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The problem

The theory of ruler and compass geometry is mutually
interpretable with the theory of Euclidean fields. That theory is
undecidable, by Ziegler, since it is a finite extension of field theory.
On the other hand, it is a subtheory of the theory of real closed
fields, which is decidable by Tarski. We are interested in the
minimal model of the theory of Euclidean fields, which we call the
Tarski field T. This is the least subfield of the real numbers that is
closed under square roots of positive elements. The question at
hand is whether the theory of this field is undecidable.

| will present some history and a plan for a proof. It is not claimed
that this proof is correct; the point of this presentation is to see if
it is correct or can be made correct.



Early history

» Tarski 1951 (but done much earlier) proved the decidability of
the theory of real closed fields, and of each specific real closed
field.

» J. Robinson 1949 proved the undecidability of Q@ (and hence,
the undecidability of the theory of fields).

» J. Robinson 1959 proved the undecidability of each specific
algebraic number field and its ring of integers.



Robinson’s later work

» J. Robinson 1962 proved the undecidability of the ring of
totally real algebraic integers, leaving open the ring of all
algebraic integers.

» J. Robinson 1965 surveys results obtained by 1965. She
mentions (p. 305) as open problems, the field of all totally
real algebraic numbers and the Tarski field T. She also
mentions (p. 311) the field of rational functions over a finite
field (which was later shown undecidable by Rumely).



More history

» Cohen 1969 proved the decidability of the p-adic fields Q,,.

» Ziegler 1982 proved the undecidability of any finitely
axiomatizable theory of fields. Note: this is not relevant to
the decidability of T.

» Rumely 1980 proved the undecidability of the theory of global
fields (a global field is a finite extension either of Q or of the
field of rational functions over a finite field).



Introduction to Robinson 1949

Robinson's 1949 proof used quadratic forms and the
Hasse-Minkowski theorem. Like all other undecidability results in
field theory or ring theory, it proceeds by constructing a first-order
definition of the integers Z. We note that one can use the theorem
that every positive integer is the sum of four squares to define the
natural numbers N once Z is defined, so in general it doesn't
matter if we define Z or N. (In T it is even easier, we can just say
that n is a square.)



Robinson 1949

The positive integers will be defined in Q by an instance of
mathematical induction,

#(0,a,b) An>0AVn(p(n,a,b) — ¢(n+1,a,b)) — ¢(k,a,b).

Note that the formula ¢ contains parameters a and b.



Robinson’s instance of induction

¢(n) == Jw (B, qp(w) =0)

where w is a list of variables, e.g. w = (z,y, 2), and Ej, 4p(w) is a
polynomial in the indicated variables (including those written as
subscripts here) with integer coefficients. In Robinson’s proof, w is
(x,y,z) and E is taken to be quadratic:

E"v(hb(za Y, Z) = bz? + abn? +92- 22— ayg‘

In any generalization to T, E would need to be cubic (or possibly
of higher degree, with cyclic Galois group), since quadratic
equations are all solvable in T if they are solvable in the reals.



Sketch of Robinson's 1949 proof

Let K be a field that we want to prove undecidable, for example Q
or T. To apply Robinson’s method, we need to prove that a
member k of K satisfies ¢(k) if and only if k is a positive integer.
Every integer k will automatically satisfy ¢(k), since ¢ is an
instance of mathematical induction. It is the other direction that is
difficult: we must prove that if ¢(k) is satisfied, then k is a
positive integer. Since ¢(k) includes k > 0, it suffices to prove k is
an integer.



The key: Hasse-Minkowski

Robinson shows, using Hasse-Minkowski, that the solvability of

E, qp(x) = 0 depends only on what primes divide the denominator
of n. Hence the implication ¢(n,a,b) = ¢(n + 1, a,b) will always
hold. We wish to show that if her instance of induction holds, then
no prime p can divide the denominator of k. To that end suppose
p divides the denominator of k. Then Robinson shows how to
select a and b such that ¢(0, a,b) holds and for k # 0,

Ejap(x) = 0 is solvable if and only if the denominator of k is not
divisible by p. (Namely, she takes b = p and a to be an odd prime
q such that ¢ is not square mod p.)



Can we generalize Robinson 1949 to T7?

Let's consider the following plan: replace Q by T, and replace
quadratic forms by cubic norm forms, so that Hasse principle will
still hold. By elementary field theory, cubic equations with
coefficients in a subfield K of T of finite degree over QQ are solvable
in T if and only if they are solvable in K, so the number theory of
solvability of cubic equations in T reduces to the number theory of
their solvability in such fields K. To get ¢(n,a,b) = ¢(n+ 1,a,b)
we only need the Hasse principle (which works for cubic norm
forms!)



Can we generalize Robinson 1949 to T7?

So, the main task would be to show that cubic norm forms enable
us to construct a polynomial Ej, 4 () such that, for each rational
k and prime p dividing k, there exists a and b such that

Eyqp(z) = 0 is solvable and for k # 0, Ej q4(z) = 0 is solvable if
and only if p does not divide the denominator of k. Following
Robinson’s lead, we could try to take b = p and show that for each
p, there is a prime ¢ such that E,, ;,,(x) = 0 is solvable if and only
if p does not divide the denominator of n.



Robinson 1949 and norm forms

Consider Robinson's equation £, ,; given above. Note that
22 + ay? is the norm form of the quadratic field Q(y/—a). The
equation can thus be written as

bN(z +nv—a) = N(z — yv/—a).
The norm form from K(a'/?) to K is given explicitly by
fla,z,y,2) = 23 + ay® + a®2% — 3azyz.
By analogy to Robinson 1949, we could consider the equation
bf(a,u,v,n) = f(a,z,y, z).

Whether this can be made to work | do not know.



Robinson 1959

Lemma (Robinson’s finiteness lemma)

Let K be an algebraic number field, of degree d over Q, and let f
be a nonzero element of K. Then there are only finitely many
algebraic integers a of K such that f is divisible by a + j for all
i=1,2,...,d.

The proof is only one paragraph long and doesn’t use any difficult
number theory, but nevertheless the lemma is crucial. The
importance of the lemma is that it can be used to define N, either
within the ring of integers of K, or within K if O can be defined.



Defining N from O, Robinson 1959

Define
T(a, f,9,h) =& f#£O0Na+1|fA...Na+d|f N1+ ag|f.
Then

neN— Hf,g,h{T(O,f,g,h)/\
Valr(a, f,9,h) = a=nV71(a+1,f g h)}

Now the right-to-left implication follows from the lemma, since the
right side will require (4, f,g,h) for j =0,1,2,..., and if n is not
an integer, there is nothing to stop this list, and the lemma will be
violated.



T(a,f,g,h) = f#O0Na+1fA...Na+d|f N1+ agl|f.

neN— EIf,g,h{T(O,f,g,h) A
Va[r(a, f,9,h) = a=nVT1(a+ 1,f,g,h)]}.

For the left-to-right implication, we choose f = (n + 1)!, and
define S by
aeS—a+llf N...Na+d|f.

By the lemma, S is finite. Let g be a positive integer divisible by
all the differences a — b for a and b distinct elements of S, and also
such that for a a nonzero member of S, 1 + ag does not divide 1.
The latter is possible if g is so large that all the conjugates of

1 + ag lie outside the unit circle (Since N(1 + ag) > 1, then

1+ ag is not a unit.) Then put

h=(14g)(1+2g)...(1+ng).

The verification of the right-hand side is then straightforward.
Note that f, g, and h are rational integers, so they are certainly
integers of K.



Importance of Robinson 1959

In this way, Robinson reduced the problem of proving the
undecidability of K to showing how to define the ring of integers O
of K. Breaking the problem into two steps this way is an
important reduction.

Robinson went on to show that O is definable in any algebraic
number field K, and hence N is too. She used some non-trivial
number theory about the Hilbert symbol and the existence of
infinitely many prime ideals in ideal classes.



Robinson 1959 uses only quadratic forms

This is possible because in any fixed K of finite degree over Q,
there will be plenty of quadratic extensions of K. But in the Tarski
field T, this is not the case, so we can't use the construction of
Robinson 1965 directly. Even her first lemma does not help us,
since the formula in the lemma depends on the degree of K over
Q. Conclusion: even though Robinson’s 1959 proof is substantially
different from her 1949 proof, and works for algebraic number
fields (which the 1949 proof did not), it still won't help us with T.
But the idea of first defining O and then N will.



The Hasse Norm Principle

The Hasse Norm Principle says that norm forms satisfy the
local-global principle, provide the norm is of a cyclic field
extension. Since quadratic fields of course are cyclic, that
“explains” the Hasse-Minkowski theorem; and since every
three-element group is cyclic, it also implies that cubic norm forms
satisfy the local-global principle.

Theorem (Hasse Norm Principle)

Let K be a cubic extension of Q. Then the rational number « is a
norm of some element of K if and only if a, considered as an
element of Q,, is a norm of an element of K, for every place ‘B
of K above p.

Proof. See Cohen, Number Theory, vol I, Theorem 5.5.1, p. 318.



Cubic norm forms, continued

There is also a sufficient condition for a to be the norm N (3) of
some element G of K:

Theorem

Let K be a cubic extension of Q. Then the rational number « is a
norm of some element of K if for some ideal I of K we have
Proof. See Cohen vol. |, Theorem 5.5.1, p. 318.

Remark. There is therefore some hope of using cubic norm forms
to prove the undecidability of T.



Rumely 1980

Cubic norm forms can be explicitly computed: The norm of
x +yb'/3 + 2b%/3 in Q(b'/3) is given by

N(b,x,y,2) = 2> + by + b223 — 3bayz.
Following Rumely we let a = (v, a1, a2) etc., and
R(t;c,d) < Jafyw (w = N(d,a) New = N(ed, B) ANt = N(w,7))

Rumely thinks that we can’t use just one cubic norm, but we need
to use two nested norms in this fashion. | did not understand why.



Defining the elements with order divisible by 3

Lemma (Rumely)

Let ¢ be a positive integer and p a prime number. Let K be an
algebraic number field (for our purposes, K has the form F(e™/3)
where F is a subfield of T). Let . = K(b'/3) and let N be the
norm from L to K. Let p be a prime of K and let 3 be a prime of
IL above p. If d is a unit of K that is not a cube, and the order of ¢
at P is 1 then

(i) for some ¢,d, R(t;c,d) is satisfied in K only by t in K whose
order at ‘P is congruent to 0 mod 3, and

(ii) If t has order at 3 congruent to 0 mod 3, and in addition has
order zero at L for a certain prime Q depending on 3, then

R(t; c,d) is satisfied in K.

Proof. See Rumely, p. 199-202 (specializing to ¢ = 3).



Defining O,

Using R it is easy to define the valuation ring O, (a subset of K);
(see p. 198 of Rumely) by a first-order formula over K, with
variable p and independent of K:

Op(x) < (1 + gaz® =t A R(t, ¢, d)

where (¢, d) are as in (i) above. Here we only have the quadratic
1 + g2 on the right. But, on p. 203, Rumely defines

Sz (w5 c1,dy, ca,da) > 31, ta (1 + c12® = tits

AR(t1;c1,d1) N R(t; c2,dz)

and shows that for some (c1,d1, c2,d2), we have

Op(r) < S3(x;5c1,d1, 2, d2).



Defining O

Rumely then constructs a formula Vals(z; ¢, d) such that for any
choice of parameters (c,d), either Vals(x; ¢, d) defines a valuation
ring (in x) or it defines the whole of K.

Namely,

Vals(z;e) < [Vy,2((S(y) AS(2)) — (S(—=y) AS(y + 2) A S(yz)))
Vy(y # 0 — (S(y) v S(1/y)))] — S(x).

Finally Rumely arrives (p. 205) at this: The ring of integers Ok is
arithmetically definable by a predicate independent of K. Namely,

Int(t) < VeVala(t; ) ANVeVals(t; ¢) AVeVals(t;c).

(The second Vals has vector arguments, it is not a typo but we
haven't use a different typeface for vectors here.)



Rumely defines N from O

Given a definition Int of the integers of K, Rumely (following
Robinson 1962) defines

Setn(t;g) < g2 #O0ANInt((t —g1)g2) A
93 # 0N (t = g1)g2((t — g1)g2 + 1)|ngs]
(L4 (t = 91)9294)|N 95

neN— EIg{SetN(O,g)/\Vt[SetN(t,g) = (t= n\/SetN(t+1,g))]}.

The crucial property of Sety(t; g) is that for a given choice of g
only finitely many t can satisfy Sety(t,g) in a fixed algebraic
number field. The number of ¢ that can satisfy it increases with
degree of the field, but the formula itself is fixed—it does not
depend on the field.



Siegel 1921

The crucial property of Setx(t;g) relies on a theorem of Siegel,
that for a given polynomial f, there are only a finite number of
values of the norm of f(z) in a given sphere. Robinson used this
result both in her 1959 and her 1962 papers.



Working with T and T(e"/3)

Fix a subfield IF of T, such that [F has finite degree over Q. Let

K = F(¢'™/3). Then K has degree 3 over I, and K is a subfield of
T(e'™/3. There is a formula that defines the algebraic integers of K
over K, independently of the fields F and K, i.e. the same formula
works for all of them. We claim that the same formula also defines
the algebraic integers of T(e¢?™/3) over T.



R is absolute for degree-power-of-2 extensions

To say that a predicate is absolute upwards means that if it's true
in K (with parameters in K) then it's true in extensions of K.
Vice-versa is absolute downwards.

R just says that certain cubic polynomial equations are solvable;
the point is that no more cubic polynomial equations are solvable
in T than in any of its finite-degree subfields that contain Q(e!™/3),
all of which have degree a power of 2 over Q(¢/3). Hence R is
absolute with respect to extensions of power-of-2 degree.



Absoluteness of S;

Now consider the formula

Ss(zicr,di,co,da) — 3t ta (1+ a1z’ = tits
AR(t1;c1,dr) A R(to; ca,da)

We want to show this holds in T if and only if it holds in a
finite-degree subfield K. Since R is absolute with respect to
extensions of degree a power of 2, what we must show is that if ;
and t9 exist in T, then they exist in any finite-degree subfield K of
T that contains ¢, co,dy, and dy. Suppose that t; and ty exist in
T. Looking at the definition of R, we see that the issue is to prove
that if N(d, ) is in K for some a = (ag, a1, az) in T3 then « is
already in K3. But that is so, since the equation 3 = N(a) is
cubic, so it is either solvable already in K, or not solvable in T.
Hence S is also absolute with respect to power-of-2-degree
extensions.



Int is absolute downwards

Int is defined (p. 205 Rumely) by
Int(t) & VeVala(t; ) ANVcVals(t, c) AVeVals(t, )

(The second Val3 has vector arguments.)

Suppose Int(t) holds in T(e"™/3). Let K be an algebraic number
field contained in T(e"™/3) with ¢ in K. We need to check that the
right side holds in K. For that we need Valz and Vals to be
absolute downwards. These predicates say that = belongs to Sy (or
S3) if Sg is a valuation ring or is everything, and as c¢ varies,
Sa(x, ¢) varies over all valuation rings. So the only essential use of
the Ve quantifiers in Int is to ensure that the particular choices of ¢
needed to pick out O, are included; Those choices are ci, ¢, c3, ¢4
where these ¢'s are constructed (Rumely p. 200) from Artin’s
Reciprocity Law. So they do lie in K, since K satisfies Artin's
reciprocity law. Therefore the right side holds in K as claimed.



Int defines the algebraic integers of T(e™/3)

Proof. Suppose Int(t) holds in T(e™/3). The crucial point is that
Int is absolute downwards. Therefore, t is an algebraic integer of
K. Therefore it's an algebraic integer of T(e'"/3).

Conversely, suppose t is an algebraic integer of T(e'™/3). Then it is
an algebraic integer of some K, so the formula on the right holds
over K. Given c in T(e"™/3), either Vals(t; c) defines a valuation
ring, or is satisfied by every x in every K containing c; since Vals
is absolute for power-of-2-degree extensions, the right side holds in
T(e™/3). Conversely, if the right side holds over T(e™/3) for some
t, then it holds over any K containing ¢, so ¢ is an algebraic integer
of that K, so t is an algebraic integer of T(e"™/3). That completes
the proof of the lemma.



Int is absolute

Lemma
Int is absolute for degree-power-of-2 extensions.

Proof. We already proved that it is absolute downwards, using the
fact that K satisfies Artin's Reciprocity Law. Now we prove it is
absolute upwards. Recall the definition:

Int(t) < VeVala(t; e) AVeVals(t, ¢) AVeVals(t, c)

Suppose Int(t) holds in K7 and K5 has degree a power of 2 over
K. Let ¢ be in Kg. Then either Valz(z,c) holds for all  (in
which case it holds for x = t), or the set of x in K3 for which it
holds is a valuation ring. But over any field, including Ks, there
are “good” values of ¢ that define any given valuation ring. Hence
t belongs to all valuation rings of Ky. Hence Int(t) holds in Ko.
That completes the proof of the lemma.



N is definable in T(e'™/3) from O, the integers of T(e™/?)

Proof. The definition of Sety involves the formula Int(x) that has
been constructed above to define the algebraic integers in a fixed
algebraic number field. Now we claim that this definition works in
T too.

Recall the definition:

Setn(t;g) < go# 0N Int((t— g1)g2) A
93 # 0N (t—g1)g2((t — g1)g2 + 1)|ng3]
(1+(t—91)9294)|N95

Left to right: suppose n is a natural number. Let g be chosen so
that exactly {1,...,n} satisfies Setxn (¢, g) over some finite-degree
K. Then the right-hand side is satisfied in T(e?"/3), since Int is
absolute upwards for power-of-2-degree extensions.



Setn(t;g) < g2 # 0N Int((t —g1)g2) A
93 # 0N (t = g1)g2((t — 91)g2 + 1)| N3]
(14 (t — 91)9294)INg5

Right to left: Suppose n is not a natural number and the right side
holds in T(e'™/3). Then let g be given by the right hand side.
Then for every natural number k (regarded as a member of
T(e™/3)) T satisfies Sety(k, g), since k = n never holds. But the
natural numbers all belong to Q(n), so there does come a natural
number k such that Sety(k, g) fails in Q(n). But Sety is
absolute downwards, since Int is absolute downwards, so if it holds
in T(e™/3), then it holds in Q(n). Contradiction.



Theorem: N is definable in T

Proof. T(e'™/3) is faithfully interpretable in T as triples of
elements of T; that is, there are formulas with three variables
defining addition and multiplication of triples (a, b, ¢), reflecting
the arithmetic on a + b( + (2, where ¢ = ¢/™/3,
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