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Alfred Tarski 1918, student in Warsaw, age 17



Famous Axiomatizations of Geometry

◮ Euclid’s Elements 300 BCE

◮ Pasch 1882

◮ Hilbert 1899

◮ Pieri 1900 and 1908

◮ Tarski 1926–27

Euclid and Hilbert had important things in common:

◮ Systematic treatment building on the work of others

◮ Emphasis on and development of axiomatic method



Euclid and Hilbert



Euclid’s postulates

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any centre and distance.

4. All right angles are equal to one another.

5. If a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two
straight lines, if produced indefinitely, meet on that side on
which are angles less than two right angles.



Euclid’s Postulate 5

Line pq falls on straight lines M and L making angles on the right
side less than two right angles. The point indicated by the open
circle is asserted to exist.
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Line K can always be constructed parallel to L so the important
part about Euclid 5 is that any other line through p has to meet L.



Doubts about Euclid 5

It was very early felt that Euclid 5 might not quite deserve the
status of a “postulate.”

◮ It seems less fundamental

◮ The meeting point might be very far away, so we can’t just
“see it in front of our faces”.

◮ It would nicer to have a proof of Euclid 5 and not have to
assume it.

◮ Or at least to replace it with something that seems more
fundamental



Theon’s manuscript, perhaps 360 CE



Manuscript found in Vatican Library 1808



Then millennia went by . . .

◮ The library at Alexandria was burned three times under
dramatic circumstances (48 BCE, 270 CE, 391 CE)

◮ Government support dried up, and the Empire itself fell.

◮ But the Eastern, Greek-speaking part survived another
millenium. Its capital was Byzantium, later Constantinople,
now Istanbul. The Elements survived there.

◮ The monsoon winds were known, and in the spring a large
fleet sailed from the Red Sea area for India, returning in the
fall. This commerce may have carried Euclid, too, but I can’t
find evidence, only rumors.



Adventures of the Elements

◮ From Byzantium to Arabia about 760. Translated under the
patronage of the caliph, Harun al-Rashid, about 800.

◮ Back to Europe with the Muslim conquest of Spain
(711-1031).

◮ New Arabic translation by Nasir al-Din al-Tusi, 1220.

◮ Sanskrit translation by Jagannātha Samrāt in 1719: the
Rekhāganita. Was this really the first arrival of the Elements

in India??

◮ Translated from Arabic to Latin, Abelard of Bath, 1120.

◮ Printed in 1482 in Venice, 30 years after the Bible, in Latin
translated from Arabic translated from Greek.

◮ Only one Arabic translation has ever been published, but
“thousands” of manuscripts are on microfilm at the Juma
Al-Majid Heritage and Cultural Center in Dubai, awaiting
examination by historians.

◮ Theon’s Greek edition recovered 1533.



Taken to China by Jesuit missionaries, 1582.



Failed attempts to prove Euclid 5
Failed attempts were published by

◮ Simplicius (Byzantine, sixth century)

◮ Al-Abbās ibn Said al-Jawhar̄i (Persian, ninth
century)

◮ Nasir Eddin al Tusi (1201-1274), who did
most of his scientific work while imprisoned
by the armies of Genghis Khan. Apparently
POWs were well-treated!

◮ Legendre (1752-1833), who continued to try to prove Euclid 5
until the year of his death, when he published a collection of
his failed attempts.

◮ Lambert (whose wrong proof was published posthumously)

◮ A Ph. D. thesis in 1763 found flaws in 28 different alleged
proofs of Euclid 5.



Non-Euclidean geometry

The method of reductio ad absurdum, or for short just reductio,
refers to proof by contradiction. Girolamo Saccheri tried to prove
Euclid 5 this way.

◮ He made long deductions and was in some sense the creator
of non-Euclidean geometry.

◮ But he did not, apparently, understand what he had done, i.e.,
he continued to believe that more of these deductions would
eventually lead to a contradiction.

◮ For the history of logic, the important point is that Sachceri,
and everyone else, still believed geometry was about the one
true universe, the space we live in, and logical reasoning just a
tool for uncovering truths about that space.



Non-Euclidean Geometry

◮ Eventually, Gauss, Bolyai, and Lobachevsky realized that it is
consistent to assume that there can be several parallels to line
L through point P .

◮ Exactly how this happened is very interesting, both for
biographical details and the development of mathematical
philosophy. But it is not today’s topic.

◮ Both Euclid 5 and its negation are consistent with Euclid’s
first four postulates.



A model of non-Euclidean geometry

The picture shows the Poincaré model, in which lines are circular
arcs meeting the unit circle at right angles (including diameters of
the unit circle), and distance is defined by a certain formula so that
the boundary is infinitely far from any interior point.

Credit for the first construction of such a model goes to Beltrami
(1868).



Origins of Tarskian Geometry

◮ 1926-1927 lectures at the University of Warsaw

◮ Tarski was 26 years old.

◮ First-order logic was very new.

◮ The completeness theorem had not even been conjectured yet!

◮ It was first conjectured in 1928 in Hilbert-Ackermann, p. 68.

◮ Proved the following year (1929) by Gödel.

◮ Tarski was on the cutting edge.



Congruence and betweenness

◮ Congruence of segments ab ≡ cd or just ab = cd

◮ Really a relation between 4 points.

◮ Betweenness B(a, b, c) “b is between a and c (on a line)”

◮ Euclid never mentioned betweenness but assumed its
properties implicitly, never proving that lines appearing to
meet actually meet.

◮ But the parallel postulate is an exception to that!

◮ Pasch 1882 introduced betweenness.

◮ Use betweenness to define order on a line, and “inside” or
“outside” a circle.



Strict or non-strict betweenness?

◮ Strict means that a is not between a and b.

◮ Non-strict allows a to be between a and b.

◮ Hilbert used strict betweenness

◮ Tarski used non-strict betweenness

◮ To avoid confusion:
B(a, b, c) for strict betweenness,
T(a, b, c) for non-strict.

◮ Of course each can define the other.



Points, Lines, Angles, and Circles

◮ Hilbert, following Euclid, took all four as primitive.

◮ So he needed more relations: “incidence” (a point lies on a
line), congruence of angles.

◮ Tarski, following Pieri, used a language with variables for
points only.

◮ Circles and lines are just ways of constructing more points by
their intersection points with other circles and lines.

◮ Angles can be treated as triples of points, as in “angle ABC”



Pasch’s Axiom
This is the axiom that Euclid forgot. Pasch invented it in 1882. It
is meant to say that if a line enters a triangle it must exit again.
Tarski considered the following versions, which are valid even in
3-space. Tarksi’s axiom A7 was first one of these, then later the
other one.

Figure: Inner Pasch (left) and outer Pasch (right). Line pb meets triangle
acq in one side. The open circles show the points x asserted to exist on
the other side.
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Moritz Pasch



Extending segments

Euclid’s postulate, “To produce a finite straight line continuously
in a straight line”, corresponds closely to Tarski’s axiom A4 that
we can extend segment ab by segment cd, to produce a point
p = ext(a, b, c, d) such that

T(a, b, p)

bp = cd

Tarski’s axiom says a little more than Euclid’s, because it says we
can extend ab by a given amount, not just by an unspecified
amount.



Line-circle continuity

If line L has a point p inside circle C then L meets C.
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Segment-circle continuity: if L has a point inside C and a point
outside C, then between those two it meets C.



The 5-segment axiom A5

Tarski’s 5-segment axiom. cd is determined.

d

a b c

D

A B C

Tarski’s 5-segment axiom is a thinly-disguised variant of the SAS
criterion for triangle congruence. The triangles we are to prove
congruent are dbc and DBC. We are given that bc = BC and
db = DB. The congruence of angles dbc and DBC is expressed in
Tarski’s axiom by the congruence of triangles abd and ABD,
whose sides are pairwise equal. The conclusion, that cd = CD,
give the congruence of triangles dbc and DBC.



Euclid and SAS

◮ Euclid tried to prove SAS in I.4

◮ Commentators from Geminus on did not accept the proof.

◮ Euclid should have taken SAS as a postulate.



All right angles equal

◮ This postulate of Euclid does not follow easily from A5

◮ But Tarski does not have to assume it: although it is difficult,
it can be proved.



First-order geometry

Tarski also added a “continuity axiom” (really an axiom schema)
saying essentially that any first-order Dedekind cut is filled.

◮ This was historic, as the first clear distinction in geometry
between first-order and second-order or set-theoretic axioms.

◮ The corresponding “axiom” in Hilbert’s theory wasn’t even
second-order, but showed that confusion still existed between
syntax and semantics.

◮ The full A11 does not concern us today, as it goes beyond
ruler-and-compass constructions.



History of Tarski’s geometry

◮ Prepared for publication in 1940

◮ But there was a war on, and the paper only appeared in 1967

◮ A version appeared in a RAND tech report, 1948, revised 1951

◮ Tarski gave a course at Berkeley, 1956-57 on the foundations
of geometry. He and his students Eva Kallin and Scott Taylor
proved six of the axioms, leaving only 13.

◮ Two more were proved in H. N. Gupta’s Ph. D. thesis, 1965.

◮ Gupta also proved inner Pasch implies outer Pasch, and
constructed midpoints of segments and perpendiculars based
on A1-A9 (no circles).

◮ Starting with Tarski’s notes, and probably a draft of Gupta’s
work, Wanda Szmielew prepared a manuscript developing
geometry from Tarski’s axioms.

◮ This eventually, after her death in 1983, became part I of SST
(Szmielew, Schwäbhauser, and Tarski), published in 1985.



Tarski’s theory and ruler-and-compass constructions

Not all the points asserted to exist correspond to
ruler-and-compass constructions:

◮ With a ruler and compass, I cannot extend a null segment aa,
as I need two distinct points to orient my ruler.

◮ Tarski uses nonstrict betweenness T(a, b, c) to formulate inner
Pasch and outer Pasch, so there are degenerate cases where
one cannot find the point asserted to exist as an intersection
of two distinct lines.

◮ To fix this, we just use B instead of T in the two Pasch
axioms, and only extend non-null segments.

◮ Now, these axioms do correspond to ruler-and-compass (in
fact, ruler only) constructions.

◮ But is there a price to be paid? That is, is Pasch with B

equivalent to Pasch with T, or not?

◮ To answer that question, we have to consider Tarski’s other
axioms.



Axioms for Betweenness

Tarski’s final theory had only one betweenness axiom:

T(a, b, a)→a = b identity for betweenness, A6

or in other words
¬B(a, b, a).

But originally there were also these (eliminated in 1956-65):

T(a, b, c)→T(c, b, a) (A14), symmetry
T(a, b, d) ∧ T(b, c, d)→T(a, b, c) (A15), inner transitivity
T(a, b, c) ∧ T(b, c, d) ∧ b 6= c→

T(a, b, d) (A16), outer transitivity
T(a, b, d) ∧ T(a, c, d)→

T(a, b, c) ∨ T(a, c, b) (A17), inner connectivity
T(a, b, c) ∧ T(a, b, d) ∧ a 6= b→

T(a, c, d) ∨ T(a, d, c) (A18), outer connectivity



We have to put back A14 and A15

The degenerate cases of Pasch were used to eliminate A14 and
A15. This was not a good bargain: Tarski gave up the connection
to ruler-and-compass constructions just to eliminate these two
simple and intuitive axioms.

T(a, b, c)→T(c, b, a) (A14), symmetry
T(a, b, d) ∧ T(b, c, d)→T(a, b, c) (A15), inner transitivity

If we put them back, we can derive the degenerate cases of Pasch.

◮ Now the Skolem function for inner Pasch corresponds to a
ruler-and-compass construction!

◮ So all the terms of this theory correspond to
ruler-and-compass constructions, starting from the three
fundamental non-collinear points α, β, and γ, or from “given
points” that are parameters of the terms.



Congruence axioms

ab = ba (A1) Reflexivity of equidistance
ab = pq ∧ ab = rs→pq = rs (A2) Transitivity of equidistance
ab = cc→a = b (A3) Identity of equidistance



Dimension axioms

Today we will consider only plane geometry. Then the dimension
axioms specialize to

◮ there are three non-collinear points α, β, and γ. (A8)

◮ given any two points p and q, and three points a, b, c each
equidistant from p and q, then a, b, and c are collinear. (A9)

Note that A9 fails in three dimensions, but holds in two.



Parallel Axiom

Just as Saccheri, Legendre, Bolyai, Gauss, and Lobachevsky
discovered, there are many propositions that are equivalent to the
parallel axiom of Euclid. My favorite is the one Szmielew chose in
her original manuscript of 1965: “given three non-collinear points,
there exists a point equidistant from those three.” In other words,
a triangle has a circumscribed circle.

A different version (due to Tarski) appears in SST. For the
moment, we stick with Euclid’s version, whose only disadvantage is
that when formulated in terms of points only, it is a bit longer than
the others.



Summary of Tarski’s axioms

◮ Three congruence axioms, A1-A3

◮ Three betweenness axioms, A6, A14, A15

◮ Segment extension, A4

◮ Five-segment axiom, A5

◮ inner Pasch, A7

◮ dimension axioms, A8-9

◮ Parallel axiom, A10

◮ Line-circle continuity (consequence of A11)



Skolemized Tarski

We can formulate a quantifier-free version of Tarski’s
(ruler-and-compass) geometry A1-A9 (without the parallel axiom),
if we add function symbols as follows:

◮ ext(a, b, c, d) for the extension of ab by cd, when a 6= b.

◮ ip(a, b, c, b, q) for the point asserted to exist by inner Pasch
with B.

◮ iℓc(a, b, c, d) for the intersection of the Line(a, b) with the
circle of center c passing through d, if that intersection exists.

Defined terms in this language correspond to ruler-and-compass
constructions, and the “definedness conditions” for terms can be
correctly formulated within the language. We can specify, for
example, that these Skolem functions just return their first
argument when they are (geometrically) “undefined.”



A property of constructions

Suppose we have constructed, or are somehow given, a finite
number of points (a “configuration”), in the usual plane R

2. The
diameter of the configuration is the maximum distance between
two of its points.
If we now apply the construction functions ip, iℓc, and ext to some
points of the configuration to obtain new points, the diameter of
the configuration at most doubles. Indeed, only ext increases the
diameter at all, and ext at most doubles the diameter.
This observation is due to Julien Narboux and his colleagues Pierre
Boutry and Pascal Schreck.



Herbrand’s theorem

This is a general logical theorem about any quantifier-free theory T

in first-order logic. It says that if T ⊢ ∃xA(x) then there exist
terms t1, . . . , tn such that

T ⊢ A(t1) ∨ A(t2) . . . A(tn).

The formula A can have other variables not shown explicitly; which
of the ti works probably depends on the values of those variables.
Of course, if x is a list of variables, each ti is a corresponding list
of terms.



A fertile three years

◮ Herbrand proved his theorem in 1928, while Tarski was
lecturing in Warsaw, Hilbert-Ackermann was being sent to the
printers, and the completeness theorem was in gestation.

◮ He was a 20-year old Ph. D. student at the time.

◮ Herbrand was on the right track– he might have proved the
completeness theorem, if Gödel hadn’t done it at about that
same time (publication date 1929).

◮ And if he hadn’t died tragically in a mountain-climbing
accident at age 23.



Herbrand during his fatal climbing trip



Herbrand’s theorem in geometry
In geometry, where each t1 represents a ruler-and-compass
construction, Herbrand’s theorem tells us there will be finitely
many constructions, one of which will work in each case.
For example, suppose A(a, b, p, x, y) says that a 6= b implies that
x 6= y and x is on Line(a, b) and y 6= x and xy ⊥ ab and p lies on
Line(x, y). Then ∃x, yA(a, b, p, x, y) says that we can find a line
through p perpendicular to ab.

We usually would argue by cases: if p is on ab, we “erect” a
perpendicular to ab at p, and if not, we “drop” a perpendicular to
p. These two constructions correspond to terms tij (containing
variables a, b, p) such that

T ⊢ A(a, b, p, t11, t12) ∨ A(a, b, p, t21, t22)

So in this case, Herbrand’s theorem only tells us what we already
know; but it tells us without doing any geometry at all that any
proof of the existence of perpendiculars must provide some number
(not necessarily two) of constructions, one of which always works.



Euclid 5 does not follow from A1-A9 and line-circle

continuity
Proof (with Narboux, Boutry, and Schreck.) Suppose it did. Then
by Herbrand’s theorem, there would be n terms t1(y), . . . , tn(y)
such that, provably in A1-A9 plus line-circle, one of the ti(y) lies
on both M and L in this figure:
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Now let k be the total number of symbols in all the ti. The
diameter of any configuration constructed from the illustrated
points in k construction steps is at most 2k. But if we choose
y = 2−k−2, the intersection point of M and L lies more than 2k

from the origin, so it cannot be constructed by one of the ti. That
contradiction completes the proof.



Constructions corresponding to Euclid 5

Tarski’s version of Euclid 5 does not correspond to a
ruler-and-compass construction. It is this:

x y

b
a

bb

b
c

b
t

b
d

Point t in the interior of angle bac can be connected to the two
sides of the angle by some line xy.



Triangle Circumscription (Szmielew’s Parallel axiom)

If a, b, and c are not collinear, there exists a point e equidistant
from a, b, and c.
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Hilbert Multiplication
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“Multiplication is defined” is equivalent to Euclid 5



Ruler-and-compass constructions

Herbrand’s theorem tells us:

Theorem
Suppose Tarski’s A1-A10 plus line-circle continuity proves

∀xA(x)→∃y C(x, y)

with A and C quantifier-free. Then there is an integer n and

ruler-and-compass constructions t1(x), . . . , tn(x) such that one of

them always constructs y from x. Here both x and y can be lists

of variables.

The constructions are of a very specific kind:

◮ center of a circumscribed circle, center(a, b, c)

◮ segment extensions ext(a, b, c, d)

◮ line intersection points given by inner Pasch: ip(a, p, c, b, q)



Reduction of center to simpler constructions?

You may think that center(a, b, c) is not a “fundamental”
construction, but something you construct in several
ruler-and-compass construction steps.

◮ If we can drop perpendiculars and bisect segments, we can get
center from Euclid 5.

◮ Gupta showed we can do those things from A1-A9, i.e.
without circles or any parallel postulate.

◮ Even with line-circle allowed it is not trivial, but easier.

◮ But you still need some construction for Euclid 5, such as the
one Euclid mentions.

◮ You may need a very long ruler.



Two fundamental theorems about Tarskian geometry

Our independence proof can be made to work for the full first-order
continuity scheme A11 in place of just line-circle continuity, but
unlike the proof you saw, it is not easy. The explanation depends
on the following well-known, but difficult to prove, facts.

◮ Addition and multiplication can be defined geometrically using
A1-A10.

◮ The models of A1-A10 are all isomorphic to planes F
2 over a

real-closed field F.

The first fact is due to Descartes, Hilbert, Tarski, Szmielew, and
Gupta, and is the main point of Part I of SST.
The second fact is due to Tarski, and was the main theorem he
emphasized about his geometry.

There won’t be time in this talk to discuss the extension to A11.



Comparison to models of non-Euclidean geometry

While it’s amusing and pleasant to show that the independence of
Euclid 5 is a consequence of Herbrand’s theorem, in the interest of
full disclosure, we should point out that

◮ The Herbrand’s theorem proof only works for first-order
geometry, while

◮ the models of non-Euclidean geometry also work for
second-order geometry.



A model of Max Dehn

There is another way to prove the independence of Euclid 5, due to
Max Dehn:

◮ Let F be a non-Archimedian Euclidean field (ordered, and
positive elements have square roots, and some element is
larger than any integer).

◮ An element of F is “finitely bounded” if it is less than some
integer.

◮ Let M be the finitely bounded elements of F; the model we
want is M

2.

◮ It satisfies A1-A9, and line-circle continuity, but not A10,
because there are lines through (0, 1) with nonzero but
infinitesimal slope.

◮ This model doesn’t satisfy the whole schema A11 either, but
that defect can be fixed using Tarski’s work, just as for our
proof.



Constructive Geometry

If we use intuitionistic logic, then in Herbrand’s theorem, you can
take the number of terms to be one.

That is, if you can prove ∃y A(x, y), then there is a term (just one
term) t such that A(x, t(x)) is provable.

◮ For example, is there a uniform construction of a
perpendicular to line L through point p, without a case
distinction as to whether p is on L or not?

◮ Yes, there is. So the theorem that for every line L and point
p, there is a perpendicular to L through p is constructively
correct.

◮ The construction is not claimed to be obvious. We are only
pointing out what has to be done to prove constructively that
there exists a perpendicular to L through any point p.

◮ Constructive proofs avoid case distinctions and proof by
contradiction when proving things exist.



Constructive Tarskian Geometry

An esoteric subject, because you need to know

◮ Tarski’s axiom system

◮ something about constructive (intuitionistic) logic and
mathematics

I have written several papers about constructive geometry; the
most recent is about a constructive version of Tarskian geometry.
You can find the two most recent by googling their filenames:

ConstructiveGeometryAndTheParallelPostulate.pdf
AxiomatizingConstructiveGeometry.pdf


