Sindbad~EG File Manager

Current Path : /home/beeson/Otter-Lambda/
Upload File :
Current File : //home/beeson/Otter-Lambda/diftrig.o

ELFxf4(U����$Q����D$�$����$R����D$�$����$S����D$�$����$T����D$�$�����U���Xf�}�t�E����U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�t�E���E�D$�E�D$�E�D$�U��$�B�D$�B�D$�����u����E��P�U �E�D$�E�D$�E�D$�$������U �E �@
���f�B�D$�E$�$����E��E���U��S��f�}�t�E���U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�t�E��A�U��EȋB�E̋B�EЋE�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����t;�U �E�D$�E�D$�E�D$�$������D$�E$�$�����] �U��E�D$�E�D$�E�D$�EȉD$�ẺD$�EЉD$�$������U��EȉD$�ẺD$�EЉD$�$������E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$������D$ �E$�$����U �E �@
���f�B�E��E��]���U��S��df�}�t�E����U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�t�E���E�D$�E�D$�E�D$�U��$�B�D$�B�D$�����u�b����E��s�] �UȋE�D$�E�D$�E�D$�$������EȉD$�ẺD$�EЉD$�$������U �E �@
���f�B�D$C�E$�$����E��Eċ]���U��VS��f�}�t�E����U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�t�E���U��EȋB�E̋B�EЋE�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����t^�] �U��E�D$�E�D$�E�D$�$������E��D$�E��D$�E��D$�$������D$C�E$�$������] �u��U��E�D$�E�D$�E�D$�EȉD$�ẺD$�EЉD$�$������U��EȉD$�ẺD$�EЉD$�$������E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�4$������E��D$�E��D$�E��D$�$������D$`�E$�$����U �E �@
���f�B�E��E��e�[^]�U��S��df�}�t�E���U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�t�E����E�D$�E�D$�E�D$�U��$�B�D$�B�D$�����u�^����E���] �UȋE�D$�E�D$�E�D$�$�������D$��D$��D$�EȉD$�ẺD$�EЉD$�$������U �E �@
���f�B�D$��E$�$����E��Eċ]���U��VS��f�}�t�E���U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�t�E���U��EȋB�E̋B�EЋE�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����ty�] �U��E�D$�E�D$�E�D$�$�������D$��D$��D$�E��D$�E��D$�E��D$�$������D$��E$�$������] �U��E�D$�E�D$�E�D$�EȉD$�ẺD$�EЉD$�$������u��U��EȉD$�ẺD$�EЉD$�$�������D$��D$��D$�E��D$�E��D$�E��D$�4$������E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$������D$��E$�$����U �E �@
���f�B�E��E��e�[^]�U��S��tf�}�t�E��.�U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�t�E����E�D$�E�D$�E�D$�U��$�B�D$�B�D$�����u�����E���] �UȋE�D$�E�D$�E�D$�$������U��E�D$�E�D$�E�D$�$������EȉD$�ẺD$�EЉD$�E��D$�E��D$�E��D$�$������U �E �@
���f�B�D$��E$�$����E��E��]���U��S���f�}�tDžt����%�U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�tDžt������U��EȋB�E̋B�EЋE�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$��������] �U��E�D$�E�D$�E�D$�$������U��E�D$�E�D$�E�D$�$������E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$������D$��E$�$������] �U��E�D$�E�D$�E�D$�EȉD$�ẺD$�EЉD$�$������U��EȉD$�ẺD$�EЉD$�$�������x����EȉD$�ẺD$�EЉD$�$������E��D$�E��D$ �E��D$$�E��D$�E��D$�E��D$��x����D$��|����D$�E��D$�$������D$ �E$�$����U �E �@
���f�BDžt�����t����]���U��VS��pf�}�t�E��4�U����E�B�E�B�E�U��E؋B�E܋B�E�f�}� t�E���E�D$�E�D$�E�D$�U��$�B�D$�B�D$�����u�c��E���] �uȍU��E�D$�E�D$�E�D$�$�������D$��D$��D$�E��D$�E��D$�E��D$�4$������EȉD$�ẺD$�EЉD$�$������U �E �@
���f�B�D$I�E$�$����E��E��e�[^]�U��WVS���f�}�tDžT����l�U����E؋B�E܋B�E�U��EȋB�E̋B�E�f�}� tDžT����+�UЋ�E��B�E��B�E��E؉D$�E܉D$�E�D$�E��$�E��D$�E��D$��������] �u��U��E؉D$�E܉D$�E�D$�$�������D$��D$��D$�E��D$�E��D$�E��D$�4$������E��D$�E��D$�E��D$�$������D$I�E$�$����(�] �u���x����E؉D$�E܉D$�E�D$�E��D$�E��D$�E��D$�$�������h�����X����E��D$�E��D$�E��D$�$�������D$��D$��D$��X����D$��\����D$��`����D$�<$�������x����D$��|����D$�E��D$��h����D$��l����D$��p����D$�4$������E��D$�E��D$�E��D$�$������D$`�E$�$����U �E �@
���f�BDžT�����T����e�[^_]�U��VS�Āf�}�t�E��Q�U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�t�E���E�D$�E�D$�E�D$�U��$�B�D$�B�D$�����u�l��E����] �uȍU��E�D$�E�D$�E�D$�$������U��E�D$�E�D$�E�D$�$������E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�4$������EȉD$�ẺD$�EЉD$�$������U �E �@
���f�B�D$��E$�$����E��E��e�[^]�U��VS���f�}�tDžT�����U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�tDžT����B�U��EȋB�E̋B�EЋE�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$��������] �u��U��E�D$�E�D$�E�D$�$������U��E�D$�E�D$�E�D$�$������E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�4$������E��D$�E��D$�E��D$�$������D$��E$�$����"�] �u���x����E�D$�E�D$�E�D$�EȉD$�ẺD$�EЉD$�$�������h����EȉD$�ẺD$�EЉD$�$�������X����EȉD$�ẺD$�EЉD$�$�������x����D$��|����D$ �E��D$$��h����D$��l����D$��p����D$��X����D$��\����D$��`����D$�4$������E��D$�E��D$�E��D$�$������D$ �E$�$����U �E �@
���f�BDžT�����T����e�[^]�U��S��tf�}�t�E���U����E�B�E�B�E�Ef�8^t�E��t�E�P����EȋB�E̋B�EЋE�P��E؋B�E܋B�E�E�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����u�'��E���E�D$�E�D$�E�D$�E؉$�E܉D$�E�D$�����tD�$�����D$�$����$�����D$�$����E���] �U��E؉D$�E܉D$�E�D$�$������U��D$�B�D$�B�D$�E��D$�E��D$�E��D$�$������U �E �@
���f�B�D$I�E$�$����E��E��]���U��S��f�}�t�E���U����E�B�E�B�E�Ef�8^t�E��~�E�P����EȋB�E̋B�EЋE�P��E؋B�E܋B�E�E�D$�E�D$�E�D$�E؉$�E܉D$�E�D$�����tD�$�����D$�$����$�����D$�$����E����] �U��E�D$�E�D$�E�D$�EȉD$�ẺD$�EЉD$�$������U��E؉D$�E܉D$�E�D$�$������E��D$�E��D$ �E��D$$�U��D$�B�D$�B�D$�E��D$�E��D$�E��D$�$������U �E �@
���f�B�D$`�E$�$����E��E��]���U���hf�}�t�E��@�U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�#t�E���E�f�8%u�E�P��EȋB�E̋B�E���U��EȋB�E̋B�EЋE�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����u�~��E���U �EȉD$�ẺD$�EЉD$��D$��D$��D$�$������U �E �@
���f�B�E�f�8%u�D$��E$�$�����D$��E$�$����E��E���U���hf�}�t�E���U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�#t�E����E�f�8%t�E����E�P��EȋB�E̋B�EЋE�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����u�)��E��k�U �EȉD$�ẺD$�EЉD$��D$��D$��D$�$������U �E �@
���f�B�D$��E$�$����E��E���U��S��tf�}�t�E���U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�#t�E��`�U��EȋB�E̋B�E�f�}�%u�UЋ�EȋB�E̋B�EЋE�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����tD�E$�D$�E �D$�E�D$�E�D$�E�D$�E�$�E�D$�E�D$����E���] �U��E�D$�E�D$�E�D$�EȉD$�ẺD$�EЉD$�$������EȉD$�ẺD$�EЉD$�E��D$�E��D$�E��D$�$������E�f�8%u�D$��E$�$�����D$��E$�$����U �E �@
���f�B�E��E��]���U��S��tf�}�t�E���U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�#t�E��N�U��EȋB�E̋B�E�f�}�%t�E��'�UЋ�EȋB�E̋B�EЋE�D$�E�D$�E�D$�Eȉ$�ẺD$�EЉD$�����tD�E$�D$�E �D$�E�D$�E�D$�E�D$�E�$�E�D$�E�D$����E���] �U��E�D$�E�D$�E�D$�EȉD$�ẺD$�EЉD$�$������EȉD$�ẺD$�EЉD$�E��D$�E��D$�E��D$�$������D$��E$�$����U �E �@
���f�B�E��E��]���U��S��f�}�tDžt�����U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�^tDžt����P�U��EȋB�E̋B�EЋU����E��B�E��B�E��E�D$�E�D$�E�D$�E��$�E��D$�E��D$�����uG�$�����D$�$����$�����D$�$���Džt�����U��EȉD$�ẺD$�EЉD$�$������E��$�E��D$�E��D$����E��}�t+�$�����D$�$���Džt����<�]��U��EȉD$�ẺD$�EЉD$�$������E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$�����f�}�*u�E��$�E��D$�E��D$����] ��x����E��D$�E��D$�E��D$��D$��D$��D$�$������E�D$�E�D$�E�D$��x����D$��|����D$�E��D$�$������D$��E$�$����E �P�E �@�@
���f�B�$���Džt�����t����]���U��S��f�}�u	f�}
u��E��]�U����E�B�E�B�E�U��E؋B�E܋B�E�U����E��B�E��B�E�f�}�*t�E���E��D$�EȉD$�E�D$�E�D$�E�D$�E؉$�E܉D$�E�D$���f�}�u&f�}�u�Ẽ���u�EЃ8u�E���] �U��E��D$�E��D$ �E��D$$�E�D$�E�D$�E�D$�E��D$�E��D$�E��D$�$������E��D$�E��D$�E��D$�EȉD$�ẺD$�EЉD$�$������U �E �@
���f�B�E��E��]���U���xf�}�u	f�}
u��E��K�U����E�B�E�B�E�U��E؋B�E܋B�E�f�}؃u	f�}
u��E���E�D$�E�D$�E�D$�U����$�B�D$�B�D$�����u8�$�����D$�$����$�����D$�$����U��EȋB�E̋B�EЋU ��D$��D$ ��D$$�E�D$�E�D$�E�D$�EȉD$�ẺD$�EЉD$�$������D$��E$�$����U �E �@
���f�B�E��E���U���f�}�t�E��9�U����E�B�E�B�E�U��E؋B�E܋B�E�f�}
t�U����E��B�E��B�E����E���E���E�f�}؃u	f�}
t��E���E�D$�E�D$�E�D$�U����$�B�D$�B�D$�����u8�$�����D$�$����$�����D$�$����U��EȋB�E̋B�EЋU����E��B�E��B�E��U��E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$������E��D$�E��$�E��D$�E��D$����U �E��D$�E��D$ �E��D$$�E�D$�E�D$�E�D$�EȉD$�ẺD$�EЉD$�$�������D$��D$��D$�E��$�E��D$�E��D$�����t�D$�E$�$�����D$@�E$�$����U �E �@
���f�B�E��E���U���f�}�u	f�}
u��E��D�U����E�B�E�B�E�U��E؋B�E܋B�E�U����EȋB�E̋B�EЍU���D$��D$��D$�EȉD$�ẺD$�EЉD$�$������E��D$�E��$�E��D$�E��D$���f�}���f�}�u}�E�����ur�E��8uj�U �E�D$�E�D$�E�D$�E؉D$�E܉D$�E�D$�$������D$r�E$�$����U �E �@
���f�B�E��f�}�u f�}�u�E�����tz�E�����u�l�U��E��D$�E��D$�E��D$��D$��D$��D$�$������E��$�E��D$�E��D$����E��}�t�E���U �E��D$�E��D$ �E��D$$�E�D$�E�D$�E�D$�E؉D$�E܉D$�E�D$�$������$x����D$�E$�$����U �E �@
���f�B�E��E���U��S��D�E f�E��U$�E��D$�D$��$������E��E�9E�|�<�U���Ѝ��U�
�E؋D
�E܋D
�E�f�}�u=f�}�u6�E܃���u
�E�8u�S�E܃���u�E�8u
�E�@�8u�2�E�D$�E�D$�E�D$�E؉$�E܉D$�E�D$�����u2�]$�U���Ѝ��S��
��D
��D
�c�M$�U���Ѝ��A��E�D$�E�D$�E�D$�U���Ѝ��U�
�D$�D
�D$�D
�D$�$������E�����]���U���hf�}�u	f�}
u��E����U��E؋B�E܋B�E�U����EȋB�E̋B�E�f�}ؐt�E���E
f�E��E �D$�E��D$�EȉD$�ẺD$�EЉD$�E؉$�E܉D$�E�D$�����U �E �@
���f�Bf�}�u�D$��E$�$����/f�}�u�D$��E$�$�����D$ �E$�$����E��E���U���xf�}�u	f�}
u��E��)�U��E؋B�E܋B�E�U����EȋB�E̋B�E�f�}ؙt�E����E
f�E��U �E��D$�D$��$������E��E�9E�|�}�U����Ѝ��U�
�E��D
�E��D
�E��M �U������A�D$�E��D$�EȉD$�ẺD$�EЉD$�E��$�E��D$�E��D$�`����E���x����U �E �@
���f�B�$y����D$�E$�$����E��E���U��VS��pf�}�u	f�}
u��E����U��E�B�E�B�E�U����E؋B�E܋B�E�] �uȍU��E�D$�E�D$�E�D$�$������E؉D$�E܉D$�E�D$�E��D$�E��D$�E��D$�4$������EȉD$�ẺD$�EЉD$�E�D$�E�D$�E�D$�$������U �E �@
���f�B�D$M�E$�$����E��E��e�[^]�U���Xf�}�t�E���U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�^u��D$��D$��D$�U��$�B�D$�B�D$�����tE�E�D$�E�D$�E�D$�U����$�B�D$�B�D$�����u����E��J�E��A�U �E؉�E܉B�E�B�U �E �@
���f�B�D$c�E$�$����E��E���U��S��f�}�t�E���U����E�B�E�B�E�U��E؋B�E܋B�E�f�}�^�;��D$��D$��D$�U��$�B�D$�B�D$��������E�D$�E�D$�E�D$�U����$�B�D$�B�D$�������$�����~z�] �MȋE�D$�E�D$�E�D$�U����D$�B�D$�B�D$�$������EȉD$�ẺD$�EЉD$�E؉D$�E܉D$�E�D$�$��������] �M��E�D$�E�D$�E�D$�U����D$�B�D$�B�D$�$������E��D$�E��D$�E��D$�E؉D$�E܉D$�E�D$�$������u�] �M��E�D$�E�D$�E�D$�U����D$�B�D$�B�D$�$������E��D$�E��D$�E��D$�E؉D$�E܉D$�E�D$�$������D$r�E$�$����D$#�U����$�B�D$�B�D$�����t�$����	�E���U �E �@
���f�B�E��E��]���%:;I$>$>:;
:;I8
I!I/	I
:;(
:;

:;I
:;I
8

:;I
8
'II:;
:;I8
&I(
.:;'@
.?:;'I@
:;I
:;I
4:;I
.?:;'I@
:;I
:;I
4:;I
.:;'@
 4:;I?<##2yyy/trigcalc/diftrig.c/home/beeson/Otter-LambdaGNU C 3.3.5 (Debian 1:3.3.5-13)size_t�x__u_char"�unsigned char__u_short#�short unsigned int__u_int$x__u_long%�long unsigned int__int8_t(signed char__uint8_t)�__int16_t*<short int__uint16_t+�__int32_t,lint__uint32_t-x__int64_t2�long long int__uint64_t3�long long unsigned int__quad_t;�__u_quad_t<�__dev_t��__uid_t�x__gid_t�x__ino_t��__ino64_t��__mode_t�x__nlink_t�x__off_t�rlong int__off64_t��__pid_t�l��__val��#�l�__fsid_t��__clock_t�r__rlim_t��__rlim64_t��__id_t�x__time_t�r__useconds_t�x__suseconds_t�r__daddr_t�l__swblk_t�r__key_t�l__clockid_t�l__timer_t�l__blksize_t�r__blkcnt_t�r__blkcnt64_t��__fsblkcnt_t��__fsblkcnt64_t��__fsfilcnt_t��__fsfilcnt64_t��__ssize_t�l__loff_t�~__qaddr_t�l	�__caddr_t��	�char__intptr_t�l__socklen_t�x
O1_ISupper�_ISlower�_ISalpha�_ISdigit�_ISxdigit� _ISspace��_ISprint��_ISgraph��_ISblank_IScntrl_ISpunct_ISalnumunit[k��digitx�lnx#val�#	kbignumx�signl#n�#d�#bigrat�arg#�-argtag#
t-{
i.r
d/�
b0�u*symbol&�#arity'�#info(�#args)u#	�term*-double#0fractx#varaddx#intexpx#negexpx#ratexpx#rootsx#purex#gcdx#absx#relopx#factorialx#matrix x#inverse"x#functions#x#sums$x#flt%x#complex'x#complexpowers*x#	+x
#mod,x#aflag0�� 	
left	{#right	{#line	l
#permanent	l#visible	l#reverse	l#oldeigen		l#defn	
0actualop
�	��l{{��	{3	
men

x#choice
x#operation
	�	b
status
x#choice
x#used
x#inhibited
x#men
x#hashbucket
D	
inh
Aindex
A<#&
B<#kind
D<#link
E
#	�	inhibition
F�	�
,scopex#multorderx#typex#dp�#locus{#&	l#realpart
�#imagpart�# name�
#(�
��varinf$
dldata�#1#	�
dlist�
� #addr�#increment�#indexl#functorx#&l#name �#history!�#	�	parameter##�02varlist&�#nvariables'l#maxvariables(l#eigenvariable)l#currentline*l#parameters+�#nparameters,l#maxparameters-l#varinfo.�# nextdefn/l#$defns0�#(maxdefns1l#,	�	�
	�vardata2�D)factorl#l#difl#intlinearl#gcdl#zeropowerl#fractexpl#negexpl#rootproductl# 	l#$infractionl#(complex!l#,domainflag#l#0ringflag%l#4orderflag&l#8arith'##<hwnd(�#@polyflags)�]a
prop
{#line
l#link
]#	%assumption
%eqnsolver
	�	��l{{��,
$assumptions
�#maxassumptions
<#nextassumption
<#theorems
�#maxtheorems
<#nexttheorem
<#history
�#permhistory
�#maxhistory
x#workspace
�#maxworkspace
�# nextworkspace
!x#$solver
#u#(	�	c	x	�proverdata
$�topicl',>line<'#nlines=l#(77�		=�message>�

dummyanytermpair_of_termsvariablevariablesnotzeronotzerodivnotzeromulnotzeropowernotzerobase	notzerodenom
indexindexpair
realnonzerorealpositive_realtworealsindex_and_termterm_and_indexindex_and_varindex_and_nonzero_termposnonnegnegnonposintervalpositive_integerspecific_positive_integermsubstrevsubstrelrates_subtlist term_and_indexpair!positiveoddinteger"nonnegativeoddinteger#prod$reallist%trigsubst&functiondefn'functionredefn(absolutelyanyterm)notzeroinlimit*relrates1+relrates2,twoprompts-twoprompts1.integer/constant_condition0nonzero_constant1condition@QPOLYnomial{
�	unknownminmaxdamped_oscillationdom_errorbounded_oscillationunbounded_oscillationcomplex_approachapproach(�tl�data�{#1��#prev��#	�termlist��set_chainrule_errmsgxU�difsin$lxgUt#{�arg#{�1#�� #��$x${�hu${�Xdifsin26lgUt5{�arg5{�15�� 5��$x6{�hu6{�Xp6{�H~difcosLl"UtK{�argK{�1K�� K��$xL{�huL{�X�difcos2^l"Ut]{�arg]{�1]�� ]��$x^{�hu^{�Xp^{�HediftanslDUtr{�argr{�1r�� r��$xs{�hus{�X�diftan2�lDh	Ut�{�arg�{�1��� ���$x�{�hu�{�Xp�{�HLdifsec�lh	�
Ut�{�arg�{�1��� ���$x�{�hu�{�X�difsec2�l�


Ut�{�arg�{�1��� ���$x�{�hu�{�Xp�{�H3difcot�l

dUt�{�arg�{�1��� ���$x�{�hu�{�X�difcot2�ldUt�{�arg�{�1�� Ӄ�$x�{�Xu�{�Hp�{��difcsc�lxUt�{�arg�{�1�� ��$x�{�hu�{�X�difcsc2�lx*Ut�{�arg�{�1��� ���$x�{�hu�{�Xp�{�Hdifatoxl*�Ut{�arg{�1�� ��$x{�ha{�Xu{�H�difatox2-l��Ut+{�arg+{�1+�� +��$x-{�ha-{�Xu-{�HdiflnCl�UtB{�argB{�1B�� B��$xC{�huC{�XvC{�H�diflnabsZlPUtX{�argX{�1X�� X��$xZ{�huZ{�XvZ{�Hdifln2olPUtn{�argn{�1n�� n��$xo{�huo{�Xpo{�H�diflnabs2�l�Ut�{�arg�{�1��� ���$x�{�hu�{�Xp�{�H[difexponential�l�}!Ut�{�arg�{�1��� ���$x�{�hq�{�Xu�{�Hv�{��power�{��err�l��secondderivlinear�l}!	#Ut�{�arg�{�1��� ���$x�{�hu�{�Xc�{�Hv�{��n�{���secondderiv�l	#|$Ut�{�arg�{�1��� ���$x�{�hu�{�Xv�{�H7highderiv�l|$�&Ut�{�arg�{�1��� ���$x�{�hu�{�Xv�{�Hn�{��m�{��k�{���reversesecondderivl�&F)Ut{�arg{�1�� ��$x{�hu{�Xn{�Hnew{��err	l��V difvector_aux&F)�*Uu#{�x#{�n#��v1#��$i&l�pv'{�X� difvector4l�*�+Ut2{�arg2{�12�� 2��$n4��vu5{�Xx5{�Hz!difmatrixJl�+*-UtH{�argH{�1H�� H��$nJ��vuK{�XxK{�HvK{��iLl���!logdif`l*-D.Ut^{�arg^{�1^�� ^��$y`{�hx`{�Xb"difexpllD.^/Utk{�argk{�1k�� k��$xl{�hul{�X�"difexp2�l^/2Ut{�arg{�1�� ��$x�{�hu�{�X one�"{ zero�" two�" minusone�" eulere�"�C�
yyy/trigcalc/usr/lib/gcc-lib/i486-linux/3.3.5/include/usr/include/bits/usr/includeyyydiftrig.cstddef.htypes.hctype.hheap.hbignum.hterms.harith.hdefns.hmodel.hvaux.hpolyval.hproverdl.hglobals.hcheckarg.hpolynoms.hprover.hconstant.hc����.d��d:r�4V�#,,rX���d:r�:2#t�-,r�r��d:r�4V�F,,r����d:r�:2Ft�-,r�r��d:r�4V�a,,r����d:r�:2at�-,r�r��d:r�4V�~,,r����d:r�:6~t�-,�����d:r�4V��,,r����d:r�:6�t�-,�׀��d:r�4V��,,r����d:r�:6�t�-,��r��d���d2V�2���],,r����d���d2����,,r�d��d:r�62V�>,�I,rYd��d:r���d2V�>,,rXr��d:r�:r:2Dp�I-,r�r��d:r�:r�:2Dp-,r����d:r�:d2���?d��[r�,�������d:dr�<��,r�d��d:��7��:S,,rY���d:8��7��:dXM8I,,r[���d:d^%8,,�'Zd�M�,rZ��H'v2c
�Ye��:d���=,rHrI,rYf��:d����'L
�,�rY���:d�,,r�d��d:A7V��:,,rX���d:I;�zwu,*֎,rd/dx sin x = cos xd/dx sin u =         (cos u) du/dxd/dx cos x = -sin xd/dx cos u =         - (sin u) du/dx$d/dx tan x = sec^2 x$d/dx tan u =         ($sec^2 u) du/dx$d/dx sec x =          sec x tan xd/dx sec u =          sec x tan x  du/dxd/dx cot x = -csc^2 xd/dx cot u =         - (csc^2 u) du/dxd/dx csc x =             - csc x cot xd/dx sec x =          - csc x cot xd/dx csc u =          -csc u cot u du/dxd/dx c^x = (ln a) a^xd/dx c^u =            (ln a) a^u du/dxd/dx ln |x| = 1/xd/dx ln x = 1/xd/dx ln |u|=(du/dx)/xd/dx ln u = (du/dx)/xu^v = e^(v ln u)$d/dx(du/dx) = d^2u/dx^2$$d/dx(d�u/dx�)$           = d^(n+1)u/dx^(n+1)$d^m/dx^m(d�u/dx�)$           = d^(m+n)u/dx^(m+n)$d^2u/dx^2 = d/dx(du/dx)$d/dx {u,v}             = {du/dx,dv/dx}d/dx {u,v,w}             = {du/dx,dv/dx,dw/dx}d/dx {u,v,...}           = {du/dx,dv/dx,...}dy/dx = y (d/dx) ln yd/dx e^x = e^xd/dx e^u = e^u du/dx����|�xA�B
x�A�B
g�A�B
G�A�B
D�"�A�B
H��4A�B
D�D$A�B
H��h	QA�B
D��
QA�B
G�

ZA�B
E��d�A�B
I���wA�B
E��x�A�B
H��*�A�B
D���A�B
G��_A�B
4A�B
P�A�B
D��A�B
D���A�B
G�}!�A�B
G�	#sA�B
|$[A�B
�&oA�B
F)�A�B
D��*A�B
�+QA�B
*-A�B
E��D.A�B
^/�A�B
G�}'#*difsin�difsin2difcos~difcos2�diftanediftan2�difsecLdifsec2�difcot3difcot2�difcscdifcsc2�difatoxdifatox2�diflndiflnabs�difln2diflnabs2�difexponential[secondderivlinearsecondderiv�highderiv7reversesecondderivV difvector� difmatrixz!logdif�!difexpb"difexp22functioncomdenomunsigned intreasonlinenumbernextGCC: (GNU) 3.3.5 (Debian 1:3.3.5-13).symtab.strtab.shstrtab.rel.text.data.bss.debug_abbrev.rel.debug_info.rel.debug_line.rodata.rel.debug_frame.rel.debug_pubnames.rel.debug_aranges.debug_str.note.GNU-stack.comment42	�q0	%L2+L20L2�B4'#>	�z RBW�N	^�[� jh`Pf	�{�c�w	�
�9e �	��Ye6��e��e&�e�jP	`oQ�x
 F)�
.6=x�DKPWg�_dlsx�"��4����D$�h	Q���
Q��

Z��d��w��x��*����
�_%4.P�5�?��NW]fmz�}!����	#s�|$[����&o������*��+Q*-D.^/�&.5@Idiftrig.cset_chainrule_errmsgdifvector_auxenglisherrbufdifsinequalscos1strcpydifsin2diffproductdifcossin1tnegatedifcos2diftansec1twomake_powerdiftan2difsectan1difsec2product3difcotcsc1difcot2difcsccot1difcsc2difatoxdependsln1difatox2diflnonemake_fractiondiflnabsdifln2diflnabs2difexponentialpositivechecksortargseulerelninexponentinhibitsecondderivlineartwopartsdiff3secondderivhighderivsumpolyvalreversesecondderivminusonezerolemake_termdifvectordifmatrixlogdifdifexpdifexp2ispolyindifpolystatusderivativecontainsrelease*:FVbr�.L	W%0	;x���	����	��	Z}���	���� � � !&	1�    A!L	W��� � � �!*	5		@	�	%
$H
}
�
	�
Y�$���	�/R$x�&�	��
�
(�
 �
 �
 !&D	O4(< E N o!��	��( % . X!���	���+�(:X	cG+j(���	�>+d(�&��	��./;Kz/��	��.����5/�&�	�u�2�2�2�3�	�	��22235	@B1��3�	��	��4O�3�	�w.�����8�9 # U /� � :� ;� ;� ;� !)!4!	?!_!<d!=1"?�"@�"�#�#�#�#�#�# $ 
$ C$@N$	Y$�$2�$2�$2H%X%h%t%�%�%C&DQ&@Y&2b&2k&2�&�&	�&�&	�&C'FL'FU'Fv'C�'D�'�'		(l(Gu(G~(G�(H�(9)@)#)k)I*.;*GC*GL*G�*�+	�+�+	�+�+	�+Z,I--�-/�-.$.	/.�.;�.;�.;�.�.C/	N/�/;�/;�/;�/0O.0P30Qu0R�0�0$1f1�1�1	�1�1S�1<�1Ty��	�
q��
�� $>Bcq����%)JX����1?z~����&ae�����
HLm{����04Uc����.2Ud����15Xg����6:]l����{��!DS����X\���- n r � � � � !(!�!�!�!�!""*"9"x"|"�"�"P04HLdh����������48TXtx���������48PTlp���������� $8<

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists