unequal `NE A B <=> ~(EQ A B)` collinear `CO A B C <=> (EQ A B \/ EQ A C \/ EQ B C \/ BE B A C \/ BE A B C \/ BE A C B)` noncollinear `NC A B C <=> NE A B /\ NE A C /\ NE B C /\ ~(BE A B C) /\ ~(BE A C B) /\ ~(BE B A C)` inside `IC P J <=> ?X Y U V W. CI J U V W /\ (EQ P U \/ BE U Y X /\ EE U X V W /\ EE U P U Y)` outside `OC P J <=> ?X U V W. CI J U V W /\ BE U X P /\ EE U X V W` on `ON B J <=> ?X Y U. CI J U X Y /\ EE U B X Y` equilateral `EL A B C <=> EE A B B C /\ EE B C C A` triangle `TR A B C <=> NC A B C` ray `RA A B C <=> ?X. BE X A C /\ BE X A B` lessthan `LT A B C D <=> ?X. BE C X D /\ EE C X A B` midpoint `MI A B C <=> BE A B C /\ EE A B B C` equalangles `EA A B C a b c <=> ?U V u v. RA B A U /\ RA B C V /\ RA b a u /\ RA b c v /\ EE B U b u /\ EE B V b v /\ EE U V u v /\ NC A B C` supplement `SU A B C D F <=> RA B C D /\ BE A B F` rightangle `RR A B C <=> ?X. BE A B X /\ EE A B X B /\ EE A C X C /\ NE B C` perpat `PA P Q A B C <=> ?X. CO P Q C /\ CO A B C /\ CO A B X /\ RR X C P` perpendicular `PE P Q A B <=> ?X. PA P Q A B X` interior `IA A B C P <=> ?X Y. RA B A X /\ RA B C Y /\ BE X P Y` oppositeside `OS P A B Q <=> ?X. BE P X Q /\ CO A B X /\ NC A B P` sameside `SS P Q A B <=> ?X U V. CO A B U /\ CO A B V /\ BE P U X /\ BE Q V X /\ NC A B P /\ NC A B Q` isosceles `IS A B C <=> TR A B C /\ EE A B A C` cut `CU A B C D E <=> BE A E B /\ BE C E D /\ NC A B C /\ NC A B D` trianglecongruence `TC A B C a b c <=> EE A B a b /\ EE B C b c /\ EE A C a c /\ TR A B C` anglelessthan `AO A B C D E F <=> ?U X V. BE U X V /\ RA E D U /\ RA E F V /\ EA A B C D E X` togethergreater `TG A B C D E F <=> ?X. BE A B X /\ EE B X C D /\ LT E F A X` togetherfour `TT A B C D E F G H <=> ?X. BE E F X /\ EE F X G H /\ TG A B C D E X` tworightangles `RT A B C D E F <=> ?X Y Z U V. SU X Y U V Z /\ EA A B C X Y U /\ EA D E F V Y Z` meet `ME A B C D <=> ?X. NE A B /\ NE C D /\ CO A B X /\ CO C D X` cross `CR A B C D <=> ?X. BE A X B /\ BE C X D` tarski_parallel `TP A B C D <=> NE A B /\ NE C D /\ ~(ME A B C D) /\ SS C D A B` parallel `PR A B C D <=> ?U V u v X. NE A B /\ NE C D /\ CO A B U /\ CO A B V /\ NE U V /\ CO C D u /\ CO C D v /\ NE u v /\ ~(ME A B C D) /\ BE U X v /\ BE u X V` anglesum `AS A B C D E F P Q R <=> ?X. EA A B C P Q X /\ EA D E F X Q R /\ BE P X R` parallelogram `PG A B C D <=> PR A B C D /\ PR A D B C` square `SQ A B C D <=> EE A B C D /\ EE A B B C /\ EE A B D A /\ RR D A B /\ RR A B C /\ RR B C D /\ RR C D A` rectangle `RE A B C D <=> RR D A B /\ RR A B C /\ RR B C D /\ RR C D A /\ CR A C B D` equalcircles `EC J K <=> CI J C A B /\ CI K c a b /\ EE A B a b` segmentcutscircle `CA A B J E <=> CI J C P Q /\ ON E J /\ BE A E B /\ IC A J /\ OC B J` linecutscircle `LC A B J <=> CI C J C P Q /\ CO A B X /\ CO A B Y /\ CO A B Z /\ CA X Y J Z` tangentline `TA A B J E <=> CI J C P Q /\ ON E J /\ BE A E B /\ ~(LC A B J)` congruentrectangles `RC A B C D a b c d <=> RE A B C D /\ RE a b c d /\ EE A B a b /\ EE B C b c` equalrectangles `ER A B C D a b c d <=> ?X Y Z U x z u w W. RC A B C D X Y Z U /\ RC a b c d x Y z u /\ BE x Y Z /\ BE X Y z /\ BE W U w` baserectangle `BR A B C D E <=> RE B C D E /\ CO D E A` figurerectangle `FR A B C D E F G H <=> RE E F G H /\ BE E B F /\ BE H D G /\ BR C B D G F /\ BF A B D H E` equaltriangles `TE A B C a b c <=> ?X Y x y. RE A B X Y /\ RE a b x y /\ CO X Y C /\ CO x y c /\ ER A B X Y a b x y` equalfigures `FE A B C D a b c d <=> ?X Y Z U x y z u. OS A B C D /\ OS a b c d /\ FR A B C D X Y Z U /\ FR a b c d x y z u /\ ER X Y Z U x y z u` equaltrianglefigure `TF A B C a b c d <=> ?X Y x y z u. BR A B C X Y /\ FR a b c d x y z u /\ ER B C X Y x y z u`