
Implicit Typing in Implicit Typing in
Lambda LogicLambda Logic

Copyright, 2005 Michael Beeson

ESHOL Workshop
LPAR-12
Jamaica, 2005

Lambda Logic

Combines lambda calculus and first-order
logic (FOL). Has syntax of both.
Ap(f,x) and lambda(x,t)
Ap(lambda(x,t),q) = q[x:=t].
An untyped system, unlike type theory, but
like lambda calculus and FOL.
Not first order because lambda terms can
define functions and predicates.

Lambda Unification

If substitution S makes tS and qS provably
equivalent in lambda logic then S is called a
lambda unifier of t and q.
Lambda unification is a new algorithm that
finds lambda unifiers.
Not the same as ``higher-order unification’’.
Not the same as first-order unification.

To unify Ap(X,w) with t
Pick a “masking subterm” q of t. It must
contain all occurrences of X in t. If there
are none, it can be any subterm of t.
Unify q with w, producing substitution A.
If qA occurs more than once in tA, pick a
subset S of these occurrences. If x occurs
in q then S must be all occurrences.
Let z be a fresh variable. Substitute z in tA
for each occurrence of qA in the set S.
Call the result r.
Return the substitution A, X:=lambda(z,r).

Otter-lambda
Theorem prover based on Otter 3.2
Partially implements lambda unification
Lambda unification used in resolution,
paramodulation, demodulation, and
factoring.
Some advantages of higher order systems
All the advantages of a modern first-order
prover.

Lambda Unification

Clauses like Robinson unification
Clauses for alpha-equivalence
Heart of the matter: to unify

Ap(X,w) with t
getting a lambda-term for the value of the
variable X. Here w and t are terms.

The no-nilpotents example

Integral domain: ring in which xy=0
implies x = 0 or y =0.
No nilpotents: xn = 0 implies x = 0.
n is a natural number, x is in the ring.
Do we need unary predicates N(x) and
R(x) to formalize this problem?
No!

Induction in clausal form
-Ap(X,0) | Ap(X,g(X)) | Ap(X,w).
-Ap(X,0) | -Ap(X,s(g(X)) | Ap(X,w).

To prove P(z) by induction on z, we unify
Ap(X,w) with P(z), getting
X := lambda(z, P(z)).
We then prove the base case P(0) and
resolution leaves us with the induction
hypothesis Ap(X,g(X)) and the negated
induction step –Ap(X,s(g(X)).

Induction and Resolution

Otter can already solve the no-nilpotents
problem if we give it the right instance of
induction.
Otter-lambda can find the right instance of
induction using lambda unification, being
given only the Peano axioms.

Implicit Typing

Do not type variables
Predicates and function symbols get their
parameter types and value types specified.
type(R,pow(R,N)) says that pow takes a
ring argument and a natural number
argument and returns a ring argument.
type(o,N); type(0,R); type(1,R);
type(R,*(R,R)); type(R,+(R,R));
type(N,s(N)).

Theorem

If the axioms are correctly typeable then
the conclusions are correctly typeable.
Applies to resolution, factoring,
paramodulation (not from or into
variables), and demodulation.
For FOL, perhaps due to Wick and
McCune, or to folklore.
We want a version of this theorem that
applies to some version of lambda logic
and some version of Otter-lambda.

Fixed points

Unify Ap(x,w) with f(Ap(x,w))
Masking subterm q is just x. Unifying q
with w we get w:=x as the substitution A.
There are two occurrences of qA in the
right hand side; we get

X := lambda(z,f(Ap(z,z)))
This is Church’s fixed-point construction,
an automatic consequence of lambda
unification.

Untyped deduction in lambda logic:

The fixed point deduction cannot be
correctly typed, unless we have a type T
such that T = i(T,T).
In particular not if types are given by
constant terms, such as in finite type
theory.

Fixed points in Otter-lambda

To get Otter-lambda to deduce the
existence of fixed points, we must enter a
negated goal that is not correctly typeable.
Thus an implicit typing theorem is not
ruled out by the fact that lambda logic can
make untypeable inferences.

Another example
Write down the axioms of group theory in
lambda logic using i(x) for inverse and *
for the group operation.
Fix c, and let H(f,x) = c* Ap(f,x).
Choose a fixed point f , so Ap(f,x) = H(f,x).
Then Ap(f,x) = c* Ap(f,x).
Hence c is the group identity. Since c was
arbitrary, any two objects are equal.
That is a contradiction in lambda logic,
which postulates the existence of two
distinct objects.

What does this mean?

Semantically: there is no way to turn a
lambda model into a group.
The axioms are well typed.
We can’t get a contradiction unless we add
an untypeable formula in the input file.
In view of our implicit typing theorem, it’s
OK to go ahead and reason about groups
and subgroups without explicit typing.

Hypothesis of the
implicit typing theorem

Every formula in the input file is typeable
according to some coherent list of type
specifications. That means, each f or P
gets a unique type specification (for each
fixed arity), except Ap is allowed one with
value type Prop and one with another
value type, and there are some conditions
on the types of Ap and lambda:

Although Ap can have two type
specifications, they must have the form

type(V, Ap(i(U,V),U)
where the “ground type” U is the same.

type(i(X,Y),lambda(X,Y)) is in the list if
and only if
type(Y,Ap(i(X,Y),X)) is in the list

A consequence of coherent typing

If a clause is correctly typed by a coherent
list of type specifications then each
variable in the clause gets a unique type (at
all occurrences).

Type-safe lambda unification

A particular lambda unification is called
type-safe, with respect to a particular
typing, if when unifying Ap(X,w) with t,
the masking term q always has the same
type as w.
Type-safe lambda unification preserves
correct typing.

Implicit Typing in Lambda Logic

If the axioms are correctly typed by a
coherent list of type specifications, and
If only type-safe lambda unification is
performed, then
resolution, factoring, demodulation, and
paramodulation (but not from or into
variables) lead to correctly typed
conclusions.

Implementing type-safe
lambda unification

We must restrict the choice of the masking
subterm q. If the (unique) type of the
second arguments of Ap is called the
“ground type”, then we must ensure that
the masking subterm has ground type.

Choosing a masking subterm
Choose either

A term that occurs as a second argument of
Ap (as a subterm of t) or
A constant, and require all constants to be
of the same type in the given implicit
typing.
This last is not a serious restriction as we
can always replace other constants by
terms h(c) using a fresh function symbol h.

Explicit typing
Of course, it is a simple matter to allow an
input flag set(types) and a part of the input
file that contains

list(types)
type(N,s(N)).
type(R, *(R,R)).

end_of_list.
Then the type of any candidate masking term

can just be looked up. But we have not
found it necessary to do this. Many
interesting examples have been proved
with the scheme on the previous slide.

Implicit Typing in Otter-lambda
When Otter-lambda uses only type-safe
lambda unification, and the input file is
correctly typed using some coherent list of
type specifications, then
Any proof produced is guaranteed a priori
to also be correctly typeable.
Thus we need not build a type-checker to
check proofs ex post facto, or rely on hand
verification that proofs are correctly typed.

	Implicit Typing in Lambda Logic
	Lambda Logic
	Lambda Unification
	To unify Ap(X,w) with t
	Otter-lambda
	Lambda Unification
	The no-nilpotents example
	Induction in clausal form
	Induction and Resolution
	Implicit Typing
	Theorem
	Fixed points
	Untyped deduction in lambda logic:
	Fixed points in Otter-lambda
	Another example
	What does this mean?
	Hypothesis of the �implicit typing theorem
	
	A consequence of coherent typing
	Type-safe lambda unification
	Implicit Typing in Lambda Logic
	Implementing type-safe �lambda unification
	Choosing a masking subterm
	Explicit typing
	Implicit Typing in Otter-lambda

