t)=0$$$$lim(t->infinity,ln(t)/t^n)=0$$$$lim(t->infinity,ln(t)^n/t^k)=0$$$$lim(t->infinity,t/ln(t))=0$$$$lim(t->infinity,t/ln(t)^n)=infinity$$$$lim(t->infinity,t^n/ln(t))=infinity$$$$lim(t->infinity,t^n/(ln t)^k)=infinity$$����|�qA�B
q�A�B
4
A�B
>	_A�B
��A�B
p�A�B
gA�B
�A�B
��A�B
e�A�B
\A�B
{A�B
��0 )limtlnt�)limtpowerlntk*limtlntpower+limtpowerlntpower�+limlntovert3,limlntpowerovert�,limlntovertpower\-limlntpowerovertpower�-limtoverlnt�.limtoverlntpower'/limtpoweroverlnt�/limtpoweroverlntpower�nparametersfunctionindextitlecolorcomdenombackgroundnlinescurrenttopicunsigned intproblemtypereasonlinenumberaxeslabelcolorparametersnextaxescolorGCC: (GNU) 3.3.5 (Debian 1:3.3.5-13).symtab.strtab.shstrtab.rel.text.data.bss.debug_abbrev.rel.debug_info.rel.debug_line.rodata.rel.debug_frame.rel.debug_pubnames.rel.debug_aranges.debug_str.note.GNU-stack.comment4�	p_%�+�0��B��0>	�c�RO�N	Xf^�R+ j�T4f	`f�{ V�w	 g
�W �	(g�>W���W��W&X�`\	p^��


q%q�2;N4
[>	_m��y�p��g������e��\�{loglim.climtlntequalszerostrcpylimtpowerlntcontainsobviously_positivelimtlntpowerlimtpowerlntpowerlimlntovertinfinitylimlntpowerovertlimlntovertpowerlimlntpowerovertpowerlimtoverlntlimtoverlntpowerlimtpoweroverlntlimtpoweroverlntpower�)08VaG��������$��!����	#	.	�
%e�@U\d�����
�
(/7U`�����
&.LW������)>EMkv�����5JQYw������$,JU������#AL������3:B`k�����*?FNlwx��	�	�
�
Ll-;�p
�����I���T���X�`� � 6#D# %.%'(5)9)Z)h)�)�)�)**�*�*�*�*&+*+K+Y+�+�+�+�+Q,U,v,�,�,�,	--�-�-�-�-..;.J.�.�.�.�.F/J/m/|/�/�/00k	0	4H	L`	dx	|�	��	��	��	��	�	 	$

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists