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Abstract. Some knowledge of elementary physics has been formalized in first-order
logic. The domain of discourse includes physical objects and their relations, mathematical
formulas, and the semantic relation between formulas and objects. The knowledge in
question has been written in Prolog and is sufficient to support an automatic derivation
of the differential equation of motion of a pendulum. The inference engine makes use of
the Knuth-Bendix method and also of a symbolic computation system for algebra and
calculus. Perhaps this is the first program to use both knowledge representation in logic
and symbolic computation.

1. Introduction

In physics textbooks one finds “derivations” of differential equations of motion describing
various physical systems, for example a pendulum. As an exercise in both knowledge
representation and automated deduction, we have developed methods of formalizing and
automating such derivations.

The domain of discourse in such discussions cannot be restricted to physical objects and
their properties and relations though of course it must contains such concepts as mass,
force, inertia, time, and length. It must in addition be able to formalize such expressions
as “the velocity of the pendulum bob at time t is given by f(t).” Thus one of the types of
objects to be considered is the type mathematical expression, and there will be relations of
the form “expression E denotes R”, where R is a physical object or relation.

From the logical point of view, we are involved in formalizing a metalanguage. Ordinary
mathematics can be thought of as the “object language”, which talks about physical reality.
What concerns us here is the semantic relationships between this language and physical
reality: in what sense can it be formally said that a certain differential equation is the
equation of motion of a pendulum? When the physics texts say that “the equation of
motion of a pendulum is derived”, they mean more precisely that it is demonstrated that
a certain relationship holds between that equation (as a sequence of symbols) and physical
pendular.

In the physics textbooks, however, most of the steps of the derivation are ordinary
mathematical transformations on equations. These actually correspond to inferences on
the meta–level: suppose we have proved that equation E describes the physical situation
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Then we transform E to a mathematically equivalent equation H. We may then infer that
H describes the physical situation.

Since the bulk of the reasoning (as printed in textbooks) is ordinary mathematics, it
is clear that purely logical reasoning will not suffice to automate these derivations. We
will need a theorem prover operating at the meta–level, coupled to a system for ordinary
mathematical calculations.

There has been much work in artificial intelligence directed towards “qualitative physics”;
see e. g. Bobrow [1]. Our work, by contrast, deals with the formalization of “quantita-
tive physics.” We think that before trying to formalize common sense notions of physical
objects and their behavior, we ought to get some practice by formalizing the precise and
mathematically elegant notions of Newtonian mechanics.

This work is directed towards answering the following questions:

• What knowledge structures are needed for the logical representation of Newtonian
mechanics?
• What knowledge structures are needed for the representation of the semantic rela-

tions between physical reality and the equations of Newtonian mechanics?
• How can a theorem prover be designed that calls on an efficient symbolic computa-

tion system when ordinary mathematical computation is needed?

As described above, our work is a purely theoretical scientific endeavor. Yet it would
be misleading to leave matters there, for what first attracted our attention to the problem
was a practical matter. We have been involved in applications of artificial intelligence
to computer assisted instruction, and we were thinking about what would be involved in
designing intelligent computer programs to teach physics. It seems desirable to have a
system that would permit the user to describe a physical system, perhaps by graphically
“building” an image of the system by selected and moving components such as weights,
rods, and hooks. The computer should then be able to automatically generate a simulation
of that physical system, numerically solve the differential equations of motion, and use the
solution to drive the graphics that would present to the user a model of the system. (Credit
for the idea of a dynamic simulation generator belongs to Henson Graves.) We have seen
many examples of particular simulations, each one specially coded, but nothing like what
Graves envisions has been built [still true as this is re-typed in 2012, as far as I know]. The
theoretical work described in this paper grew out of these considerations.

2. Knowledge representation: explicit use of the meta–level

Reflection reveals that every use of mathematics in science involves the notion of the
physical interpretation of the mathematical symbols. Hence any system for formalizing
scientific arguments must involve the explicit representation of meta–level knowledge. The
lack of meta–leval representation has been recognized as a limitation of current expert
systems; see Genesereth [2] for a description of an attempt to incorporate meta-reasoning
in expert system technology.
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We formalized and automated the derivation of the equation of motion of the pendulum.
But it is not even possible to state what it means to be the equation of motion of the pen-
dulum, let alone state the conditions on the pendulum under which the equation describes
its motion, without using knowledge about physical quantities and the interpretation of
mathematical symbols in the physical world. To be explicit, our system has a threefold
domain of discourse:

• Physical objects and their relations, such as the mass or location of an object, or
the force of one object on another.
• Mathematical equations and their manipulation, including the derivation of new

equations from old ones, and the evaluation of expressions by algebra or calculus.
• The semantic relations or “modeling functions” by which an expression or equation

denotes an object or relation.

One may view this domain of discourse as an extension of the familiar situation in analytic
geometry, in which numbers describe space by means of a certain “modeling function.”
We usually think of this process by the inverse of the modeling function, the coordinate
functions. One may say that mathematical equations of motion “coordinate” dynamics in
the same way that Cartesian coordinates “coordinatize” statics.

The remainder of this section is devoted to a description of the logical representation of
the knowledge needed to formalize the derivation of the equation of motion of a pendulum.

We have a unary predicate object(a), intended to denote physical objects such as apples,
pendulum bobs, or the earth. We shall usually use letters near the beginning of the alphabet
for objects. We shall also need the concept of physical point. We shall usually use letters
p or q for physical points. We introduce the unary predicate point?. Note that a point is
not the same as a number or vector. A point gives rise to a vector when an origin and
a system of units is specified. Once we have a vector we still do not have numbers until
coordinate axes are specified; then there are three functions xc(v), yc(v), and zc(v) that
get the spatial coordinates of a vector v. When the origin of time is specified we also have
tc(v). The values of the coordinate functions are real numbers; we shall usually use letters
near the end of the alphabet for real numbers. The careful distinctions between points,
vectors, and (triples of) numbers are essential for the formalization.

We need a binary predicate on(p, a) to express that point p is on object a. Two objects
may be connected; this is expressed by the binary predicate connected(a, b). It is a sym-
metric relation and if a is connected to b then they have at least one point in common; the
point pointOfConnection(a, b) is on both a and b. To deal with the example of pendula,
we will not have to worry about the various complicated ways in which two objects can be
connected.

An object has a location and a mass. The location of an object is a region of space.
We may idealize and consider the case of a “point object”, whose location is a point. In
the case of a point object, position(a) is synonymous with location(a). Its value is of type
point. If coordinates have been introduced, we may write xc(location(a)) as xc(a), since
this latter expression can have no other interpretation. Thus the coordinate functions can
apple either to points or to vectors.
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We have a binary function symbol force(a, b), intended to denote the force of object a
on object b. However, the arguments of force are not restricted to be physical objects; we
can also write force(gravity, b) for the force of gravity on object b. We shall not need in
this paper any electromagnetic or other kinds of forces, but they could fit into the same
formalize. The value type of the expression force(a, b) is vector. Note that force(a, b) does
not denote a number.

How do we get vectors from points, or numbers from vectors? We need a function
vector(a) that gets the vector associated with the point a, and the function value(v) that
represents the member of R3 (triple of numbers) associated with the vector v. Both of these
functions depend on other things: vector depends on the choice of units and origin, and
value in addition depends on the choice of axes. In order to formalize this we need either
a system with very rich types (some generalization of typed λ-calculus), so that we can
represent the function that leads from coordinate ridings and systems of units to the func-
tion value, or else we need a completely type-free system such as first-order logic. We have
been able to formalize this satisfactory in Prolog by the simple device of allowing function
symbols to take a variable number of arguments Thus we write value(a, Units,Origin)
or just value(a) as the need requires. The composition value(vector(a)) is the triple
[xc(a), yc(a), zc(a)].

Similarly, the location of a point may depend on time. In Prolog we simply use location
as a function of either one or two variables, writing location(a, t) for the location of object
a at time t. In typed λ-calculus we could formalize the function that passes from t to the
function λa .location(a, t), i.e. to the unary location function.

We want to write distance(a, t) for the distance between two points, but of course that
can only be defined relative to a system of units. It is, however, independent of the choice of
origin of coordinates or of axes. We formalize this in logic by using distance as a three-place
function distance(a, b, units), or as a binary function if the units are fixed. The relation
with Euclidean distance is given by the equation

distance(a, b, units) = |value(a, units,Origin)− value(b, units,Origin)|

where Origin is a free variable.
Points may have velocity. Velocity is a fundamental physical concept, as is acceleration.

What is the correct formal sense of the informal statement that “velocity is the time
derivative of position”? Only mathematical expressions denoting number–valued or vector–
valued functions can be differentiated; what must be meant is that if expression E denotes
position(a), then dE/dt denotes velocity(a). Examine the types carefully here: position(a)
is a point, and E and dE/dt are expressions. When we say “E denotes position(a)”, we
mean that the vector determined by E (with a given assignment of values to free variables)
is the same triple of numbers as value(position(a)).

Similarly, the physical quantity acceleration is denoted by the time derivative of the ex-
pression denoting the velocity. Note the abbreviation “time derivative” for “derivative with
respect to the variable denoting time.” The Prolog code makes the distinction explicitly
and declares that ‘t’ will denote time unless otherwise specified.
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At this point enough knowledge has been introduced to formalize Newton’s laws. New-
ton’s first law serves to evaluate terms of the form f(a, b), by specifying “To every action
there is an equal and opposite reaction”:

force(a, b) = −force(b, a).

Newton’s second law asserts that F (b) = mass(b)acceleration(b) is a valid equation in the
strict semantic sense that its left and right sides denote the same vector, where F (b) denotes
the resultant of all forces on an object b. That information can be used to derive other valid
equations, or to conclude that the denotations of the two sides of the original equation are
the same. Of course, we can first derive other valid equations and then conclude that their
two sides have the same denotation.

Finally, Newton’s third law of universal gravitation specifies what the gravitational forces
of objects on each other are. Let us define F (a, b) to be the magnitude of the force of a on
b:

F (a, b) = |value(force(a, b))|
Then Newton’s third law is

F (a, b, gravity) =
−Gmass(a)mass(b)

distance(a, b)2

A well-known argument shows that if on(location(b), surfaceOfEarth), then

F (earth, b, gravity) = −gmass(b).

In this situation we abbreviate F (earth, b, gravity) to F (gravity, b). Although there are
problems of approximate equality involved in using the equation for objects whose location
is only near the surface of the earth, we shall assume the usual law for the force of gravity,
in which down is a unit vector directed at the center of the earth:

force( gravity, b) = −gdownmass(b).

Physics books often contain problems about finding the value of g at the top of Mount
Everest. The problems of approximate equality can be solved in the same way as the
problems of value, by regarding g either as a function of one argument (height above the
surface of the earth) or if that is regarded as fixed, as a function of zero arguments, i.e. a
constant.

In order to analyze the pendulum, we assume that only mechanical and gravitational
forces are acting. That is expressed by saying that the total force on an object c is given
by the sum of force(gravity, c) and terms force(a, c) summed over all objects a which are
connected to c. This assumption is easily expressed in our formal language (and in Prolog),
although it should be noted that is mathematical expression involves a summation whose
index involves a logical condition using the physical relation connected.

Specializing now to the pendulum problem, we define the data type pendulum: a pendu-
lum is a triple [a, b, c], whose members are objects, with a connected to b and b connected
to c. We call a the “pivot”, b the “rod”, and c the “bob.” Moreover, if [a, b, c] is to qualify
as a pendulum, nothing but b must be connected to c and nothing but a and c must be
connected to b.
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That definition is very general. We shall be concerned with “simple pendula.” A pen-
dulum is called simple provided:

(1) The pivot a is fixed, i.e. location(a) is independent of t. This can be expressed by
requiring location(a, t1) = location(a, t2). We must also require

location(a) = pointOfConnection(a, b)

to rule out pendular attached to an immovable point a by a moving pivot.
(2) The rod is massless: mass(b) = 0.
(3) The rod is rigid: Let L be the distance between pointOfConnection(a, b) and

pointOfConnection(b, c). Then L is independent of time.
(4) The bob is a point mass: location(c) = pointOfConnection(b, c).

Note that a simple pendulum can still be quite complicated: there can be frictional forces
at the connections, and the amplitude of motion can be arbitrary, including even “going
over the top.”

We want to consider only frictionless pendula. As it turns out, the assumption that the
pendulum is frictionless enters into the derivation at only one point: when one wishes to
prove that the force of the rod on the bob is directed along the rod, i.e. has no tangential
component. This can be expressed in symbols by

(5) force(b, c) · velocity(c) = 0.

In all the physics books I examined, this point of the derivation is passed over in a line
or even between the lines. It is actually quite difficult to derive this equation from first
principles about friction. One might argue intuitively that in a frictionless pendulum, one
could as well replace the rod by a string, and that if the force of rod on bob were not radial,
the string would bend. Of course this argument has no rigorous value. The attempt at
formalization has turned up this flaw in the derivations in all the textbooks!

Note that, physically speaking, there may be only one direction in which the z-axis can
be placed to make (5) valid: if the pivot-to-rod connection is essentially one-dimensional,
we will have to place z so that the motion will be in the x-y plane. Assuming the validity
of (5) with respect to all coordinate systems amounts to assuming there is a frictionless
universal joint. Strictly speaking, (5) does state the equality for all coordinate systems,
since it is an equation between vectors. Our derivations, however, will be valid also for
pendula that satisfy (5) only when projected on the x-y plane, i.e. satisfy the two equations
obtained by dotting the values of the sides of (5) with (1, 0, 0) and (0, 1, 0).

Since our original aim was to formalize the derivations in the textbooks, we shall simply
assume (5) as an additional hypothesis. We define a pendulum to be frictionless if (5) holds.
Choose coordinates so that the origin is at location(a), the y axis is directed upward, and
the z axis is arbitrary. By “upward” we mean that we assume

(6) xc(down) = 0, yc(down) = −1.

Let θ be the angle between the bob and the downward vertical, i.e.

(7) θ(t) = arctan
(
xc(location(c, t))
−yc(location(c, t))

)
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Introduce the customary notation ẋ for dx/dt and ẍ for d2x/dt2. The equation of motion
of a simple frictionless pendulum, whose validity is the main concern, can be written as

(8) θ̈ = − g
L

sin θ

The main theorem, for which we have given a formal and automatic demonstration, is
that equation (8) is valid, under the stated assumptions (1) through (7). The next section
discussed the derivation.

3. Inference Technique

Prolog and symbolic computation. Our idea was to combine the built-in inference mech-
anisms of Prolog with the symbolic manipulation capabilities of another program. We have
such a program at hand, written in Prolog by the author for another project. [Note added
in 2012: this was an early version of MathXpert.]

The reflection principle. Suppose we have derived valid(e1 = e2), where e1 and e2 are
expressions represented as Prolog terms; equality is just another function symbol to Prolog.
Suppose we pass the expression e1 = e2 to the symbolic manipulation routines, which
rewrite it, deriving the expression e3 = e4. Then we will permit the inference valid(e3 =
e4). This inference rule we call the “reflection principle”, after similar principles that have
been studied in mathematical logic. It “reflects” object–level derivations (computations)
into meta–level derivations.

The Knuth–Bendix method. A considerable body of literature has developed about the
use of rewrite rules in automated deduction, beginning perhaps with the often cited paper
[3]. The central idea of this method is that if a certain expression can be rewritten in two
essentially different ways, then one may deduce a new equation by setting the two answers
equal. Suppose e1 can be rewritten as e2 and also as e3. Then the reflection principle
allows us to conclude valid(e2 = e3). This is the main way that the reflection principle is
applied in our derivations.

Our original proofs proceeded directly in the Knuth–Bendix style, using rewrite rules for
algebraic manipulation. However, as is well known in the field of symbolic computation,
this is inefficient. We therefore make use of more efficient routines for algebraic and calculus
computations.

Creativity in deriving new results using this method lies solely in choosing the proper
starting point or points. Once the starting expression is supplied, it is simply a matter
of simplifying it in two different ways to obtain the equation of motion of the pendulum,
using for the simplification two kinds of steps: steps using the axioms (1) through (7), and
steps using symbolic computation and the reflection principle.

Suppose [a, b, c] is a simple frictionless pendulum. We let v be the velocity of c. We
start with the express F · v, where · means vector dot product, and F is the sum of the
forces on c. The rules of physics and mathematics (1) through (7) are sufficient to rewrite
this expression in two different ways (automatically): on the one hand F can be rewritten
as force(b, c) + force(gravity(c), and on the other as m[ẍ, ÿ], where m denotes the mass of
c and x and y are the coordinates of the point location(c). Note that Newton’s second law
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was used for this rewriting. Now the equation (5) implies that force(b, c) · v = 0. F · v
can be rewritten on the one hand as force(gravity, c) · v, which can be further rewritten as
mg · down. On the other hand F · v can be rewritten as

m[ẋ · ẍ, ẏ · ÿ].

(For simplicity, we work in two space dimensions; the third would drop out anyway in a
few lines.) Equating the two rewritings and using (6), we have

mg[0,−1] · v = m[ẋ · ẍ, ẏ · ÿ].

This can be recognized (by a human) as the equation of conservation of energy; it says the
time derivative of potential energy mgy plus kinetic energy 1

2mv · v is zero.
Now the derivation has to be guided for the first time since the initial choice to rewrite

F · v in two ways. Namely, we introduce polar coordinates, by the equations

x = L sin θ
y = −L cos θ

If we put these rules in to begin with, the final equation is reached without intervention
but the conservation of energy equation does not occur in the derivation. Once polar
coordinates are introduced, the symbolic computation system is capable by itself of deduc-
ing the final answer, equation (8). The derivation involves more manipulation that one
would expect of average freshmen. For the computer, the most difficult part is that the
expression must get longer before it gets shorter; the distributive law has to be applied at
a certain point, lengthening the expression, before trigonometric identities can shorten it.
One may not use the distributive law every time it is applicable without unsavory results,
since it makes expressions longer when one doesn’t want the longer. A certain look–ahead
is prudent: only distribute if there is something to be gained. With that strategy in the
program, the derivation of the pendulum equation is well within the computer’s grasp.

References

[1] Bobrow, D. B. (ed.) Qualitative Reasoning about Physical Systems, second edition, MIT Press, Cam-
bridge, MA (1986).

[2] Genesereth, M. R., an overview of meta–level architecture, Proceedings AAAI-84, pp. 119-124.
[3] Knuth, D. E., and Bendix, P. B., Simple word problems in universal algebas:, in: Leech, J. (ed.)

Computational Word Problems in Abstract Algebra, pp. 263-297, Pergamon Press (1970).


