Introduction

The Parallel

Postulate in

Constructive
Geometry

Independence Results

Michael Beeson

San José State University
ProfBeeson at gmail.com
www. MichaelBeeson.com/Research

October, 2009

Michael Beeson

School Of Athens

Postulates versus Axioms

Three versions of the parallel postulate
Today's main results

The Parallel Postulate in Constructive Geometry



Introduction
School Of Athens
Postulates versus Axioms

ons of the parallel postulate
main results

Postulates vs Axioms (according to Geminus and Dehn)

» Postulates set forth our abilities to make certain constructions.
» Axioms merely state (static) properties

» Aristotle and Proclus offer different explanations of the
difference, but | like this explanation.

» The idea is not Dehn’s but is already attributed to Geminus
by Proclus.

» Example: (Postulate 3) To describe a circle with any center
and distance.
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Euclid’'s Parallel Postulate

Euclid's Postulate 5 [Heath translation]: If a straight line falling on
two straight lines make the interior angles on the same side less
than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the
two right angles.

The two lines must meet.
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Playfair's Parallel Axiom

Definition: K is parallel to L if K does not meet L, i.e. no point

lies on both K and L. (John Playfair, 1795; Proclus, 450) Given a
line L and a point P not on L, there exists exactly one parallel to
L through P.

The two lines can't fail to
meet.
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Euclid 5 implies Playfair

Constructively, Euclid 5 implies Playfair. Given line K through P
not on L, let M be the perpendicular to L through P. If K does
not meet L, then by (the converse of) Euclid 5, the interior angles
on each side of M are not less than two right angles. It follows
that M is perpendicular to K as well as L. Hence there is only one
possibility for K, QED.

But there is no obvious way to derive Euclid 5 from Playfair
constructively.
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A third version of the parallel postulate

Strong parallel postulate: Let K be a line through a point P not
on line L. If K is not parallel to L then K meets L.

This postulate implies Euclid 5, but the converse is not obvious.
Constructively, we might know that K is not parallel to L without
knowing on which side the interior angles are less than two right
angles.
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The main points of today's talk

We obtain the following results:
» Playfair does not imply Euclid 5 in constructive geometry.

» Euclid 5 does not imply the strong parallel postulate in
constructive geometry.
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Intuitionistic logic or ruler-and-compass?
First order theories of 8%
Models of the Elem: nstructions

What is constructive geometry?

Book |, Prop. 2
Right and left turns

Constructive geometry

Does constructive refer to the use of intuitionistic logic?

Or does it refer to geometrical constructions with ruler and
compass?

What is the relation between these two?

In our constructive geometry, they are closely related: things
proved to exist can be constructed with ruler and compass.
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What is constructive geometry? Intuitionistic logic or ruler-and-compass?

Right and left turns

Primitive Constructions

> Line (A,B)
» Circle (A,B) (center A, passes through B)
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Right and left turns

What is constructive geometry?

Primitive Constructions

> Line (A,B)
» Circle (A,B) (center A, passes through B)
» IntersectLines(A,B,C,D) (AB meets CD)
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Intuitionistic logic or ruler-and-compass?
First order theories of 8%

Models of the Elem: nstructions
Book |, Prop. 2

Right and left turns

What is constructive geometry?

Primitive Constructions

Line (A,B)

Circle (A,B) (center A, passes through B)
IntersectLines (A,B,C,D) (AB meets CD)
IntersectLineCirclel (A,B,C,D) (C is center)
IntersectLineCircle2(A,B,C,D)

vV v v v .Y
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Right and left turns

What is constructive geometry?

Primitive Constructions

Line (A,B)

Circle (A,B) (center A, passes through B)
IntersectLines (A,B,C,D) (AB meets CD)
IntersectLineCirclel (A,B,C,D) (C is center)
IntersectLineCircle2(A,B,C,D)

IntersectCirclesI (cy,c¢2)

vV v vV vV V. VY

IntersectCircles2(cy,c2)
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What is constructive geometry?

Intuitionistic logic or ruler-and-compass?
First order theories of metry

Mod f Elen Constructions
Book |, Prop. 2

Right and left turns

How the sorts mix

You can also write

IntersectLines (L, K)

if L and K are lines. Then
IntersectLines (A, B,C, D) = IntersectLines (Line (A, B), Line (C, D))

and so on.
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Intuitionistic logic or ruler-and-compass?
First order theories of geometry

Models of the Elementary Constructions
Book |, Prop. 2

Right and left turns

What is constructive geometry?

First order theories of geometry

» Angles can be treated as ordered triples of points.

» Rays and segments are needed only for visual effect; for theory
we need only points, lines, and circles.

» We don't even need lines and circles; every theorem comes
down to constructing some points from given points, so that
the constructed points bear certain relations to the original
points.

» The relations in question can be expressed in terms of
betweenness and equidistance.

» We can also use a three-sorted language, for points, lines, and
circles.

» These theories are all mutually interpretable and those with
larger languages are conservative extensions.

Michael Beeson The Parallel Postulate in Constructive Geometry
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Right and left turns

What is constructive geometry?

Tarski geometry

Just to avoid confusion: today we are concerned with “elementary”
geometry in the sense that only line-circle and circle-circle
continuity are used. Hilbert's geometry included a second-order
continuity axiom, essentially requiring that Dedekind cuts be filled.
“Tarski geometry” is a first-order theory with a continuity schema,
essentially requiring that first-order definable Dedekind cuts be
filled. Sometimes “elementary” means first-order, and Tarski wrote
a famous paper, What is Elementary Geometry, in which
“elementary geometry” meant Tarski geometry. But “elementary”
can also refer to the Elements of Euclid, which is a weaker theory.
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What is constructive geometry?

Book |, Prop. 2
Right and left turns

Models of the Elementary Constructions

» The “standard plane” R?

» The “recursive plane”. Points are given by recursive functions
giving rational approximations to within 1/n.

» The minimal model, the points constructible by ruler and
compass

» The algebraic plane, points with algebraic coordinates

» The Poincaré model. These constructions work in
non-Euclidean geometry too.

Michael Beeson The Parallel Postulate in Constructive Geometry
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Right and left turns

What is constructive geometry?

Book I, Prop. 2

» Euclid's compass is “collapsible”

» You cannot use it directly to construct Circle3(A4,B,C), the
circle with center A and radius BC.

» Book I, Prop. 2 is intended to show that Circle3 need not be
assumed, because

» Given A, B, and C, we can construct a point D with
AD = BC.

Michael Beeson The Parallel Postulate in Constructive Geometry
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What is constructive geometry?

Book |, Prop. 2
Right and left turns

Book I, Prop. 2

Euclid's compass is “collapsible”

» You cannot use it directly to construct Circle3(A4,B,C), the
circle with center A and radius BC.

» Book I, Prop. 2 is intended to show that Circle3 need not be
assumed, because

» Given A, B, and C, we can construct a point D with
AD = BC.

» But Euclid's construction assumes not only B # C', but also
B # A, and the point constructed does not depend
continuously on B as B tends to A.
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Intuitionistic logic r d-compass?
First order t y
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What is constructive geometry?

Book |, Prop. 2
Right and left turns

Euclid’s proof of |.2 requires a case split

» This is a bad omen for constructive geometry, because
computable points must depend continuously on their
parameters.

» Euclid doesn’t argue by cases. He just omits the “trivial” case.

» Euclid was criticized already in 450 AD by Proclus for not
taking sufficient care with argument by cases.

» Proclus considered eight “cases” (different diagrams)
including the case A=B, which Heath thinks is superfluous.

Michael Beeson The Parallel Postulate in Constructive Geometry
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First order t y
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What is constructive geometry?

Book |, Prop. 2
Right and left turns

Uniform 1.2

» The uniform version of this proposition says that, given A, B,
and C, with B # C, we can construct D = e(A, B, C') with
AD = BC, without assuming A # B.

» Given such a term e, we could define
Circle3 (A, B,C) = Circle (A,e(A, B, C)).
» Given Circle3 , we could define
e(A, B, C) = pointOnCircle(Circle3 (A, B, C).
» Having Circle3 is equivalent to “realizing” uniform |.2.

» In constructive geometry, we take Circle3 as primitive, so
Euclid 1.2 is essentially taken as an axiom.

Michael Beeson The Parallel Postulate in Constructive Geometry
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Book |, Prop. 2
Right and left turns

Intuitionistic Geometry

» Use intuitionistic logic

» In intuitionistic logic, we do not have a <bVa=bVb<a
for points on a line.

» In view of that, several of Hilbert's axioms are not correct
with intuitionistic logic.

» Reductions to field theory need reconsideration.

Michael Beeson The Parallel Postulate in Constructive Geometry
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Right and left turns

We have a problem in distinguishing the two intersection points
IntersectCircles1 (C1,C3) and IntersectCircles2 (Cy, Cy). Suppose
C1 has center A and C5 has center B, and P is an intersection
point. Then, we consider whether the triple ABP is a “left turn”
or a “right turn”. That is how we shall distinguish the two
intersection points.

In order to be able to do that, we have to be able to define what it
means for three points to form a “left turn” or a “right turn”. As
far as | know, this problem has not been solved in the geometrical
literature. It was not very difficult, but it was also not quite trivial.
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Right and left turns

What is constructive geometry?

Defining right and left turns

One has three fixed non-collinear points «, 3, and . One
arbitrarily defines a3y to be a right turn and ayf3 to be a left
turn. One then needs to be able to define what it means for ABC
to be a right or left turn in general and prove some basic lemmas
about these concepts. The idea is that there are certain operations
or “moves”’ one can perform on angles (triples of points) without
changing the handedness; and a chain of no more than 20 such
moves can transform any angle into any other angle of the same
handedness. The details can be found in my first paper on
constructive geometry.
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What is constructive geometry?

y Constructions
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Right and left turns

Right turn and left turn

One could add predicates R(A, B,C') and L(A, B,C), but one can
instead just regard R(A, B,C') as an abbreviation for

IntersectCircles1 (Circle (A, C), Circle (B,C)) = C

since one would otherwise have to add an axiom stating that these
two are equivalent.

Then one needs axioms about R corresponding to the “moves”
that preserve handedness. For example, if R(A, B,C), and D is
between A and B, then R(D, B,C). These are technically part of
the axiomatization of IntersectCirclesl and IntersectCircles2. That
their interpretations in a more conventional geometry are provable
shows that handedness is indeed first-order definable.
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IEGC (Intuitionistic Euclidean Constructive Geometry)

Constructions and classical logic

Plan for a constructive geometry

» Take the primitive constructors discussed above, including
Circle3

» Consider the axioms from a Hilbert-style axiomatization, such
as the one in Greenberg's textbook.

» Using the function symbols for the constructors, express the
axioms in a quantifier-free and disjunction-free way.

» For continuity, take only line-circle continuity and circle-circle
continuity.

> See if enough geometry can be done with these axioms.

Michael Beeson The Parallel Postulate in Constructive Geometry
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Constructions and classical logic

What is “enough geometry”?

» All of Euclid

» Definability of addition and multiplication on signed segments
without using non-constructive case splits

Michael Beeson The Parallel Postulate in Constructive Geometry



Does Euclid use the law of the excluded middle?
Definin thmetic on signed segments
ometric arithme

IEGC (Intuitionistic Euclidean Constructive Geometry)

Constructions and classical logic

Does Euclid use the law of the excluded middle?

Euclid’s proofs have been analyzed in detail by Avigad, Dean, and
Mumma, and they conclude:

Euclidean proofs do little more than introduce objects
satisfying lists of atomic (or negation atomic) assertions,
and then draw further atomic (or negation atomic)
conclusions from these, in a simple linear fashion. There
are two minor departures from this pattern.
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IEGC (Intuitionistic Euclidean Constructive Geometry)

An example where Euclid deviates from intuitionistic logic

Prop. 1.6, whose proof begins

Let ABC be a triangle having the angle ABC equal to
the angle ACB. | say that the side AB is also equal to
the side AC'. For, if AB is unequal to AC, one of them
is greater. Let AB be greater, ...

Since the conclusion doesn’t have a disjunction, we can just push
double negation through this case split, and then use

rFYyDdDr=y.

Michael Beeson The Parallel Postulate in Constructive Geometry
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IEGC (Intuitionistic Euclidean Constructive Geometry)

Constructions and classical logic

Euclid is almost completely constructive

Avigad, Dean, and Mumma summarize Euclid’s few
non-constructive arguments this way:

Sometimes a Euclidean proof involves a case split; for
example, if ab and cd are unequal segments, then one is
longer than the other, and one can argue that a desired
conclusion follows in either case. The other exception is
that Euclid sometimes uses a reductio,; for example, if the
supposition that ab and cd are unequal yields a
contradiction then one can conclude that ab and cd are
equal.

Michael Beeson The Parallel Postulate in Constructive Geometry
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Constructions and classical logic

Euclid can be made completely constructive

Using the stability of equality -—z =y D x = y and Markov's
principle ==z <y D = < y (expressed using betweenness), we can
simply push double negation through Euclid’s few arguments by
cases, except for the extended (uniform) version of Prop. 1.2.

| don’t know whether there is a proposition in Euclid that actually
needs Markov's principle. That would be an argument by cases
whose conclusion is an inequality (asserting involving betweenness)
rather than an equality.
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IEGC (Intuitionistic Euclidean Constructive Geometry)

Constructions and classical logic

Descartes

La Geometrie (1637)
introduced the idea of
performing arithmetic on (the
lengths of ) segments by
geometrical construction.

Michael Beeson The Parallel Postulate in Constructive Geometry
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Descart: geometric arithmetic
The theory IECG
Constructions and classical logic

Page Two of La Geometrie

g Soit par exemple
gk - A Blvnité, & qu'il fail-
' le multiplier BD par

g B C, ien‘ay qu'aioindre

. les poins A & C, puis ti-

rer DE paralleleaCA,

& BEeft le produit de

cete Multiplication.

La Divi-  OQubiens'il faut divifer BE par BD, ayant ioint les

fion. poins E & D, ie tire AC parallele 2a DE, & BCeftle
produit de cete divifion.

D A
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The theory IECG
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Page Two of La Geometrie

TExrra- 5
&ion dela Ous'il faut tirer la racine
e ! quarrée de GH , ie luy ad-

ioufte en ligne drmtc FG,

qui eft 'vnite, & divifant F H
T i H en deux partics efgales an

point K, du centre K ie tire

In this picture, F'G is unity and triangle I F'G is similar to HIG

since angle FTH is a right angle. Hence IG/1 = GH/IG so
IG? = GH.
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IEGC (Intuitionistic Euclidean Constructive Geometry)

Continuity in defining arithmetic

Descartes's methods work only for arithmetic on segments
representing positive numbers. It is a bit tricky to define addition
and multiplication to work for signed numbers represented by a
point on a line with an arbitrarily chosen “zero” point.

This was the major technicality in my first paper on constructive
geometry. Curiously, the theory of right and left turns was also
crucial to solving these problems.
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Thé theory IECG

Constructions and classical logic

Intuitionistic Euclidean Geometry of Constructions IECG

The result of this approach to axiomatizing geometry is a
quantifier-free, disjunction-free system, with function symbols
IntersectCircles1, etc., and intuitionistic logic, such that

» All of Euclid is formalizable in ECG in a natural way.

» Arithmetic on signed segments can be defined in ECG using
only constructive logic

» With classical logic, ECG is equivalent to the usual theories of
geometry (with line-circle and circle-circle continuity)

Michael Beeson The Parallel Postulate in Constructive Geometry
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Constructions and classical logic

Features of IECG

» Euclid 1.2 taken as an axiom (Circle from point and radius)
» Strong parallel axiom
» Quantifier-free, disjunction-free

» Markov's principle for betweeness (amounts to
-z <0D>z>0)

Michael Beeson The Parallel Postulate in Constructive Geometry
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Constructions and classical logic

Constructive logic and Euclid’'s constructions

The main result of my first paper on constructive geometry is

What is constructively proved to exist in EGC is constructible with
straightedge and compass.

This is an easy consequence of Gentzen's cut-elimination theorem,

because of the care taken to formulate EGC in a quantifier-free,
disjunction-free axiomatization.
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A more precise statement

Theorem. Suppose IEGC proves
Va (P(x) O 3y A(z,y))

with P negative. Then there exist a term ¢(z) such that IEGC
proves
vz (P(z) O Az, [y == t(z)]))

Here 2 can stand for several variables.

Terms of IEGC correspond directly to (uniform) Euclidean
constructions; in particular they are all continuous on their
domains.
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Constructions and classical logic

Theorem. Suppose EGC with classical logic proves
Vo (P(x) O 3y A(z,y))

with P and A quantifier-free. Then there exist terms
ti(x),...,tn(x) of EGC such that EGC proves

Vo (P(x) D Az, [y :=t1(z)]) V...V A(z, [y := t,(x)])

Proof. By Herbrand's theorem.

Michael Beeson The Parallel Postulate in Constructive Geometry



Constructive Fields and Ordered Fields
Coordinatization

Connections to Field Theory Ziegler
The smallest Euclidean field

Axioms for euclidean fields

r#0D Jy(zx-y=1) EF1

P(z)ANP(y) D P(x+y)\NP(z-y) EF2

x+y=0D>(P(x)APy)) EF3

r+y=0A-Plxz)AN-Ply) Dx=0 EF4

r+y=0A-Py) D3z2(z-z==x) EF5
—=P(z) D P(x) EF6, or Markov's principle
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Constructive Fields and Ordered Fields
inatization

Connections to Field Theory Ziegler
The smallest Euclidean field

Coordinatization

» Every model of IECG is a plane over some euclidean field.

» Because of quantifier elimination (Tarski) every real-closed
field gives a model of Tarski geometry.

» Euclidean fields (every positive element has a square root)
correspond to the geometry of constructions.

Michael Beeson The Parallel Postulate in Constructive Geometry



Constructive Fields and Ordered Fields
Coordinatization

Connections to Field Theory Ziegler
The smallest Euclidean field

A problem of Tarksi

v

Is the geometry of constructions decidable?

That is, the theory of Euclidean fields (ordered fields in which
positive elements have square roots)?

v

v

Ziegler (1980) says not. Indeed any finitely axiomatizable field
theory that has R or the p-adics as a model is undecidable.

v

His proof is only 11 (difficult) pages.

v

| have translated this paper if anyone wants an English version.
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Constructive Fields and Ordered Fields
C natization

C
Connections to Field Theory Ziegler
The smallest Euclidean field

Another problem of Tarski

> Is the smallest Euclidean field Q(,/") decidable?

» Goes beyond J. Robinson's famous results for () and the
algebraic number fields, because Q(\[) is not of finite degree

over Q.
» Still an open problem.

Michael Beeson The Parallel Postulate in Constructive Geometry



Constructive ordered fields and parallel postulates
and parallels
arallel postulate implies Euclid 5 implies Playfair

Field theory and the parallel postulate

Constructive ordered fields

The axiom about reciprocals in an ordered field can be formulated
three ways.

» Nonzero elements have reciprocals
» Positive elements have reciprocals

» Elements without reciprocals are zero

These axioms correspond, respectively, to geometries satisfying the
strong parallel axiom, Euclid 5, or Playfair.
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Constructive ordered fields and parallel postulates
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Field theory and the parallel postulate

Division and parallels

1/ (o N
T

The circle has radius 1. The slanted lines are parallel. 1/z is
defined if and only if the horizontal line intersects the long slanted
line. If we know the sign of = then Euclid 5 suffices; the vertical
line is a transversal and on one side the interior angles are less than
two right angles.
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Constructive d fields and parallel postulates
Division and p: Is
Strong parallel postulate implies Euclid 5 implies Playfair

Field theory and the parallel postulate

Strong parallel postulate implies Euclid 5 implies Playfair

» If nonzero elements have reciprocals then positive elements
have reciprocals.

» Therefore the strong parallel postulate implies Euclid 5.

» If positive elements have reciprocals then elements without
reciprocals are zero. (since if 2 has no reciprocal then neither
x nor —x is positive, so x is zero).

» Therefore Euclid 5 implies Playfair.
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Independence results for geometry reduced to field theory

n-up independence result
5 does not imply the strong parallel postulate
Playfair does not imply Euclid 5
Independence results Conclusions

Independence results reduced to field theory

Therefore, the independence results we stated reduce to the
corresponding results in field theory. (The loose talk about
“models” can be replaced by formal interpretations of the
geometrical theories into the corresponding field theories, and
vice-versa.) We must show that, with the aid of the axioms of ring
theory, the implications from positive-reciprocals to non-zero
reciprocals, and from no-reciprocals implies zero to
positive-reciprocals, and not provable with intuitionistic logic.
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Independence results for g try reduced to field theory
Kripke models
A warm-up independence result

Euclid 5 does not imply the strong parallel postulate
Playfair does not imply Euclid 5
Independence results Conclusions

Kripke models

Our technique is Kripke models. In the context of ordered ring
theory, a Kripke model is given by collection of rings R, where the
index o comes from some partially ordered set (D, <). Usually D
is a tree. The rings R, have to satisfy the condition that R, is a
sub-ordered-ring of Rg if o < 3.
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Independence results for geometry reduced to field theory
Kripke models
A W

the strong parallel postulate
Playfair does not imply Euclid 5
Independence results Conclusions

Satisfaction in Kripke models

Saul Kripke gave a definition of « |= ¢, where ¢ can contain
constants for elements of R,,. It is like the usual definition in
classical logic for A, V, and 3, but

» a = A D B iff and only if whenever a < 3 and 3 |= A then
for some v with 5 <+, we have v = B.

» « = A if and only if for all 8 with @ < 3, we do not have
B A
> o |=Vz A if and only if, whenever o < 3 and = € R, we have

8k A).
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Independence results for g try reduced to field theory
Kripke models
A warm-up independence result

Euclid 5 does not imply the strong parallel postulate
Playfair does not imply Euclid 5
Independence results Conclusions

How to use Kripke models

Theorems of intuitionistic logic are true in all Kripke models.
Hence to show that A does not imply B, it will suffice to give a
Kripke model of A that does not satisfy B.

Michael Beeson The Parallel Postulate in Constructive Geometry



Independence results for geometry reduced to field theory
Kripke models
A warm-up independence result

Euclid 5 does not imply the strong parallel postulate

Playfair does not imply Euclid 5
Independence results Conclusions

Example of a Kripke model

Let's practice by showing that ordered ring theory does not prove
Vx(—P(x) V- P(—xz)). Let the partially ordered set D be a tree
with root 0, and all branches of length 1, so all the other nodes «
are “just above” 0 and they are not comparable to each other.
Let's take such a node for some infinite set €2 of irrational real
numbers «. Let's assume (2 is dense in R.

Let each of the rings R, be the ring of rational functions over the
reals, R(z). They will differ only in the interpretation of the
positivity predicate P(x). At the root node, we take f to be
positive if and only if it is positive definite, i.e. f(z) > 0 for all .
Classically, Rg is not even an ordered ring.

When « is not the root, we take P(f) to mean that f(«a) > 0.
This does turn R, into a classical ordered ring.
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Verification of the ordered ring axioms

We have to check that not both f and —f are positive at the root.
That would mean that both f and —f are positive definite, which
is absurd.

Next we check (at the root node) that if —=P(f) and =P(—f) then
[ =0. If =P(f) holds at the root node, that means that f(«) <0
for each v in Q. If =P(—f) holds at the root node, that means
that —f(«) < 0 for each a. If both hold then f(a) = 0 for each «
in . But since f is a polynomial, and €2 is infinite, f must be zero.
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Our warm-up independence result

Now we check that Vo (—P(z) V =P(—x)) is not satisfied at the
root. Let the variable x be interpreted as the polynomial . By the
definition of satisfaction for V, either the root satisfies =P (x), or it
satisfies =P(—x). Suppose it satisfies =P(x). Then for no a do
we have o > 0. But by our choice of €, this is absurd. Similarly, if
the root satisfies = P(—x), then for no o do we have —a > 0; but
again, this is absurd. QED.
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A certain ring of functions A

Let K be the field of “constructible numbers”, which is the least
subfield of R closed under taking square roots.

Let Cy be the ring of polynomial functions from R to R with
coefficients in K.

Define C, 41 to be the least ring of real-valued functions containing
C,, together with all square roots and reciprocals of positive
semidefinite members of C),. These square roots and reciprocals
are defined on R except at finitely many points, as we will soon see.
Define A to be the union of the C,,.
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Examples of functions in A

For example, the functions v/1+ 2 and 1/(1 + t?) are in C1, and

¢¢Lmhqh+#

is in Cy. The square root of that function is in (.

1+¢2

Michael Beeson The Parallel Postulate in Constructive Geometry



ce results for geometry reduced to field theory

n-up independence result
E 5 does not imply the strong parallel postulate
Playfair does not imply Euclid 5
Independence results Conclusions

A suitable set ()

By induction on n, we see that each f in A has a convergent
Pusieux series (a power series in some rational power of t — a) at
each point a, and also at co. Hence (if f is not identically zero)
the zeroes of f are isolated, and also isolated from infinity. By
compactness, then, f has finitely many zeroes and singularities.
Hence there is a countable set of reals that includes all the zeroes
and singularities of all the functions in A.

Define €2 to be the complement of that set; thus for each f in A,
if f(x) is zero for any z in 2, then f is identically zero. Note that,
since the complement of €2 is countable, €2 is dense in R.
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A fancier Kripke model

As in our practice problem, the Kripke model will be a tree, with 0
for the root, and incomparable nodes « for each « in €2, each of
which lies above the root. The ring at the root is A, with P(z) in
A interpreted as "z is positive semidefinite but not identically
zero." Then, although A is not a field, it does have reciprocals of
elements satisfying P(x).

At each node «, the ring A, is the quotient field of A, whose
elements we can take to be of the form z/y with y(a) > 0, and
interpret P(z/y) as x(a) > 0. This makes A, isomorphic to the
least euclidean subfield of R containing «. The isomorphism sends
x/y to z(a)/y(a). It is a one-to-one because if () = 0 then x is
(identically) zero, by our choice of €.
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Monotonicity of P(x)

If P(z) holds in A, then z is positive definite, so z(a) > 0, so
P(z) holds in A,. Of course, P(x) also holds in A, for many
functions x that are not positive definite, but that is all right.

The ring axioms are satisfied in this Kripke structure, since all the
A, and A are rings. Since the A, are fields, the field axioms hold
automatically there; we only need to consider whether they hold at
the root node A.
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Axiom EF2

Consider Axiom EF2, which says that sums and products of
positive elements are positive. This holds at A since the sum and
product of positive definite functions are also positive definite.
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Axiom EF3

Consider Axiom EF3,which says that not both x and —x are
positive. Suppose both x and —z are positive definite members of
A. Then for each o € 2 we have z(«) > 0 and —z(«a) > 0,
contradiction. Hence Axiom EF3 holds at A.
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Axiom EF4

Consider Axiom EF4, which says that if both  and —x are not
positive, then x is zero. Suppose both x and —x are satisfied at A
to be not positive. That means that for every node A, x and —z
are not positive at A,. That means that for every a € Q z(a) <0
and —z(a) < 0. Hence, z(a) = 0. But as shown above, that
implies x is identically zero. Hence A satisfies Axiom EF4.
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Axiom EF5

Consider Axiom EF5, which says that if —x is not positive, then x
has a square root. If z is identically zero there is nothing to prove,
so we may assume that x is not identically zero. If A satisfies that
—x is not positive, that means that —z is not positive in any Ag;
that is, —z(a) < 0 for all & € Q. Then z(a) > 0. Since this is
true for every o € €2, and since € is dense in R, and x is
continuous, it follows that x is positive semidefinite. Hence /z(0)
belongs to A, by construction of A. Hence A satisfies Axiom EF5.
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Markov's principle

Suppose that =—P(x) is satisfied at the root node A.

Then for every « in §2, P(x) is satisfied at the leaf node A,; that
means that z(«) > 0 for each « in €.

As shown in the verification of E5, this implies that x is positive
semidefinite; and it is not identically zero since x(a)) > 0. Hence
P(z) is satisfied at the root node A.
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Positive elements have reciprocals

Now consider the axiom EF0, which says positive elements have
reciprocals. Suppose z is positive at A. Then x is positive definite.
Hence 1/z belongs to C), 11, where n is such that z € C,,. Hence
1/z belongs to A. Hence A satisfies EFO.
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Not all nonzero elements have reciprocals

Consider the element of A given by the identity function, i(t) = t.
Suppose A satisfies i - y = 1, where 1 is the constant function with
value 1. Then for each real number t we have ty(t) = 1. But this

is a contradiction when t = 0. Hence A does not satisfy EF1.
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Playfair does not imply Euclid 5

We obtain this result relative to the rest of the axioms of IECG.
The field-theoretic version is that “elements without reciprocals are
zero”" does not imply “positive elements have reciprocals.”

It suffices to give a Kripke model satisfying “elements without
reciprocals are zero” but not “positive elements have reciprocals.”
To say that =3y (y - © = 1) holds at a node A of a Kripke model is
to say that no node above A contains an inverse of z. If one of
the leaf nodes above A is a (classical) field, then x must be zero in
that field, and hence in A also. Hence the axiom that elements
without reciprocals are zero will hold in any Kripke model, all of
whose leaf nodes are fields. What we need, then, is a Kripke model
in which all the leaf nodes are ordered fields, and the root node has
a positive element without a reciprocal.
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A Kripke model satisfying Playfair but not Euclid 5

We construct a model similar to the one in the preceding proof,
except that when constructing A, we throw in only square roots,
not reciprocals. More precisely, Let Cy be the ring of polynomial
functions from R to R with coefficients in K. For each
nonnegative integer n, we define the ring C), 11 to be the least ring
of real-valued functions containing C,, together with all square
roots of positive semidefinite members of C,,. Then the union A of
the C,, contains square roots of its positive semidefinite members,
but is not guaranteed by definition to contain their reciprocals.
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EF2 through EFb5

As in the previous proof, all the members of A have Pusieux series,
so there is a countable set including all their zeroes; let €2 be the
complement of this countable set, and define a Kripke model as
before, with index set {0,Q2} and Ry = A and for 0 € Q, R, = C,.
The verifications of EF2 through EF5 are as in the previous proof.
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Playfair holds in this model

Let = be an element of A such that Vy(zy # 1) holds at the root
node A. Then for all o in © and all y in A, we have zy # 1 in
Ay, i.e. 1/x does not belong to A,. But since A, as a field, is
the quotient field of A, this implies that x is identically zero.
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Euclid 5 fails in this model

If Euclid 5 were satisfied at the root node, then every positive
definite element of A would have its reciprocal in A. To refute this,
we must exhibit a positive definite element of A whose reciprocal is
not in A. For example, let f(z) = 22 + 1. We do not even need to
use square roots; the reciprocal function 1/(22 + 1) will never be
generated, starting from polynomials and closing under square root
and polynomial operations. Of course that claim requires a proof.
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Proof of the claim (sketch)

Every function in A extends by analytic continuation to be a
multi-valued function defined in the whole complex plane. This
works, by induction following the construction of A, because we
only threw in square roots, not reciprocals.

To finish the proof, we show that 1/(x? 4 1) is not in A. The
reason is simple: it has a unique analytic continuation into the
complex plane, and that continuation has singularities at x = 4.
Hence it cannot be continued to be a multi-valued function defined
on C. Hence it is not in A. That completes the proof.

Michael Beeson The Parallel Postulate in Constructive Geometry



ce results for geometry reduced to field theory

n-up independence result

Euclid 5 does not imply the strong parallel postulate
Playfair does not imply Euclid 5
Independence results Conclusions

Independence of Markov's principle

We can define A to be the least ring of functions containing the
polynomials and closed under square roots of positive semidefinite
functions and reciprocals of nonzero functions. Interpret P(x) at
the root to mean "z is positive definite” instead of “x is positive
semidefinite and not identically zero.”

Now consider x(t) = ¢2. Since 0 is not in €2, P(x) holds at each
leaf node, since z(a) > 0. Hence =—P(z) holds at the root node.
But P(z) does not hold at the root, since x is not positive
definite. The other field axioms do hold, as in the previous models.
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Conclusions

» IECG is a constructive theory close in spirit and power to
Euclid

» Constructive geometry differs from Euclid (only) in taking 1.2
as an axiom and in strengthening the parallel postulate.

» Constructive logic is closely related to ruler-and-compass
constructions.

» One can prove independence results for three versions of the
parallel postulates

» These results nicely confirm Max Dehn'’s distinction between
postulates and axioms
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