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John Henry:
I’ll die ‘fore I’ll let that steam 

drill beat me down!



Kasparov vs. Deep Blue 
(1997): 

In a dazzling hour-long game , the Deep Blue 
IBM computer demolished an obviously 
overwhelmed Garry Kasparov and won the 
six-game man-vs.-machine chess match. 



• Computer Math Proof Shows Reasoning Power
• By GINA KOLATA

• December 10, 1996

Computers are whizzes when it comes to the 
grunt work of mathematics. But for creative and 
elegant solutions to hard mathematical 
problems, nothing has been able to beat the 
human mind. That is, perhaps, until now. 



A computer program written by researchers at 
Argonne National Laboratory in Illinois has 
come up with a major mathematical proof that 
would have been called creative if a human had 
thought of it. In doing so, the computer has, for 
the first time, got a toehold into pure 
mathematics, a field described by its practitioners 
as more of an art form than a science.



Dr. William McCune at Argonne Labs, Illinois, in 
his office. The “Robbins Conjecture” proof is on 
the screen.

Photo credit: Lloyd DeGrane / The New York Times 



The Robbins Conjecture
Prove that algebras satisfying these axioms 
are Boolean:

x + y = y + x.                      
(x + y) + z = x + (y + z). 
n(n(x + y) + n(x +n(y)))=x.

It’s enough to prove
n(n(x) + y) + n(n(x) + n(y)) = x.

[Huntington equation] 
Eight days, 30 megabytes



Pre-Computer History

Leibniz
Boole
Frege
Russell
Hilbert
Turing



Leibniz   (1646-1716)

Calculemus
“Let us calculate”
Envisioned a formal 
language to reduce 
reasoning to calculation.



Leibniz’s Stepped Reckoner

The first calculating 
machine that could 
add, subtract, divide, 
and multiply.
Pascal’s could only 
add and subtract.
Now in museums in 
Munich and Hanover.



George Boole 
(1815-1864)

Wrote a book:
Laws of Thought

The laws are now 
called Boolean 
Algebra



William Stanley Jevons 
(1835-1882)

Built the Logical Piano 
First machine to do mechanical 
inference
Museum of Science at Oxford
Implemented Boole’s rules 
On the Mechanical Performance 
of Logical Inference read before 
Royal Society (1870)



Gottlob Frege 
(1848-1925)

Tried to reduce mathematics to logic, 
including the concept of number.
Begriffschrift published in 1879, when Frege
was 31 years old. 
“a symbolic language of pure thought, 

modeled upon that of arithmetic.”

Created modern logic including 
“for all”, “there exists”, and rules 
of proof.



Bertrand Russell  
(1872-1970)

Found Frege’s error
Russell paradox:  R = { x : x ∉ x }.  The 
existence of R leads to a contradiction, but 
Frege said { x : P(x) } exists for any P.
Wrote Principia Mathematica to save 
mathematics from this contradiction.



David Hilbert 
(1862-1943)

Development of formal logic 
Reductionist program:  Express 
mathematics in logic,  give decision 
methods for logic
Posed the Entscheidungsproblem (decision 
problem)  for logic.
1928,  in Hilbert-Ackermann 



Entscheidungsproblem

Is there an “decision algorithm” such that
It takes two inputs:  a set of axioms, and a 
conjecture.
It computes for a finite time and outputs 
either a proof of the conjecture from the 
axioms,  or “no proof exists”.
The result is always correct.
?



Getting the problem stated right
What are axioms?
What is a proof?
What is an algorithm?



Tables, chairs, and beer 
mugs

Hilbert contributed to answering the questions about 
axioms and proofs.  
Famous book Foundations of Geometry (1899)  
provided a careful axiomatic reworking of Euclid 
from 21 axioms.
If you replace “points, lines, and planes” by “tables, 
chairs, and beer mugs”,  the reasoning should still be 
correct.



Opposition from 
Poincaré (1908)

Thus it will be readily understood 
that in order to demonstrate a theorem, it is 
not necessary or even useful to know what it 
means. We might replace geometry by the 
reasoning piano imagined by Stanley Jevons, 
or…a machine where we should put in 
axioms at one end and take out theorems at 
the other, like that legendary machine in 
Chicago where pigs go in alive and come out 
transformed into hams and sausages.



Alan Turing 
(1912-1954)

Answered “What is an algorithm” by defining Turing 
machines.
Solved the “halting problem”--there is no Turing 
machine that takes as inputs a Turing machine M and 
an input x for M, and determines correctly whether M
halts on input x.



Turing’s solution of the 
Entscheidungsproblem

Write down axioms A to describe the 
computations of Turing machines.
Machine M halts at input x iff A proves the 
theorem “M halts at input x”.  
If we had an algorithm to determine the 
consequences of axioms A,  it would solve 
the halting problem.



Alonzo Church 
(1903-1995)

Invented λ-calculus to 
answer “what is an 
algorithm?”
Also solved the 
Entscheidungsproblem, 
using λ-calculus (1936).
Arithmetic is 
undecidable.   



“Negative Results”  of 1930’s

Halting problem 
Entscheidungsproblem (1936)
Gödel’s incompleteness theorem

Mathematics cannot be completely 
mechanized



Possible Loopholes

Decision procedure could work for a 
particular axiom system to say if any 
formula is a theorem.
Algorithm could sometimes tell us whether 
a formula is a theorem or not (but not 
always).
Algorithm could work sometimes for a 
particular axiom system.



The first theorem-provers

Davis (1954)  Presburger arithmetic.  Proved 
the sum of two even numbers is even.
Newell, Shaw, and Simon (1957) Logic 
Theorist.  Proved propositional logic 
theorems in the system of Principia.
Gelernter’s geometry prover (1959) used a 
“diagram” to prune false goals.



The 1960’s

Davis-Putnam procedure.  Skolem functions 
and conjunctive normal form.
Wang  (1963)  Program proved all 400 pure 
predicate-calculus theorems in Principia. 
Photo 1982,  showing Martin Davis, Julia 
Robinson, Yuri Matiyesevich



Resolution

J. A. Robinson (1963)
(p | q)  means “p or q”
-p  means “not p”
Resolution rule:                                       
From  (p | q)  and (-p | r)  deduce (q | r)



Unification

Published by J. A. Robinson (1965)
“in the air”--implemented by others as early 
as 1962.
Purpose of unification algorithm:  find 
values of variables to make two terms 
match.
Example:   given  f(x,g(x)) and f(g(c),z) we 
find x = g(c), z = g(g(c))



Resolution and Unification

From (p | q) and (-s | r)  infer  (q* | r*) 
provided  p* = -s*
Here * means the substitution resulting 
from unifying p and -s  successfully.



Searching for proofs

Start with the axioms and the negated goal.
Perform resolutions (using unification) 
until a contradiction is reached.
Millions of clauses may be generated.  
Often memory or time will run out before 
you get a proof.



Kinds of Mathematical Reasoning
Purely logical
Equational, as in the Robbins problem, or in 
group or ring theory.
Single-theory,  as in geometry 
Uses calculations,  as in algebra or calculus
Uses mathematical induction
Uses definitions (perhaps lots of them)
Uses a little number theory and simple set 
theory  (as in undergraduate algebra courses)



Decision Methods

Some branches of mathematics can be 
mechanized!
However, often the algorithm is 
exponential or worse.
There are important examples anyway.



Alfred Tarski 
(1902-1983)

Real-closed fields
questions involving +, *, <, and quantifiers
Example:  for which values of b does a 
polynomial f(x,b)  have a root between 0 and 1?

Photo 1971



Another Example

When is                                     
positive definite,  that is, positive for all x?  

Answer should not involve x,  but only conditions 
on a,b,c,d.



256 d^3 -

 

192 a c d^2 -

 

128 b^2 d^2 + 144 a^2 b d^2 -

 

27 a^4 d^2 + 144 b 
c^2 d -

 

6 a^2 c^2 d -

 

80 a b^2 c d + 18 a^3 b c d + 16 b^4 d -

 

4 a^2 b^3 d -

 27 c^4 + 18 a b c^3 -

 

4 a^3 c^3 -

 

4 b^3 c^2 + a^2 b^2 c^2 >= 0 /\

 

[ [ 108 
c^2 -

 

108 a b c + 27 a^3 c + 32 b^3 -

 

9 a^2 b^2 > 0 /\

 

384 d^2 -

 

192 a c d -

 128 b^2 d + 144 a^2 b d -

 

27 a^4 d + 72 b c^2 -

 

3 a^2 c^2 -

 

40 a b^2 c + 9 
a^3 b c + 8 b^4 -

 

2 a^2 b^3 <= 0 ] \/ [ 256 d^3 -

 

192 a c d^2 -

 

128 b^2 d^2 
+ 144 a^2 b d^2 -

 

27 a^4 d^2 + 144 b c^2 d -

 

6 a^2 c^2 d -

 

80 a b^2 c d + 
18 a^3 b c d + 16 b^4 d -

 

4 a^2 b^3 d -

 

27 c^4 + 18 a b c^3 -

 

4 a^3 c^3 -

 

4 
b^3 c^2 + a^2 b^2 c^2 > 0 /\

 

384 d^2 -

 

192 a c d -

 

128 b^2 d + 144 a^2 b d 
-

 

27 a^4 d + 72 b c^2 -

 

3 a^2 c^2 -

 

40 a b^2 c + 9 a^3 b c + 8 b^4 -

 

2 a^2 
b^3 >= 0 /\

 

768 d -

 

192 a c -

 

128 b^2 + 144 a^2 b -

 

27 a^4 >= 0 ] \/ [ 108 
c^2 -

 

108 a b c + 27 a^3 c + 32 b^3 -

 

9 a^2 b^2 >= 0 /\

 

256 d^3 -

 

192 a c 
d^2 -

 

128 b^2 d^2 + 144 a^2 b d^2 -

 

27 a^4 d^2 + 144 b c^2 d -

 

6 a^2 c^2 
d -

 

80 a b^2 c d + 18 a^3 b c d + 16 b^4 d -

 

4 a^2 b^3 d -

 

27 c^4 + 18 a b 
c^3 -

 

4 a^3 c^3 -

 

4 b^3 c^2 + a^2 b^2 c^2 > 0 ] ] 

The Answer



Quantifier Elimination

Tarski’s method
∃x,y (f(a,x,y) = 0 & g(a,x,y) > 0)   can be 
expressed without a quantifier in the form  
h(a) = 0 & k(a) > 0.
Here f,g, and h are polynomials.
Related to  Sturm’s theorem. 
Semi-algebraic sets are defined this way  



Geometry

Descartes reduced geometry to algebra 
using coordinates.
Tarski’s decision procedure for algebra 
therefore works for geometry too.
Tarski’s student Szmielew made it work 
for hyperbolic geometry too.



Implementation of Quantifier 
Elimination 

Cylindric decomposition (George Collins)
qepcad (implemented in Mathematica 4.02)
Worst case is double exponential  (Fischer and 
Rabin)
But,  it’s only double exponential in the number 
of variables if we use cylindric decomposition.



Double Exponential Time
Can two unit spheres can be packed without 
overlapping in the cube of side M?
3M^2 –6M+2 >= 0    and M >= 1
Can three unit spheres be packed without 
overlapping in the cube of side M?
Too hard for today’s computers—9 variables is 
too many.   It is 10^33 times harder than 6 
variables!
2^(2^9) = 2^512 = 10^54   
2^(2^6) = 2^64 = 10^19   
Ratio is 10^33.  The sun will live 10^17 more 
seconds.



The “kissing problem”

Can 25 unit spheres in four-space be 
placed so that they are all tangent to the 
unit sphere centered at origin, and have no 
more than points of tangency in common?
24 can be so placed, but it is not known if 
25 can be so placed.
Can be stated with 100 variables.
2^(2^100) is way too big.



Theorem Proving in Geometry

Wu Wen-Tsen (1986)  algebraic methods
Since then other algebraic methods have 
also been used.
Good for theorems whose algebraic 
expressions involve only equalities (not 
inequalities).
Difficult to integrate with graphical 
software for teaching proofs in geometry.



Searching for Proofs

Problem:  avoid generating the entire 
theory from the axioms, when what you 
want is the negation of a specific 
theorem.
Solution:  the set of support strategy
Larry Wos (1963)



Set of Support Strategy
Divide the axioms into two lists, usable and 
set of support (sos).  
Put the negation of your theorem in sos
Put the axioms in usable.
To generate new clauses, use resolution (or 
a variant of resolution) with one parent from 
sos and one parent from usable.  
Afterwards put the sos parent into usable.



Example

Wos (1963)
In a group, if x*x = e for every x, then the 
group is commutative (z*y = y*z).
Today this is trivial (for both humans and 
computers).  In 1962 it was not. 



Using Otter

Prepare an input file.
Use otter from the command line:
otter   < example1.in  > example1.out
Otter tells you if it finds a proof.
Open example1.out to see the proof.



Equality Reasoning

Suppose given a set E of oriented equations
example:   a*(b+c) = a*b + a*c
oriented equations, used left to right only
a,b,c matched to complex expressions
Keep applying rewrite rules until none apply. 
If this always happens E is called terminating.
Is the result unique?  If so then E is called 
confluent.



Example:  Group Theory
Axioms of group theory:

e*x = x.
i(x) * x = e.
(x*y)*z =  x*(y*z)

Word problem for group theory:  Given an 
equation, does it follow from these axioms?

A complete confluent set of rewrite rules would 
solve this problem.   To determine if u = v, just 
rewrite u and v to normal form and see if the 
results are identical.



The Answer for Group Theory
The original three equations, plus:
i(x)*(x*y) = y. 
x*e=x.
i(e)=e.
i(i(x))=x.
x*i(x) = e.
x*(i(x)*y)=y.
i(x*y)=i(y)*i(x).



Knuth-Bendix 
Algorithm (1967)

Input:  set E of equations
Output (if algorithm terminates):  

set Q of rewrite rules which is 
complete and confluent.

Algorithm may or may not terminate.
Written in Fortran by Bendix.



A harder example

In a ring suppose x*x*x = 1 for all x.
Then x*y = y*x for all x and y.
The proof is 52 steps long and takes hours 
on today’s machines.
Actually,  the hypothesis x*x*x  = 1 can be 
replaced by x^n = 1 for any fixed n, but it 
still takes a human being to prove that.  



Jan Lukasiewicz 
(1878-1956) 

Axiom Systems for 
Propositional Logic

i(i(x,y),i(i(y,z),i(x,z)))  (L1)    i = implies
i(i(n(x),x),x)                 (L2)   n = not
i(x,i(n(x),y))                 (L3)
To deduce a new formula from A and  i(B,C),  
make substitutions so that A’ = B’, and you can 
deduce C’.



Questions
Can you deduce i(x,x)?
Can we make Otter do proofs like this?
Yes, here’s how:
P(x) means “x is provable”.
-P(x) | -P(y) | P(i(x,y)).
P(i(i(x,y),i(i(y,z),i(x,z)))).   
P(i(i(n(x),x),x) ).
P(i(x,i(n(x),y)) ).
-P(i(x,x)).



Large Search Space

A proof has level n if all its formulas have 
at most n symbols.
Levels grow like 1, 1, 3, 7, 11, 17, 34, 93, 
206, 914, 2806, 41003, 281005,
Exhaustive search is impossible
Strategy is required to find, say,  an 
interesting 50-step proof of level 50.



Strategies

MaxWeight (throw out long formulas)
Special inference rules (hyperresolution, 
UR-resolution, etc.)
Hints  (some formula forms to keep)
Resonance (another way of giving hints)
rewriting to “junk” (example, n(n(x)) = 
junk)
These strategies have been effective in 
solving old open problems in logic. 



Automated Deduction as an Art

Many strategies have been developed in 
the last 40 years.  
Using them together is an art.  
Otter has many settings and parameters 
which can be used to control and define 
search strategies and inference rules.



Proofs Involving Computations

Symbolic computation software such as 
Mathematica and Maple is logically 
incorrect.
Example:   Set a=0.  Divide by a.   You 
get 1 = 0  since a/a = 1 and 0/a = 0. 
This prevents just calling Mathemetica and 
putting the results into a proof.



MathXpert and Weierstrass

MathXpert is symbolic computation 
software written to be logically correct and 
produce step-by-step solutions.
It is therefore also usable in theorem-proving.
I used it in my theorem-prover Weierstrass
1998-1990 to advance the state of the art in 
automated deduction of proofs requiring 
computation.



Proofs found with Weierstrass

Epsilon-delta proofs of the continuity of 
specific functions such as powers of x, 
square root,  log, sine and cosine, etc.
Before this, the best that could be done was 
the continuity of a linear function.
Irrationality of e.



Proofs by Mathematical 
Induction

Best work has been done by the Boyer-
Moore theorem prover,  ACL2  (formerly 
Nqthm).  
Hard part is to find the suitable instance of 
induction.



Proofs Involving Simple Sets and 
Functions, and simple use of numbers.

This is my current research, supported by 
NSF at San Jose State University.
Simple example:  A x B can be put into one-
one correspondence with B x A.
Another example:  Lagrange’s theorem in 
group theory:  if H is a subgroup of G, then 
the order of  H divides the order of G.
Research involves adding new algorithms to 
Otter and then using them.



Reflective theorem-proving
It is an art to use Otter.
Dozens of parameters to set to control it.
Difficult for beginners.
Often several runs required.
Idea:  Let the program adjust its own 
parameters while it is running.
Express rules for this in logic and allow the 
program to reason about its progress.



Examples of Reflection
This same formula has occurred several 
times.   Let’s define it as a new concept 
and use formulas that contain it to drive 
new deductions.
I’ve proved one of the lemmas, but not 
yet the theorem.  Let’s watch for 
formulas that look similar to the steps 
of the lemma, and use them quickly to 
drive new deductions.



Spring 2002 Master’s Theses at 
SJSU

Nadia Ghamrawi: Scheme for 
Automatically Transforming Proofs to Cut-
Free Form
Colin Southwood : Application of Formal 
Methods to the Analysis of Cryptographic 
Security Protocols



Fall 2002 Master’s Theses at 
SJSU 

Wei-yi Lin: Automated Deduction in 
Circuit Design using Otter
Tony Huang: Automated Deduction in 
Ring Theory
Howard Shih: Automated Deduction in 
Molecular Modeling using Otter.



Wild Speculations

Computers may in the future routinely find 
proofs of new theorems.
Computers may in the future identify 
interesting new conjectures.  
At some point the combination of these 
activities may result in original 
mathematics.    
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