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1 Introduction

Although propositional calculus is one of the oldest areas of logic, not all of its
mysteries have been unlocked. A number of different axiomatizations and proof
systems for propositional logic are known, some of which permit the formulation
of a “single axiom”—a formula from which all tautologies can be derived. The
existence of truth tables and other decision procedures for propositional logic
notwithstanding, it is by no means trivial to prove, for example, that a given 23-
symbol formula is in fact a single axiom. Truth tables and decision procedures
can be used to determine if a given formula is a tautology, or to construct a
proof of a given formula from certain axioms and rules, but generally they are
not helpful in finding proofs ofknown axioms from other formulas (which is what
one must do to verify that a formula is a single axiom). The search for such
proofs has recently become a testbed in automated deduction. We here prove a
theorem about propositional logic, that justifies a shortcut in such automated
proof-search methods, and besides, has its intrinsic esthetic appeal.

Let L be Lukasiewicz’s formulation of propositional calculus in terms of
implication and negation, denoted by ¢ and n, as given on page 221 of [7] p.
221. Specifically, L has three axioms:

L1 i(i(x, y),i(i(y, 2),i(z, 2)))
L2 i(i(n(x), ), x)
L3 i(z,i(n(z),y))

The inference rules to be used with these axioms are modus ponens and sub-
stitution. Specifically, given a major premiss i(p, ¢) and a minor premiss p, the
conclusion of modus ponens is g. The substitution rule permits the deduction
of po from p, where ¢ is any substitution. We also consider a more restrictive



inference rule called condensed detachment; one section of the paper is devoted
to the relationship between this rule and the modus-ponens-substitution sys-
tem. Our main theorems apply to L1-L3 with condensed detachment as well as
to L1-L3 with modus ponens and substitution.

A double negation is a formula n(n(t)), where ¢ is any formula. A formula
A contains a double negation if it has a subformula that is a double negation.
A derivation contains a double negation if one of its formulas contains a dou-
ble negation. Suppose that the formula A contains no double negations and is
derivable in L. Then does A have a derivation in L that contains no double nega-
tion? We answer this question in the aflirmative, by translating L into sequent
calculus and applying Gentzen’s cut-elimination theorem, and then translating
the cut-free proof back into L.

The proof that the translation is sound requires finding double-negation-free
proofs of twenty-five specific theorems of L that are used in the translation. We
used the theorem-prover Otter to find those proofs. To find these proofs by
hand would have been time-consuming, to say the least.

The reason why this theorem is interesting is that it justifies a technique used
by Wos in controlling Otter’s search for proofs in this area. Namely, Wos found
it useful to cause Otter to discard, rather than retain, any double negations
generated during the proof search. The theorem proved here shows that this
strategy is a safe one, in that there are no theorems whose proofs actually require
the use of double negations that are not contained in the theorem itself. Also, the
theorem has a certain appeal because it has the flavor of a Gentzen-style result,
but about a decidedly un-Gentzen-like proof system. It shows that something
of the flavor of cut-free proofs persists even in quite different formulations of
propositional logic, and the proof, which uses Gentzen’s systems and results,
shows that this is not accidental.

We would like to thank Kenneth Harris, Branden Fitelson, Ted Ulrich, and
Robert Veroff for their attention to early drafts of this paper—Ulrich and Veroff
contributed one lemma each (Lemmas 3 and 4), and Harris put Lemma 6 into
its present general form.

2 Some theorems proved by Otter

This section presents examples to illustrate the theorem. These special cases
are needed in the proof and must therefore be dealt with directly. We sub-
mitted an appropriate input file to the theorem-prover Otter, which produced
the proofs given in the Appendix (after slight editing for readability). In these
proofs, the first column is the statement number, and the second column lists
the justification for the line.

Lemma 1 L proves the following formulas without double negation.

ii(z, n(x)), n(x)) (1)
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190 [36,162] iz, i(n(y), 2)), i(i(u, i(2, y)),i(x, i(u,v))))
204 [162,8] i(i(n(x),n(y)), {(y, x))

220 [29,190] i(i(n(x),y),1(i(z, i(u, x)),i(i(y, u), i(z, x))))
240 [33,204] i(z,i(y, x))

288 [190,240]  i(i(x,i(y, 2)),i(y,i(x, 2)))

363 [288,1.3] i(n(z),i(x,y))

386 [162,363]  i(i(n(x),y),i(n(y),x))

426 [386,47] i(n(n(z)), x)

That completes the proof of Lemma 2.

The following two lemmas were proved by hand, or by a specially compiled
version of Otter, since the publicly available version of Otter proves a more
general theorem and then identifies some variables to obtain these results. The
Otter proof then does not correspond to a proof by condensed detachment.

Lemma 3 L proves i(i(x, x), i(n(z), n(x))).

Proof. [Ted Ulrich, found without machine assistance]. The first two lines below
are formulas shown in Lemma 1 to be provable.

2 2@ i) iz y)

6 (6)  ii(x,y),i(n(y),n(z)))

44 [2,L1] i(i(x,x),i(x, x))

45 [LL6] i(i(i(n(y), n(x)), 2), i(i(x, ), 2))
43 [45,44] i(i(x, x),i(n(x),n(x)))

Lemma 4 L proves i(i(x, x), i(i(y, v), i(i(x,v), i(x,y))))-

Proof. [Robert Veroff, using a special version of Otter].

45 [L.3,1.2] i(n(i(i(n(z), x),x)),y)

46 [L1,L1] 1(i(i(i(x, y), (2, y)), w), i(i(z, x), uw))
47 [L.1,45] i(i(z, y),i(n(i(i(n(2), 2), 2)),9))

48 [L.1,L3] i(i(i(n(z),y), 2), i(x, 2))

49 [L1,1.2] i(i(x, y),i(i(n(x), x),y))

50 [48,1.2] i(x,x)

51 [50,1.1] i(i(x, y),i(x,v))

52 49,51 i(i(n(i(z,y)), i(z,v)), i(z, y))

53 [47,48] iz, i(n(E(E(n(y),y),y)), 2)

54 [53,1.1] 1(i(t(n(i(i(n(x), x), x)),y), 2), i(u, 2))
55 [46,46] i(i(x, i(y, 2)), 1(i(u, v), i(z, i(u, 2))))
56 [46,1.1] i(i(x, y), 1(i(i(z, 2),u),i(i(y, 2), w)))
57 [54,52] i(z,i(i(n(y), ), v))

58 [55,57] i(i(z, i(n(y), v)), i(2, i(z,y)))



59 [58,46] i(i(n(x),y), (2, i(i(y, x), x)))

60 [58,L3] i(z,i(y,y))

61 [59,58] i(z,i(i(n(y), 2),i(i(2,9),¥)))

62 [59,60] i(z,1(1(i(y, y), 2), 2))

63 [61,61] i(i(n(x),y),i(i(y, x), x))

64 [63,55] i(i(x, i(y, 2)),1(i(n(2),y), i(x, 2)))

65 [63,48] i(z,i(i(y, x), x)

66 [65,55] i(i(x, i(y, 2)),1(2,i(x, 2)))

67 [66,65] i(z,i(x,x))

68 [66,62] i(z,i(y, x))

69 67,60] i(i(z, i(y,y)), iz, i(y, y)))

70 [68,67] i(i(x, i(y, x)),i(x, i(y, x)))

71 [64,55] i(i(x, i(n(y), 2)), i(i(w, i(z,v)), i(x, i(u, y))))
72 [56,55] i(i(x, i(i(y, 2),w)), 1 (i(y, v), i(x, i(i(v, 2),w))))
73 [71,68] i(i(x, i(y, 2)),i(y, i(x, 2))

74 [73,1.1] 1(i(i(x,i(y, 2)), u),1(i(y, i(x, 2)), u))

75 [74,69] i(i(x, i(y, x)),i(y, i(z, x)))

76 [75,1.1] i(i(x, ), i(i(y, ), i(y, x)))

77 [72,70] i(i(z, i(i(y, 2), w)), 1(i(y, y), i(z,i(i(y, 2),1))))
78 [77,76] i(i(z, 2),i(i(y, v), i(i(z, y), i(z, y))))

3 Condensed detachment

A more restricted system with axioms L1-L3 has been considered in the liter-
ature [2, 3], and the original question answered in this paper was about that
system. The substitution rule is not used, and modus ponens is replaced by by
condensed detachment, in which the major premiss is ¢(p, ¢), the minor premiss
is » where r unifies with p, and the conclusion is qo, where ¢ is the most general
unifier of p and r. For example, if « is a complicated formula, and we wish
to deduce i(a, @), it would not be acceptable to first deduce i(x,x) and then
substitute x = a. We would be forced to give a (longer) direct derivation of
i(a, ).! We shall show in this section that our theorem about the eliminability
of double negation holds for L1-L3 with condensed detachment, if and only if it
holds for L1-L3 with modus ponens and substitution. Similar but not identical
results are in [2, 5].

Lemma 5 Every formula of the form i(a, o) is provable from L1-L3 by con-
densed detachment, without using double negations except those occurring as
subformulas of «.

11n the absence of the substitution rule, any alphabetic variant of an axiom is also accepted
as an axiom. An “alphabetic” variant of A is a formula Ao where the substitution ¢ is one-
to-one and merely renames the variables.



Proof. By Lemma 1, formulas (9), Lemma 3, and Lemma 4, the following are
provable by condensed detachment (without using double negation) from L1-1.3:

i(x,x) (22)
i(i, ), 1(i(y, y), i(i(z, v), i(x,v)))) (23)
i(i(z, x), i(n(x), n(x))) (24)

It follows by induction on the complexity of the propositional formula « that
for each a, the formula i(«, o) is provable in L1-L3 by condensed detachment.
The base case, when « is a proposition letter, follows by replacing = by « in the
proof of i(z, z). The line (the proof in Lemma 1 is only two lines long) that is an
axiom becomes an alphabetic variant of an axiom, which is still considered an
axiom. If we have a proof of (5, 5) then we can apply condensed detachment
and (i(x, z),i(n(x), n(zx))) to get a proof of i(n(3),n(3)). This could introduce
a double negation if 3 is already a negation, but in that case it is a double
negation that already occurs in o« = n(f3), and so is allowed. Similarly, if we
have proofs of i(a, &) and (3, 3), we can apply condensed detachment to the
second formula just given and get a proof of i(i(«, 3),i(c, 3)). That completes
the proof of the lemma.

Lemma 6 Lel o be a substitution and A be any formula. Suppose that o = Ao
has no variables in common with A and the domain of o is contained in the set
of variables of A. Then o is the most general unifier of A and Ac.

Remark. We need this only when A is an instance of L1, L2,or L3, in which
case it can be seen more directly by considering the unification algorithm. But
Kenneth Harris stated (and proved) the matter in the proper generality, and we
give his formulation here.

Proof. Define a substitution ¢ to be idempotent if oo = 0. Let Do be the
domain of ¢ and Io the set of variables contained in the range of o, i.e. the
variables introduced by o when applied to the variables in its domain. Then
Do N Ico is empty if and only if ¢ is idempotent.

Now let A and ¢ be as in the hypothesis of the lemma. Then Do N Io is
empty, so ¢ is idempotent. Therefore ¢ unifies A and Ac. We will show it is a
most general unifier. Let 3 be a substitution such that A3 = Ao, and assume
the domain of 3 is contained in the set of variables of A. Then also C'3 = Co3
for all subformulas C of A. We must show that for some substitution «, we
have 8 = oca. But it suffices to take o = 3: let x be in the domain of J3; then =
is a subformula of A and hence we can take C'= x in C3 = Coj3, so x(3 = xof.
Since = was any element of the domain of 3, we have 3 = ¢3. This completes
the proof of the lemma.

Lemma 7 FEvery substitution instance of axioms L1, L2, and L3 is provable by
condensed detachment.



Proof. Let « be a substitution instance of an axiom A (so A is one of L1, L2, or
L3). Renaming the variables in the axiom A if necessary, we may assume that
the variables occurring in A do not occur in . By Lemma 5, i(a, @) is provable
by condensed detachment. Let ¢ be the substitution such that Ac = a. By
the preceding lemma, ¢ is the most general unifier of o and A, so we can apply
condensed detachment to i(a, a) and A to conclude c. That completes the proof
of the lemma.

Lemma 8 If A is provable in L1-L3 with condensed detachment, and o is any
substitution, then Ao is provable in L1-L3 with condensed detachment.

Proof. The base case has been done in Lemma 3. For the induction step,
suppose the last inference has the premisses i(p, ¢) and r, where 7 is the most
general unifier of p and 7, and the conclusion is gv = A. By the induction
hypothesis, we have condensed-detachment derivations of i(pro, gro) and of
r70. Since pr = r7, also pro = r70, the inference from i(pro, gro) and r7o to
q7o is legal by condensed detachment. Hence we have a condensed detachment
proof of gro = Ac. That completes the proof of the lemma.

Theorem 1 If L1-L3 proves A using modus ponens and substitution, then L 1-
L3 proves A using condensed detachment, by a proof involving no new double
negations; that is, every doubly-negated formula in the condensed-detachment
proof occurs already in the modus-ponens-and-substitution proof.

Proof. We proceed by induction on the length of the derivation using modus
ponens and substitution. For the base case, A is an axiom, and there is nothing
to prove. Suppose the last inference is by substitution, with premiss B and
conclusion A = Bo. By the induction hypothesis there exists a condensed-
detachment proof of B. By Lemma 8, there exists a condensed-detachment
proof of A. Now suppose the last inference is by modus ponens, inferring A from
i(B, A) and B. By the induction hypotheses there are condensed detachment
proofs of B and (B, A). The inference from these premisses to A can be made
by condensed detachment (the most general unifier required is the identity).
Therefore there is a condensed-detachment proof of A. That completes the
proof of the theorem.

4 L and sequent calculus

Let G1 be the intuitionistic Gentzen calculus as given in Kleene [4]. Let G be
G1 (minus cut), restricted to implication and negation, i.e., formulas containing
other connectives are not allowed. Thus the rules of inference of G are the four
rules involving implication and negation, plus the structural rules. The rules of
G1 are listed on pp. 442-443 of [4]. They will also be given in the course of the
proof.



‘We remind the reader that L is propositional logic with Lukasiewicz’s axioms
L1-L3, using modus ponens and substitution as inference rules. We also remind
the reader that by the results of the preceding section, L1-L3 with condensed
detachment as the only inference rule proves every theorem of L, and without
introducing double negations that were not present in the proof using modus
ponens and substitution. We give a translation of L into G. Namely, if A4 is a
formula of L, then A° is a formula of G, obtained by these rules:

i(a,0)° = a® — p°

n(a)® = —a

Of course, when « is a proposition letter (variable) then a® is just a. If ' =
Ag, ..., Ay is a list of formulas of L, then T'? is the list AJ, ..., A9.

We translate G into L in the following manner. First we assign to each
formula A of G a corresponding formula A’ of L, given by

(A — B) = i(A', B
(—4) = n(4)

where again A’ = A for proposition letters A. We need to define I'/ also, where
I' is a list of formulas; but the definition is different for lists occurring on the
left of = than for lists occurring on the right. Officially then, the (-)/ function
takes an additional argument when its main argument is a list. What we write
as I for human readability is really ‘( em left,I") or '(right,I'). We agree to
suppress the left and right arguments, which should be clear from the context.
IfT" = Aq,..., A, is a list of formulas occurring on the left of =, then I is

L. AL IfT = Aq,..., A, occurs on the right of =, then TV is a single
formula of L, defined thus: For lists of length 1, say [A], we define [A]' = A’
We do not define []’, where [] is the empty list. For lists of length at least 2, we
define:

(Ag, ..., Ap,m A1) = (A, (A, .0, AR))

(Ar, ..., Apy1) = i(n(Ani1), (A1, ..., AR)) if A, is not a negation

We use recursion from the right rather than the left, since Kleene defined his
contraction rule “from the right”. Note that this translation does not introduce
double negations in (Af, ..., A}) where none occur in (44,...,A4,). We can
express the translation of lists in a single equation if we introduce the notation
71 by n(a) = n(e) if @ is not a negation, and n(n(a)) = a. Then we have

(A1, A ) = i(n(Ana1), (A, ..., AR))

In general a “formula” of L involving 71 is an abbreviation of two or more for-
mulas of L.2
These two translations are inverses:

2We note that essentially this same translation has been given in [6] in connection with



Lemma 9 Let A be a formula of L. Then A% = A.

Proof. By induction on the complexity of A. If A is a variable, then A = A
and A°" = A. We have
. /
i(x,y)” = (@ —=y°)
(4"
= i(x,y)

= 1

and we have

n(@) = (=(z°)’

3

Henceforth we simplify our notation by using lower-case letters for formulas
of L, and upper-case letters for formulas of G. Then we can write a instead of
A’, and A instead of ¢°. By the preceding lemma, there is no ambiguity in this
convenient notation. Thus, for example, (A — B)' is i(a,b). Greek letters are
used for lists of formulas, and upper-case and lower-case again refer to G and
L. But bear in mind, if © is a list of length 2 or more, for example A, B, then
6 = ©' is i(n(a),b) when © occurs on the right of =-.

The following lemma is needed in carrying out an inductive proof later in
the paper. It can be skipped on the first reading. By (T, A) we mean the result
of appending the lists I' and A. By (I',C) we mean the result of adding one
more element C' to the list I'. Were we to be formal about these matters, we
would regard the lists as “written backwards”, so that our recursions from the
right end of lists would be normal list recursions, and (I, C') would be [C|T].
Instead of introducing formal list notation, we stick with (I, C) and (T, A).

Lemma 10 When the list A is not empty, and (T, A) occurs on the right of
=, then (I, A) is equivalent in L to i(n(A'),T).

Remark. We spell out what is abbreviated by the use of 71 in the statement
of the lemma. If A’ is a negated formula n(a), then (I'; A)’ is equivalent to
i(a, T"). Otherwise, (I'; A) is equivalent to i(n(A’),T).

Proof. By induction on the length of the list A. When the length of A is one,
the conclusion of the lemma is just the definition of (I'; A)’. For the induction
step, we replace A in the statement of the lemma by (A, C). We have

(T (A, C)) = (T,A),C) by the associativity of append

Lukasiewicz’s multi-valued logics. It is the obvious translation of Gentzen calculus into the
implication-and-negation fragment of propositional calculus. Since we need to check that the
translation is sound without using double negation, we cannot appeal to any of the results of

[6].
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), i(n(A,T)) by the induction hypothesis
(n(

On the other hand,

i(n((A,0)), 1Y) = i@(i(7(C), 6)),7)
= 1(n(i(n(C),6)),7)

What we need then is the equivalence in L of i(x, i(7(y), 2)) and i(n(i(x,y)), 2),
which could be applied with z = n(C), y = 6, and z = . Because of the use
of n, there are really two equivalences, one obtained by replacing 7 by n, and
the other obtained by replacing 72(y) by v and y by n(y). Then each of the two
equivalances has to be formulated as two implications in L, left-to-right and
right-to-left. These four theorems have already been proved in L as formulas
(11) through (14) of Lemma 1. That completes the proof of the lemma.

Lemma 11 (Deduction theorem for L) IfL provesa from assumptions 6, B,
then i(b, a) is a theorem proved in L from assumptions 6. Moreover, if the given
proof has no double negations, then this proof in L from & has no double nega-
tions.

Proof. By induction on the length of proofs in L. Base case: a either is b or a
member of §, or an axiom of L. If @ is b, then we use the fact that i(b,b) is a
theorem of L, provable without double negations (except those occurring in b)
by Lemma 5. If @ is a member of 6 or an axiom of L, then we use the fact that
i(z,i(y, x)) is a theorem of L, provable without double negations, by formula
(3) of Lemma 1. Applying the substitution z := a,y := b, we have a proof of
i(a,i(b,a)) from § without double negations except those occurring in @ and b.
Applying detachment, we have a proof of i(b, @) from 6 as desired.

Turning to the induction step, suppose the last step in the given proof infers
g from i(p, g) and p. By the induction hypothesis, we have proofs of i(b, p) and
i(b,1(p, q)) from 6. By axiom L1 and substitution we have ¢(i(b, p), i(i(b, i(p, ), (b, g))))-
Applying detachment once, we have i(i(p, q),(b,q))). Applying detachment
again, we have (b, q) as desired. Note that no double negations are introduced.
That completes the proof of the lemma.

We shall call a sequent I' = A “double-negation-free” if it contains no double
negation. Since the L-translation does not introduce new double negations, this
is the same as requiring that the L-translation contain no double negation.

Lemma 12 If the final sequent T' = © of a G-proof is double-negation-free,
then the entire G-proof is double-negation free.

Proof. By the subformula property of cut-free proofs: every formula in the proof
is a subformula of the final sequent.

10



Lemma 13 (i) Suppose G proves the sequent T' = A, where A is nonempty.
Then L proves 6 from assumptions . If G proves I' = [, where [| is the
empty list, then L proves p from assumptions vy, where p is any variable of L
not occurring in .

(i) If any double negations occur in subformulas of the given sequent T = A
(where here A can be empty or not), then a proof in L as in (i) can be found
that contains no double negations except those arising from the L-translations
of double-negated subformulas of I' = A.

(#i) If in part (i) the L-translation of the given sequent T' = A does not
contain any double negations, then the proof in L thal is asserted to exist can
also be found without double negations.

Proof.

We proceed by induction on the length of proof of I' = A in G. base case:
the sequent has the form I', A = A. We must show that « is derivable in L from
premisses 7, a, which is clear. Now for the induction step. We consider one case
for each rule of G.

Case 1, the last inference in the G-proof is by rule —=-:

A=AA B I'=0
A— B,AT=A0

By the induction hypothesis, we have an L-proof of (A, A)’ from 6, and an
L-proof of @ from b and y. We must give an L-proof of (A, )’ from i(a, b), 6,
and . We consider several cases, according as A is or is not a negation, A is or
is not empty, and © is empty, or of length 1, or of length 2 or more.

First consider the case (1a) that A is empty, so (A, A)’ is just a. Applying
detachment to i(a,b) (which is (A — B)’) and the given proof of a from 6,
we derive b. Copying the steps of the proof of 8 from assumptions b,y (but
changing the justification of the step(s) b from “assumption” to the line number
where b has been derived) we have derived 6 from assumptions (A — B)’,6,,
completing the proof of case 1 when A is empty.

Henceforth we may assume that A is not empty. We now claim that L proves
(i(n(b), \) from assumptions i(a,b) and 6. We call this “Claim Q”. We argue
for Claim Q by cases, according as A is a negation or not. First, we assume A
is not a negation. Then we are given by the induction hypothesis an L-proof of
i(n(a), A) from assumptions 6. By (10) of Lemma 1,

i(i(a,0),i(i(n(a), A), i(n(D), A)))

is a theorem of L. Applying detachment twice, we see that L proves i(n(b), \)
from assumptions i(a,b) and 8. This is claim Q.

Now we argue for Claim Q in case A is a negation, say A = —F, and A is
not empty. As usual we denote E’ by e, so (A, A)' is i(e, \). Then we are given
by the induction hypothesis an L-proof of i(e, A) from assumptions 6. By (16)
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of Lemma 1 (taking x = e, y = b, and z = \),

i(i(n(e), b), i(i(e, A), i(n(b), A)))

is a theorem of L. Applying detachment twice, we see that L proves i(n(b), \)
from assumptions i(a,b) and §. This establishes Claim Q for the case A is a
negation. Since that was the second case, Claim Q is now established.

In addition to the proof of i(n(b), \) from assumptions i(a,b) and §, we also
have (by the induction hypothesis) an L-proof of # from assumptions b,~y. At
this point the argument divides into case (1b), when O is the empty list, and
case (1¢), when © is not empty.

Case (1b): © is the empty list. Then 6 is a new variable not occurring
elsewhere in the proof, and we require a proof of A from assumptions i(a, b), 6, .
Substituting 72(b) for the variable § we have an L-proof of n2(b) from assumptions
b,v. Applying detachment to this and i(n(b), \), we have a proof of A from
assumptions i(a, b), 8, v as required. This completes the proof of case (1b).

Case (1¢): © is not empty. We require a proof of (A, ®)’ from assumptions
i(a,b), v, 6. Applying the deduction theorem to the L-proof of 8 from b, 7y, we
have an L-proof of i(b, 8) from . So from the desired assumptions we can prove
i(b,0) and i(n(b), ), and we require a proof of (A, ©®)’. By Lemma 10, (A, ©)
is equivalent in L to i(72(@), \), just as it would be if © were a list of length one.
Our situation is this: we have i(b,0) and i(n(b),\), and we require i(72(8), \).
If @ is not a negation, we can replace 72(0) by n(#). Applying (10) from Lemma
1, with x = b, y = 0, and z = \, we have

1(i(b, 0),i(i(n(D), N), i(n(0), \))).

Applying detachment twice we have i(n(0), \) as desired. If, on the other hand,
6 = n(«), then our situation is this: we have i(b, n(a)) and i(n(b), \), and we
require i(a, \). Taking x = b, y = @, and z = X in formula (15) of Lemma 1,
we have
1(i(b,n(a)), 1(i(n(b), N), i(a, A))).
Applying detachment twice we have i(a, \) as required. This completes the
proof of case (1¢), and hence of case 1.
Case 2, the last inference in the G-proof is by rule =—:

ATl =028
Ir=0,A—1B

Case 2a, © is the empty list. By the induction hypothesis, we have an L-
proof of b from ~ and a. Applying the deduction theorem for L, we have a proof
in L of i(a,b) from . But (A — B)' = i(a,b), completing this case. Note that
double negations are not introduced by the deduction theorem if they are not
already present.

Case 2b, O is not empty. By the induction hypothesis, we have an L-proof
of i(n(b),0) from assumptions v and a. By the deduction theorem for L, we
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have a proof of i(a, i(7(b), 8)) from . We require a proof of i(n(i(a, b)), #) from
7. There are two cases, according as B is a negation or not. First, if B is
not a negation, then we have a proof of i(a,i(n(b),8)) and require a proof of
i(n(i(a, b)), 8). Taking x = a, y = b, and z = 0 in formula (11) of Lemma 1, we

have
i(i(a, i(n(b), 0)), i(n(i(a, b)), 0)).

Applying detachment, we obtain the desired proof of i(n(i(a, b)), ) in L.

Second, if B is a negation, say B = —C, then b is n(c) and 71(b) is ¢, so we have
an L-proof of i(a,i(c,#)) from 7, and we require a proof of i(n(i(a,n(c))), ).
By formula (13) of Lemma 1, we have i(i(x, i(y, 2)), i(n(i(x, n(y)), 2)). Apply
the substitution = := a,¥y := ¢, z := 0, and then apply detachment. This yields
the required proof of i(n(i(a, n(c))), 8. That completes the proof of Case 2b and
the proof of Case 2.

Case 3, the last inference in the G-proof introduces negation on the right:
Al'=0
I'=0,-4

Case 3a, © is the empty list. Then by the induction hypothesis, there is
an L-proof of p from @ and 7, where P is a new variable (not occurring in T’
or A). By the deduction theorem for L, there is a proof of i(a,p) from ~y. So
it suffices to show that n(a) is derivable in L from i(a,p). This follows from
i(i(x, n(x)),n(z)) by detachment. We have shown in Lemma (1), formula (1),
that this formula is provable in L without using double negation.

Case 3b, O is not empty. Then (0,—-A4)' is i(a,0). By induction hypothesis
there is an L-proof of # from a and +. By the deduction theorem for L, there
is a proof of i(a, #) from ~. This completes the proof of Case 3b, and hence of
Case 3.

Case 4, the last inference in the G-proof introduces negation on the left:

=04
-AI'=0©

Case 4a, © is the empty list. By the induction hypothesis, we have an L-
proof of a from 7. We must show that from n(a) and -y, we can deduce b in
L, where b is a new variable. We have i(a,i(n(a),b) by axiom L3. Applying
detachment twice, we have the desired proof of b, completing case 4a.

Case 4b, O is not empty. In proving part (iil) of the lemma, we are assuming
that —A contains no double negation; therefore, A is not a negation, so (0, A)
is i(n(a), #). By the induction hypothesis, we have an L-proof of i(n(a), #) from
v. We must show that from n(e) and v we can derive 8. But this follows
immediately by detachment. This completes the proof as far as part (iii) of the
lemma goes.

In proving parts (i) and (ii) of the lemma, we can no longer be certain that A
is not a negation, so we must treat the case when A is =E. Then (0, A)' is i(e, 0),
and by the induction hypothesis, we have an L-proof of i(e, #) from . We must
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show that from n(a) (that is, n(n(e))) and v we can derive . It is permissible
to use the double negation n(n(e)) since this double negation arises from the
double negated formula ——F, that is = A, which occurs in the conclusion of this
inference, which is the final sequent of the proof. We have i(n(n(e)), e) provable
in L. without using any double negation other than n(n(e)), as shown in Lemma
2. By detachment we have a proof of e from n(n(e)). Applying detachment,
using the given proof of i(e, #) from ~, we obtain the required proof of # from
n(n(e)) and ~y. This completes case 4b, and hence also case 4.
Case b, the last inference is by contraction in the antecedent:

C,C.T'=0
CI'=0

By the induction hypothesis we have a proof of  from assumptions c, ¢,
which also qualifies as a proof from assumptions c¢, so there is nothing more to
prove.

Case 6, the last inference is by contraction in the succedent (the succedent
is the part of a sequent to the right of the = sign):

r=0,.0:«c
r=0,.~0

Case 6a, © is the empty list. By the induction hypothesis we have a proof
in L from assumptions v of i(7i(c),c). We need a proof of ¢ from . If C is
not a negation, we have a proof from v of i(n(c),c). By axiom L2 we have
i(i(n(c), ), ¢). Applying detachment we get a proof of ¢ as desired. If C' is a
negation, say —F, then ¢ is n(e), and we have a proof from « of i(e, ¢), that is
to say i(e,n(e)), and we need a proof of n(e) from ~. But i(i(e, n(e)),n(e)) is
formula (1) of Lemma 1, so applying detachment we obtain the required proof.
This completes case 6a.

Case 6b, © is not empty. We have by the induction hypothesis a proof in
L from ~ of i(7(c), i(n(c), #)). We need a proof of i(12(c),8). By formula (2) of
Lemma 1, we have

(i, iz, ), (. 9).

Taking x = 72(c) and y = 0, and applying detachment, we get the desired result.
This completes case 6b, and hence case 6.
Case 7, the last inference is by thinning in the succedent:

r—=0
r=0,c

Case 7a, © is the empty list. Then by the induction hypothesis, we have a
proof of p from ~, where p is a new variable. Substituting ¢ for p in this proof
we obtain the desired proof of ¢ from . This completes case 7a.

Case 7b, O is not empty. Then by the induction hypothesis we have a proof
in L of 6 from assumptions 7y, and we need a proof of i(72(c), 8) from ~. But
i(z, (i(y,x)) is a theorem of L, provable without double negations by Lemma
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1, formula (3). Applying detachment, with = 6 and y = 72(c), we obtain the
desired proof. This completes case 7b, and hence case 7.
Case 8, the last inference is by thinning in the antecedent:

r—=0
C,I'=0

By the induction hypothesis, we have a proof in L of € from assumptions I".
That counts as a proof from assumptions C, '’ as well. That completes case 8.
Case 9, the last inference is by interchange in the succudent:

I'=A,C D,0
I'=A,DC,0O

Case 9a, © and A are both empty. Then by the induction hypothesis we have
a proof of i(71(c), d) and we need a proof of i(71(d), ¢). There are four subcases
according as ¢ and d are negations or not. If neither is a negation, we use the
theorem i(i(n(y),x), i(n(x),y)), which is formula (4) of Lemma 1, with y = d
and z = ¢, followed by an application of detachment. If ¢ = n(e) and d = n(u),
then we have a proof of i(e, n(u)), and we need a proof of i(u,n(e)). By formula
(5) of Lemma 1, we have i(i(x,n(y)),i(y,n(x))). Applying this with z = ¢
and ¥ = u, and using detachment, we have the required proof. Now suppose
¢ = n{e) but d is not a negation. Then we have a proof of i(e,d), and we
need a proof of i(n(d), n(e)). Formula (6) of Lemma 1 is i(i(z, y), i(n(y), n(x))).
Applying this with x = e and ¥ = d, and using detachment, we have the
required proof of i(n(d), n(e)). Finally, if d = n(u) but ¢ is not a negation, we
have a proof of i(n(c),n(u)) and need a proof of i(u, c¢). Formula (7) of Lemma
1 is i(i(n(x),n(y)), i(y, x)). Applying this with x = ¢ and y = u, and using
detachment, we have the required proof. This completes Case 9a.

Case 9b, © is empty and A is not empty. By the induction hypothesis,
we have a proof of i(n(c), i(7(d), \)), and we need a proof of i(n(d), i(71(c), \)).
For this we use the following theorem of L, shown in Lemma 1 to be provable
without double negation:

iz, iy, 2)), iy, i(x, 2)))-

Take x = n(c), y = 11(d), and z = A. Applying detachment and the given proof,
we obtain the desired proof.

Case 9¢, O is not empty but A is empty. By Lemma 10, (C, D, ©)’ is equiva-
lent in L to i(72(0), (C, D), which is i(n(0), i(n(c), d)). By the induction hypothe-
sis, we have a proof of this in L from 4. Similarly, (D, C, ©)"is i(7(0), i(12(d), c))-
What we need then is

i(ix, i(n(y), 2)), i, 1(n(2), )))- (25)

Because of the use of 7, this is really four theorems, according as y and z are
both negations, neither one is a negation, or one is a negation and the other is

15



not. Those four theorems are formulas (17) through (20) of Lemma 1, so we do
have (25) in L (and without the use of double negations). Applying (25) with
xr =7,y =c and z = d, and then using detachment, we obtain the required
proof of i(7(0, i(n(d), ¢)). This completes case 9c.

Case 9d, both © and A are nonempty. By Lemma 10, (A, C, D, ©)’ is equiv-
alent in L to i(n2(0), (A, C, D), which is i(7(0),i(72(c),i(72(d), A))). Similarly,
(A, D, C, 0 is i(n(0), i(n(d),i(7(c), A))). By the induction hypothesis, we have
a proof from v of the former, and we need a proof from 7 of the latter. By
formula (21) of Lemma 1, we have

i, iy, i(z, w)), i(x, iz, iy, w))-

Applying this with x = 72(0), v = 72(c), 2 = 7(d), and w = A, and then applying
detachment, we obtain the required proof. This completes case 9d, and hence
Case 9.

Case 10, the last inference is by interchange in the antecedent. This just
means the order of formulas in the assumption list has changed, so there is
nothing to prove.

This completes the proof of part(i) of the lemma. Regarding parts (i) and
(iii): by the preceding lemma, any double negations occurring anywhere in
the G-proof must occur in the final sequent. No new double negations are
introduced in the translation to L, and all the theorems of L. that we used (from
Lemma 1) have been given double-negation-free proofs in L, found by Otter.
Only in case 4b was there any use of the extra hypothesis of part (i), that the
conclusion contains no double negations, and an extra argument was given in
case 4b for parts (ii) and (iii)). Although we may not have pointed it out in
each other case and sub-case, the argument given earlier produces an L-proof in
which any double negations arise from the translations into L of doubly-negated
subformulas of the final sequent. In particular, if the final sequent contains no
double negations, then the L-proof produced also contains no double negations.

Theorem 2 Suppose L proves A from assumptions A and neither A nor A
contains double negation. Then there is a proof in L of A from A that does not
contain double negation.

More generally, if A and A are allowed to contain double negation, then
there is a proof in L of A from A that contains no new double negations. That
is, all doubly-negated formulas occurring in the proof are subformulas of A or

of A.

Remark. The theorem is also true with “triple negation” or “quadruple nega-
tion”, etc., in place of double negation. For instance, if A contains a triple nega-
tion, then it has a proof containing no double negations not already contained
in A. In particular it then contains no triple negations not already contained in
A, since every triple negation is a double negation.
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Proof. Let A° be the translation of A into G defined earlier. Double negations
in A° arise only from double negations in A. Since L is sound, A° is a logical
consequence of A°. Hence, by completeness and Gentzen’s cut-elimination the-
orem, there is a proof in G of A® = A°. By the previous lemma, there is a

proof in L of A% from assumptions A’ that contains no new double negations.
But by Lemma 9, A% = A and A%’ = A. This completes the proof.

Theorem 3 Suppose A is provable from L1-L3 using condensed detachment as
the only rule of inference. Then A has a proof from LI1-L3 using condensed
detachment in which no doubly negated formulas occur except those that already
occur as subformulas of A.

Proof. Suppose A is provable from L1-1.3 using condensed detachment. Each
condensed detachment step can be converted to three steps using substitution
and modus ponens, so A is provable in L. By the preceding theorem, A has a
proof in L in which no doubly negated formulas occur except those that already
occur in A. By Theorem 1, A then has a condensed detachment proof in which
no additional double negations occur. This completes the proof.

Corollary 1 Let T be any set of axioms for (two-valued) propositional logic.
Suppose that there exist condensed-detachment proofs of L1-L3 from T in which
no double negations occur (except those that occur in T, if any). Then the
preceding theorem is true with T in place of L1-L3.

Proof. Let A be provable from T. Then A is a tautology, and hence provable
from L1-L3. By the theorem, there is a proof of A from L1-L3 that contains
no double negations (except those occurring in A, if any). Supplying the given
proofs of L1-L3 from T, we construct a proof of A from 7" which contains no
double negations except those occurring in T or in A (if any). That completes
the proof.

Example. We can take T to contain exactly one formula, the single axiom
M of Meredith. M is double-negation free, and double-negation-free proofs of
L1-L3 from M have been found using Otter, one of which can be found in [8].
Therefore, the theorem is true for single axiom M.

Appendix

Here are the proofs of the formulas in Lemma 1 found with the aid of Otter. In
the first column are arbitrary line numbers; in the second column are the line
numbers of the major and minor premises used to derive the line by condensed
detachment (or L1, L2, or L3 instead of a line number). These proofs are
presented exactly as found by Otter—that is, no effort is made here to use the
results of earlier proofs in the later proofs; each proof begins again from the
axioms alone.
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i(i(n(x),y),i(n(y), )

128,330]
That proves (4).
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[1087,1017] i(i(x,y),i(i(n(x), 2),i(n(y), 2)))

That proves (10).
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That proves (14).
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50
65
75
84
97
109
121
130
137
158
188
254
397

40,41] i(i(z, y), 1(i(n(i(y, 2)), i(y, 2)), i(z, 2)))
[L1,44] i(i(z, y),i(n(i(i(n(2), 2), 2)),9))

[46,50] i(i(x, i(n(i(y, 2)), i(y, 2))), i(i(u, v), i(x, i(u, 2))))
43,65 i(z, i(n(i(i(n(y), y), v)), 2))

[75,84] i(i(z, i(n(y), y)),i(z i(x,y)))

40,97] i(i(n(x),y),i(2,i(i(y, x), x)))

[75,109] i(i(x, i(y, 2)),1(i(n(2),y), i(x, 2))

[46,121]  i(i(z,i(n(y), 2)), i(i(u, i(2, ), i(, i(u, y))))
[121,L3]  i(i(n(z),n(y)), i(y, )

[43,137] i(z,i(y, x))

[130,158]  i(i(x,i(y, 2)),i(y,i(x, 2)))

[188,1.1] i(i(x, y),i(i(z, x), (2, y)))

[254,188]  i(i(x,i(y,i(z, w))), i(x, (2, i(y,u))))

That proves (21).
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