Sindbad~EG File Manager

Current Path : /home/beeson/Otter-Lambda/
Upload File :
Current File : //home/beeson/Otter-Lambda/bseries.o

ELF|*4(U��VS��0�E����f�E�f�}^tDž������U����E؋B�E܋B�E�U��EȋB�E̋B�E�f�}�+u	f�}�u�Dž�����E�f�8u<�E�f�xu2�E��@����u$�EЋ@�8u�UЃ���E��B�E��B�E��]�EЃ�f�8uB�EЃ�f�xu5�EЃ��@����u$�EЃ��@�8u�UЋ�E��B�E��B�E��Dž����f�}�-u�U���E��B�E��B�E��E���U��D$�E�D$�E�D$�E�D$�$�����f�}�@u+�$�����D$�$���Dž������x�����h����E��D$�E��D$�E��D$�$�������D$��D$��D$��h����D$��l����D$��p����D$�$�������x����$��|����D$�E��D$����E��}�t7�$	����D$�$����E��$���Dž������h�����D$��D$��D$�E��D$�E��D$�E��D$�$�������h����$��l����D$��p����D$����E��}�u7�$	����D$�$����E��$���Dž�����}��<�] ��h�����x����E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$�������X����E��D$�E��D$�E��D$�E؉D$�E܉D$�E�D$�$�������x����D$��|����D$�E��D$��X����D$��\����D$��`����D$�4$�������D$(��D$,��D$0��D$��D$ ��D$$�E��D$�E��D$�E��D$��h����D$��l����D$��p����D$�$�������] ��H�����8����E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$�������(����E��D$�E��D$�E��D$�E؉D$�E܉D$�E�D$�$�����������E��D$�E��D$�E��D$��D$��D$��D$�$�������8����D$��<����D$ ��@����D$$��(����D$��,����D$��0����D$������D$������D$�� ����D$�4$�������D$(��D$,��D$0��D$��D$ ��D$$�E��D$�E��D$�E��D$��H����D$��L����D$��P����D$�$������U �E �@
���f�B�D$ �E$�$���Dž���������e�[^]�U��S���E$�D$�E�D$�E�D$�E�D$�E�D$�E�$�E�D$�E�D$����E�}�t�E����] �Uȡ�D$��D$��D$�$������EȉD$4�ẺD$8�EЉD$<�U��$��D$(�B�D$,�B�D$0�U����D$�B�D$ �B�D$$�U����D$�B�D$�B�D$�U��D$�B�D$�B�D$�$������D$`�E$�$����E��Eċ]���U���h�E$�D$�E�D$�E�D$�E�D$�E�D$�E�$�E�D$�E�D$����E�}�t�E���M ��D$4��D$8��D$<�U��$��D$(�B�D$,�B�D$0�U����D$�B�D$ �B�D$$�U����D$�B�D$�B�D$�U��D$�B�D$�B�D$�$������D$��E$�$����E��E���U��VS��f�}�����D$��D$��D$�U��$��$�B�D$�B�D$�����tm�E��f�8ua�E��f�xuT�E���@����u�E���@�8u�B�E���@����u!�E���@�8u�E���@�@�8u�Džt����[�U��E؋B�E܋B�E�U����E�B�E�B�E�f�}�*u	f�}�w�Džt����f�}��.�U��EȋB�E̋B�E�f�}�^uq��D$��D$��D$�UЋ�$�B�D$�B�D$�����t7�E�D$�E�D$�E�D$�UЃ���$�B�D$�B�D$�����uDžt����k�E�f�8;u�E�f�8^u�Džt����B�E�D$�E�D$�E�D$�E��P����$�B�D$�B�D$�����uDžt�����E��P��E��B�E��B�E��E�D$�E�D$�E�D$�E��P����$�B�D$�B�D$�����uDžt�����E��P��E��B�E��B�E��] �u��U��E��D$�E��D$�E��D$�$������E��D$�E��D$�E��D$��D$��D$��D$�4$������E��D$�E��D$�E��D$�E��D$�E��D$�E��D$�$������k�E�f�8;u�E�f�8^u�Džt�����E�D$�E�D$�E�D$�E��P����$�B�D$�B�D$�����uDžt����f�E��P��E��B�E��B�E��E�D$�E�D$�E�D$�E�P����$�B�D$�B�D$�����uDžt�����E�P��E��B�E��B�E��] ��x����E��D$�E��D$�E��D$��D$��D$��D$�$������E��D$�E��D$�E��D$��x����D$��|����D$�E��D$�$������U �E �@
���f�Bf�}
u�D$��E$�$����4�E��0f�8-u�D$ �E$�$�����D$`�E$�$���Džt�����t����e�[^]�U���(�E$�D$�E �D$�E�D$�E�D$�E�D$�E�$�E�D$�E�D$�����U���(�E$�D$�E �D$�E�D$�E�D$�E�D$�E�$�E�D$�E�D$�����%:;I$>$>:;
:;I8
I!I/	I
:;(
:;

:;I
:;I
8

:;I
8
'II:;
:;I8
&I.?:;'I@
:;I
:;I
4:;I
4:;I?<�yyy/series/bseries.c/home/beeson/Otter-LambdaGNU C 3.3.5 (Debian 1:3.3.5-13)size_t�v	__u_char"�unsigned char__u_short#�short unsigned int__u_int$v__u_long%�long unsigned int__int8_t(	signed char__uint8_t)�__int16_t*:short int__uint16_t+�__int32_t,jint__uint32_t-v__int64_t2�long long int__uint64_t3�long long unsigned int__quad_t;�__u_quad_t<�__dev_t��__uid_t�v__gid_t�v__ino_t��__ino64_t��__mode_t�v__nlink_t�v__off_t�plong int__off64_t��__pid_t�j��__val��#�j�	__fsid_t��__clock_t�p__rlim_t��__rlim64_t��__id_t�v__time_t�p__useconds_t�v__suseconds_t�p__daddr_t�j__swblk_t�p__key_t�j__clockid_t�j__timer_t�j__blksize_t�p__blkcnt_t�p__blkcnt64_t��__fsblkcnt_t��__fsblkcnt64_t��__fsfilcnt_t��__fsfilcnt64_t��__ssize_t�j__loff_t�|__qaddr_t�j	�__caddr_t��	�char__intptr_t�j__socklen_t�v
M1_ISupper�_ISlower�_ISalpha�_ISdigit�_ISxdigit� _ISspace��_ISprint��_ISgraph��_ISblank_IScntrl_ISpunct_ISalnumunitYi��digitv�lnv#val�#	ibignumv�signj#n�#d�#bigrat�arg#�+argtag#
t-y
i.p
d/�
b0�s*symbol&�#arity'�#info(�#args)s#	�term*+double!0fractv#varaddv#intexpv#negexpv#ratexpv#rootsv#purev#gcdv#absv#relopv#factorialv#matrix v#inverse"v#functions#v#sums$v#flt%v#complex'v#complexpowers*v#+v
#mod,v#aflag0�� 	
left	y#right	y#line	j
#permanent	j#visible	j#reverse	j#oldeigen		j#defn	
.actualop
�	��jyy��	y1	
men

v#choice
v#operation
	�	b
status
v#choice
v#used
v#inhibited
v#men
v#hashbucket
B	

inh
Aindex
A:#
B:#kind
D:#link
E

#	�	inhibition
F�	�
,scopev#multorderv#typev#dp�#locusy#	j#realpart
�#imagpart�# name�
#(�
��varinf"
dldata�#(#	�
dlist�
� #addr�#increment�#indexj#functorv#j#name �#history!�#	�	parameter#!�02varlist&�#nvariables'j#maxvariables(j#eigenvariable)j#currentline*j#parameters+�#nparameters,j#maxparameters-j#varinfo.�# nextdefn/j#$defns0�#(maxdefns1j#,	�	�
	�vardata2�D)factorj#functionj#difj#intlinearj#gcdj#zeropowerj#fractexpj#negexpj#rootproductj# j#$infractionj#(complex!j#,domainflag#j#0ringflag%j#4orderflag&j#8arith'!#<hwnd(�#@polyflags)�`a
prop
y#line
j#link
`#	(assumption
(eqnsolver
	�	��jyy��,
$assumptions
�#maxassumptions
:#nextassumption
:#theorems
�#maxtheorems
:#nexttheorem
:#history
�#permhistory
�#maxhistory
v#workspace
�#maxworkspace
�# nextworkspace
!v#$solver
#x#(	�	f	v	�proverdata
$�topicj*,>line<*#nlines=j#(::�		@�message>
�	unknownminmaxdamped_oscillationdom_errorbounded_oscillationunbounded_oscillationcomplex_approachapproachTtl�data�y#(�#prev�#	�termlist��binomialseriesj*Uty�argy�(�� ��$signj�talphay�Xuy�Hxy��errj��ny��savenextassumption:��}binomialseries2Jj*XUtIy�argIy�(I�� I��$tempJy�herrKj�d�binomialseries3TjX\UtSy�argSy�(S�� S��$tempTy�herrUj�d�binomialseriesrev_j\�
Ut]y�arg]y�(]�� ]��$n_y�hu_y�Xv_y�Halpha_y��x_y���binomialseries2rev�j�
�
Ut�y�arg�y�(��� ���$\binomialseries3rev�j�
Ut�y�arg�y�(��� ���$oneiyzeroitwoithreeiinfinityiminusonei�%�
yyy/series/usr/lib/gcc-lib/i486-linux/3.3.5/include/usr/include/bits/usr/includeyyybseries.cstddef.htypes.hctype.hheap.hbignum.hterms.harith.hdefns.hmodel.hvaux.hpolyval.hproverdl.hglobals.hprover.hconstant.h�u�r�d:��,�8W�r:s+r���d���fd�����,,�Ȝ?d��,r�d?d��,rY���:d��:x���=��=���d�=��:�d,rH�I,��c<.c<knmjpqrs$$(1+x)^alpha = sum(binomial(alpha,n)x^n,n,0,infinity)$$$$(1+x)^alpha = sum(binomial(alpha,n)x^n,n,0,infinity,-3)$$$$(1+x)^alpha = sum(binomial(alpha,n)x^n,n,0,infinity,2)$$$$sum(binomial(alpha,n)x^n,n,0,infinity) = (1+x)^alpha$$$$sum(binomial(alpha,n)x^n,n,0,infinity,-3) = (1+x)^alpha$$$$sum(binomial(alpha,n)x^n,n,0,infinity,2) = (1+x)^alpha$$����|�*A�B
H��*.A�B
G�XA�B
\8A�B
H���
DA�B
�
DA�B
��3binomialseriesbinomialseries2}binomialseries3�binomialseriesrev�binomialseries2rev�binomialseries3revcomdenomunsigned intreasonlinenumbernextGCC: (GNU) 3.3.5 (Debian 1:3.3.5-13).symtab.strtab.shstrtab.rel.text.data.bss.debug_abbrev.rel.debug_info.rel.debug_line.rodata.rel.debug_frame.rel.debug_pubnames.rel.debug_aranges.debug_str.note.GNU-stack.comment4	T2�%P+P0PXB��>	L5(Re$�N	t6^`&� j�'�f	|6`{�(�w	�6
�E) �	�6�e)-��)��)&�)�.�	1O�

*-<DKPT]cv{����������*.����X\8%)�
D<�
Dbseries.cbinomialseriesget_nextassumptiongetnewindexvarenglisherrbufabs1onelessthancheckset_nextassumptionzeroequationinfermake_powermake_binomialproductinfinitysigmaminusoneproduct3strcpybinomialseries2threetnegateseriesbinomialseries3twobinomialseriesrevequalssumbinomialseries2revbinomialseries3revFcy�����'<LXr{������U������	H ���!�!!
r"z������ #l�%�%�%�&/':E#��)�)�)6'AL#t}��+�	!�	!�	!�	+
+z
+�
+3&PYbn,�
+m+����,
8
C
#Y
d
#n
y
#�
**w���	�
o�
OSt�#DR����<J����@N2	8	<T	Xl	p�	��	�

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists