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Lambda Logic

Combines lambda calculus and first-order 
logic (FOL).  Has syntax of both.
Ap(f,x)  and lambda(x,t)
Ap(lambda(x,t),q) = q[x:=t].  
An untyped system, unlike type theory, but 
like lambda calculus and FOL.
Not first order because lambda terms can 
define functions and predicates.



Lambda Unification

If  substitution S makes tS and qS provably 
equivalent in lambda logic then S is called a 
lambda unifier of t and q.
Lambda unification is a new algorithm that 
finds lambda unifiers.
Not the same as ``higher-order unification’’.
Not the same as first-order unification.



To unify Ap(X,w) with t
Pick a “masking subterm” q of t.  It must 
contain all occurrences of X in t.  If there 
are none, it can be any subterm of t.
Unify q with w, producing substitution A.
If qA occurs more than once in tA,  pick a 
subset S of these occurrences.  If x occurs 
in q then S must be all occurrences.   
Let z be a fresh variable.  Substitute z in tA
for each occurrence of qA in the set S.  
Call the result r.
Return the substitution A, X:=lambda(z,r).



Otter-lambda
Theorem prover based on Otter 3.2
Partially implements lambda unification
Lambda unification used in resolution, 
paramodulation, demodulation, and 
factoring.
Some advantages of higher order systems
All the advantages of a modern first-order 
prover.



Lambda Unification

Clauses like Robinson unification
Clauses for alpha-equivalence
Heart of the matter:  to unify

Ap(X,w) with   t
getting a lambda-term for the value of the 
variable X.   Here w and t are terms.



The no-nilpotents example 

Integral domain:  ring in which xy=0 
implies x = 0 or y =0.
No nilpotents:  xn = 0 implies x = 0.
n  is a natural number, x is in the ring.
Do we need unary predicates N(x) and 
R(x) to formalize this problem?
No!



Induction in clausal form
-Ap(X,0) | Ap(X,g(X)) | Ap(X,w).
-Ap(X,0) | -Ap(X,s(g(X)) | Ap(X,w).

To prove  P(z) by induction on z, we unify 
Ap(X,w)  with P(z), getting 
X :=  lambda(z, P(z)).   
We then prove the base case P(0) and 
resolution leaves us with the induction 
hypothesis Ap(X,g(X)) and the negated 
induction step –Ap(X,s(g(X)).



Induction and Resolution

Otter can already solve the no-nilpotents
problem if we give it the right instance of 
induction.
Otter-lambda can find the right instance of 
induction using lambda unification, being 
given only the Peano axioms.



Implicit Typing

Do not type variables
Predicates and function symbols get their 
parameter types and value types specified.
type(R,pow(R,N))  says  that pow takes a 
ring argument and a natural number 
argument and returns a ring argument.
type(o,N);  type(0,R); type(1,R); 
type(R,*(R,R)); type(R,+(R,R)); 
type(N,s(N)).



Theorem

If the axioms are correctly typeable then 
the conclusions are correctly typeable.
Applies to resolution, factoring, 
paramodulation (not from or into 
variables), and demodulation.
For FOL,  perhaps due to Wick and 
McCune, or to folklore.
We want a version of this theorem that 
applies to some version of lambda logic 
and some version of Otter-lambda.



Fixed points

Unify Ap(x,w) with f(Ap(x,w))
Masking subterm q is just x.  Unifying q
with w we get w:=x as the substitution A. 
There are two occurrences of qA in the 
right hand side; we get 

X := lambda(z,f(Ap(z,z)))
This is Church’s fixed-point construction, 
an automatic consequence of lambda 
unification.



Untyped deduction in lambda logic:

The fixed point deduction cannot be 
correctly typed,  unless we have a type T
such that T = i(T,T).
In particular not if types are given by 
constant terms, such as in finite type 
theory.



Fixed points in Otter-lambda

To get Otter-lambda to deduce the 
existence of fixed points, we must enter a 
negated goal that is not correctly typeable.
Thus an implicit typing theorem  is not 
ruled out by the fact that lambda logic can 
make untypeable inferences.



Another example
Write down the axioms of group theory in 
lambda logic using i(x) for inverse and * 
for the group operation.
Fix c, and let H(f,x) = c* Ap(f,x).  
Choose a fixed point f , so Ap(f,x) = H(f,x).
Then Ap(f,x) = c* Ap(f,x).  
Hence c is the group identity. Since c was 
arbitrary, any two objects are equal.
That is a contradiction in lambda logic, 
which postulates the existence of two 
distinct objects.



What does this mean?

Semantically:   there is no way to turn a 
lambda model into a group.
The axioms are well typed.
We can’t get a contradiction unless we add 
an  untypeable formula in the input file.
In view of our implicit typing theorem, it’s 
OK to go ahead and reason about groups 
and subgroups without explicit typing.



Hypothesis of the 
implicit typing theorem

Every formula in the input file is typeable
according to some coherent list of type 
specifications.  That means,  each f or P
gets a unique type specification (for each 
fixed arity),  except Ap is allowed one with 
value type Prop and one with another 
value type, and there are some conditions 
on the types of Ap and lambda:



Although Ap can have two type 
specifications, they must have the form

type(V, Ap(i(U,V),U)
where the “ground type” U is the same.

type(i(X,Y),lambda(X,Y)) is in the list if 
and only if
type(Y,Ap(i(X,Y),X)) is in the list



A consequence of coherent typing

If a clause is correctly typed by a coherent 
list of type specifications then each 
variable in the clause gets a unique type (at 
all occurrences).  



Type-safe lambda unification

A particular lambda unification is called 
type-safe, with respect to a particular 
typing,  if when unifying Ap(X,w) with t,  
the masking term q always has the same 
type as w.
Type-safe lambda unification preserves 
correct typing.



Implicit Typing in Lambda Logic

If the axioms are correctly typed by a 
coherent list of type specifications, and 
If only type-safe lambda unification is 
performed,  then
resolution, factoring, demodulation, and 
paramodulation (but not from or into 
variables)  lead to correctly typed 
conclusions.



Implementing type-safe 
lambda unification

We must restrict the choice of the masking 
subterm q.  If the (unique) type of the 
second arguments of Ap is called the 
“ground type”, then we must ensure that 
the masking subterm has ground type.



Choosing a masking subterm
Choose either

A term that occurs as a second argument of 
Ap (as a subterm of t)  or
A constant,  and require all constants to be 
of the same type in the given implicit 
typing. 
This last is not a serious restriction as we 
can always replace other constants by 
terms h(c) using a fresh function symbol h.



Explicit typing
Of course, it is a simple matter to allow an 
input flag set(types) and a part of the input 
file that contains

list(types)
type(N,s(N)).
type(R, *(R,R)).

end_of_list.
Then the type of any candidate masking term 

can just be looked up.  But we have not 
found it necessary to do this.   Many 
interesting examples have been proved 
with the scheme on the previous slide. 



Implicit Typing in Otter-lambda
When Otter-lambda uses only type-safe 
lambda unification,  and the input file is 
correctly typed using some coherent list of 
type specifications, then
Any proof produced is guaranteed a priori
to also be correctly typeable.
Thus we need not build a type-checker to 
check proofs ex post facto, or rely on hand 
verification that proofs are correctly typed.
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