// verify the ET and EF axioms over a Euclidean field. u,v,w,p,q will be 2-vectors a,b,c will be scalars (a,b) is a vector Axioms: neg(a = 0) -> a*i(a) = 1 i(a)*a = 1 1*a = a a*1 = a 0*a = 0 a*0 = 0 a*(b*c) = (a*b)*c a*b = b*a a+0=a 0+a = a a + (-a) = 0 a+b = b+a a+(b+c) = (a+b)+c a*(b+c) = a*b + a*c (a+b)*c = a*c + b*c a < b & b < c -> a < c neg(a < a) 0 < a -> sqrt(a) * sqrt(a) = a 0 < a -> 0 < sqrt(a) 0 < a & 0 < b -> 0 < a+b 0 < a & 0 < b -> 0 < a*b Definitions a-b = a + (-b) (a,b)+(c,d) = (a+c,b+d) (a,b)-(c,d) = (a-c,b-d) dot((a,b),(c,d)) = a*c + b*d cross((a,b),(c,d)) = a*d-b*c abs((a,b)) = sqrt(a*a + b*b) area(p,q,r) = i(2) * abs(cross(p-q,r-q)) dsq((a,b),(c,d)) = (c-a)*(c-a),(d-b)*(d-b) d(p,q) = sqrt(dsq(p,q)) Theorems a*(b-c) = a*b-a*c (a-b)*c = a*c - b*c (a-b)*c = a*c-b*c a - (b+c) = (a-b)-c a - (b-c) = a-b+c -(-a) = a a-(-b) = a+b ETpermutation area(p,q,r) = area(q,r,p) Proof: Let p = (a,b), q = (c,d), r = (e,f). Then cross(p-q,r-q) = cross((a,b)-(c,d),(e,f)-(c,d)) = cross((a-c,b-d),(e-c,f-d)) = (a-c)*(f-d)-(b-d)*(e-c) = (a-c)*f - (a-c)*d - ((b-d)*e - (b-d)*c) = (a-c)*f - (a-c)*d -(b-d)*e + (b-d)*c = a*f -c*f - (a*d -c*d) -(b*e-d*e) + b*c-d*c = a*f-c*f-a*d+c*d -b*e +d*e + b*c-d*c = a*f-c*f-a*d -b*e +d*e + b*c +c*d -d*c = a*f-c*f-a*d -b*e +d*e + b*c +c*d - c*d = a*f-c*f-a*d -b*e +d*e + b*c + 0 = a*f-c*f-a*d -b*e +d*e + b*c and cross(q-r,p-r) = cross((c,d)-(e,f),(a,b)-(e,f)) = cross((c-e,d-f),(a-e,b-f)) = (c-e)*(b-f)-(d-f)*(a-e) = c*b-e*b -c*f+e*f - d*a + d*e+f*a-f*e = b*c-b*e -c*f +e*f -a*d + d*e + a*f - f*e = b*c- b*e - c*f - a*d + d*e + a*f + e*f - f*e =b*c- b*e - c*f - a*d + d*e + a*f + (e*f-f*e) =b*c- b*e - c*f - a*d + d*e + a*f + 0 = b*c- b*e - c*f + a*d + d*e + a*f = a*f-c*f -a*d -b*e+d*e+b*c = cross(p-q,r-q) Hence area(p,q,r) area(q,r,p)