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Abstract

We investigate the problem of cutting a triangle ABC into N congruent triangles (the
“tiles”), each of which is similar to ABC. The more general problem when the tile is not similar
to ABC is not treated in this paper; see [1]. We give a complete characterization of the numbers
N for which some triangle ABC can be tiled by N tiles similar to ABC, and also a complete
characterization of the numbers N for which a particular triangle ABC can so tiled. It has long
been known that there is always a “quadratic tiling” when N is a square. We show that unless
ABC is a right triangle, N must be a square. On the other hand, if ABC is a right triangle,
there are two more possibilities: N can be a sum of two squares e2 + f2 if the tangent of one
of the angles is the rational number e/f , or in case ABC is a 30-60-90 triangle, N can be three
times a square.

The key idea is that the similarity factor
√

N is an eigenvalue of a certain matrix. The proofs
we give involve only undergraduate level linear algebra.

1 Examples of Tilings

We consider the problem of cutting a triangle into N congruent triangles. Figures 1 through 4
show that, at least for certain triangles, this can be done with N = 3, 4, 5, 6, 9, and 16. Such
a configuration is called an N-tiling.

Figure 1: Two 3-tilings

The method illustrated for N = 4 ,9, and 16 clearly generalizes to any perfect square N .
While the exhibited 3-tiling, 6-tiling, and 5-tiling clearly depend on the exactly angles of the
triangle, any triangle can be decomposed into n2 congruent triangles by drawing n − 1 lines,
parallel to each edge and dividing the other two edges into n equal parts. Moreover, the large
(tiled) triangle is similar to the small triangle (the “tile”). We call such a tiling a quadradtic
tiling. It follows that if we have a tiling of a triangle ABC into N congruent triangles, and m
is any integer, we can tile ABC into Nm2 triangles by subdividing the first tiling, replacing
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Figure 2: A 4-tiling, a 9-tiling, and a 16-tiling

Figure 3: Three 4-tilings

each of the N triangles by m2 smaller ones. Hence the set of N for which an N-tiling of some
triangle exists is closed under multiplication by squares.

Let N be of the form n2 + m2. Let triangle T be a right triangle with perpendicular sides
n and m, say with n ≥ m. Let ABD be a right triangle with base AD of length m2, the right
angle at D and altitude mn, so side BD has length mn. Then ABD can be decomposed into m
triangles congruent to T , arranged with their short sides (of length m) parallel to the base AD.
Now, extend AD to point C, located n2 past D. Triangle ADC can be tiled with n2 copies of
T , arranged with their long sides parallel to the base. The result is a tiling of triangle ABC
by n2 + m2 copies of T . The first 5-tiling exhibited in Fig. 3 is the simplest example, where
n = 2 and m = 1. The case N = 13 = 32 + 22 is illustrated in Fig. 5. We call these tilings
“biquadratic.” More generally, a biquadratic tiling of triangle ABC is one in which ABC has
a right angle at C, and can be divided by an altitude from C to AB into two triangles, each
similar to ABC, which can be tiled respectively by n2 and m2 copies of a triangle similar to
ABC. The second 5-tiling shows that this can be sometimes be done more generally than by
combining two quadratic tilings.

Figure 4: Two 5-tilings

If the original triangle ABC is chosen to be isosceles, then each of the n2 triangles can
be divided in half by an altitude; hence any isosceles triangle can be decomposed into 2n2

congruent triangles. If the original triangle is equilateral, then it can be first decomposed into
n2 equilateral triangles, and then these triangles can be decomposed into 3 or 6 triangles each,
showing that any equilateral triangle can be decomposed into 3n2 or 6n2 congruent triangles.
These tilings are neither quadratic nor biquadratic. For example we can 12-tile an equilateral
triangle in two different ways, starting with a 3-tiling and then subdividing each triangle into 4
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Figure 5: A 13-tiling

triangles (“subdividing by 4”), or starting with a 4-tiling and then subdividing by 3.

Figure 6: A 6-tiling, an 8-tiling, and a 12-tiling

Examples like these led us to the following definitions:
A tiling E of triangle ABC (with tile T2 is a subtiling of another tiling F of ABC (with tile

T ), if T can be tiled by the tile T2 and the tiling E is obtained by tiling each copy of T in F with
triangle T2. It is not required that the same tiling be used for each copy of T . For example, we
could take F to be one of the two five-tilings, and then tile each of the tiles in that tiling by one
of its two five-tilings. In this way we can obtain 32 different 25-tilings, none of them quadratic.

A tiling of ABC is called composite if it is a subtiling of some tiling into fewer triangles. It
is called prime if it is not composite. Note that a quadratic N2 tiling is prime if and only if N
is a prime number.

The examples above do not exhaust all possible tilings, even when N is a square. For
example, Fig. 7 shows a 9-tiling that is not produced by those methods:

Figure 7: Another 9-tiling

There is another family of N-tilings, in which N is of the form 3m2, and both the tile and
the tiled triangle are 30-60-90 triangles. The case m = 1 is given in Fig. 1; the case m = 2
makes N = 12. There are two ways to 12-tile a 30-60-90 triangle with 30-60-90 triangle. One is
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to first quadratically 4-tile it, and then subtile the four triangles with the 3-tiling of Figure 1.
This produces the first 12-tiling in Fig. 8. Somewhat surprisingly, there is another way to tile
the same triangle with the same 12 tiles, also shown in Fig. 8; the second tiling is prime. The
next member of this family is m = 3, which makes N = 27. Two 27-tilings are shown in Fig.
9; the first obtained by subtiling a quadratic tiling, and the second one prime. Similarly, there
are two 48-tilings (not shown).

Figure 8: Two 12-tilings

Figure 9: Two 27-tilings

Until October 12, 2008, no examples were known of more complicated tilings than those
illustrated above. Then we found the beautiful 27-tiling shown in Fig. 10. This tiling is one of
a family of 3k2 tilings (the case k = 3). The next case is a 48-tiling, made from six hexagons
(each containing 6 tiles) bordered by 4 tiles on each of 3 sides. In general one can arrange
1 + 2 + . . . + k hexagons in bowling-pin fashion, and add k + 1 tiles on each of three sides, for a
total number of tiles of 6(1 + 2 + . . . + k) + 3(k + 1) = 3k(k + 1) + 3(k + 1) = 3(k + 1)2. Figure
11 shows more members of this family.

Figure 10: A prime 27-tiling
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Figure 11: 3m
2 tilings for m = 4 and m = 5

2 Previous work

The examples given in Figures 1 through 6 are well-known. They have been discussed, in
particular, in connection with “rep-tiles” [7]. A “rep-tile” is a set of points X in the plane (not
necessarily just a triangle) that can be dissected into N congruent sets, each of which is similar
to S. An N-tiling in which the tiled triangle ABC is similar to the triangle T used as the tile is
a special case of this situation. That is the case, for example, for the n2 family and the n2 +m2

family, but not for the 3-tiling, 6-tiling, or the 12-tiling exhibited above. Thus the concepts of
an N-tiling and rep-tiles overlap, but neither subsumes the other. The paper [6] also contains
a diagram showing the n2 family of tilings, but the problem considered there is different: one
is allowed to cut N copies of the tile first, before assembling the pieces into a large figure, but
the large figure must be similar to the original tile. The two books [2] and [3] have tantalizing
titles, but deal with other problems.

Only after completing the work in this paper did I encounter Soifer’s book [8], when the
second edition came out, although the first edition had been out for 19 years. The book contains
the observation that if the tile T is similar to the tiled triangle then

√
N is an eigenvalue of a

certain matrix, so that observation is, as it turns out, not new. The book, however, does not
contain any examples of tilings beyond the quadratic tilings, though it gives an indication that
at least the biquadratic tilings were known, since it says that the 1989 Russian Mathematical
Olympiad contained the problem to show that if N is a sum of two squares then there is a
triangle that can be N-tiled. Soifer states (p. 48) an open problem about triangle tiling, and
says that Paul Erdös offered a $25 prize for the first solution. He does not state where or when
Erdös mentioned these problems. The problem statement is: Find all positive integers N such
that at least one triangle can be cut into N triangles congruent to each other. This is Soifer’s
“Problem 6.7.”

Soifer also states some related problems. His “Problem 6.5” is: For each triangle ABC, find
all positive integers N such that T can be cut into N triangles congruent to each other, and the
number of distinct partitions of T into N congruent triangles. Soifer says that his Problem 6.5
is “open and very difficult.”

Soifer’s “Problem 6.6” is also a $25 Erdös problem: Find (and classify) all triangles that can
only be cut into n2 congruent triangles for any integer n.

Soifer claims, without publishing a proof, that if the sides and angles of ABC are integrally
independent, then ABC admits only quadratic tilings. He proves that the perfect squares are
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exactly the N for which every triangle ABC can be N-tiled by some triangle.
Dima Fan-Der-Flaas informed me that the problem of finding an N-tiling of some triangle

when N = 1989 was posed on the Russian Mathematical Olympiad in 1989; it was solved by a
few students, who had to discover what we call here the “biquadratic tilings”, and realize that
1989 is a sum of two squares and the relevance of that fact. I would like to thank Dima for his
careful reading of parts of some drafts of this paper.

3 The impossibility of certain tilings

The elementary constructions just described suffice to produce N-tilings when N has one of the
forms n2, n2 +m2, 2n2, 3n2, or 6n2. Of the tilings we have exhibited, many have the tile similar
to the tiled triangle ABC; the others have ABC equilateral or at least isosoceles. In this paper
we deal only with the case when the tile is similar to ABC; in which case it turns out that the
only possible forms of N are n2, n2 + m2, and 3n2. Our main theorem implies that if N is not
of one of these forms, then there is no N-tiling of any triangle ABC by a tile similar to ABC;
but it also shows that the second and third form can only apply when ABC is a right triangle.

4 Definitions, notation, and some simple lemmas

We give a mathematically precise definition of “tiling” and fix some terminology and notation.
Given a triangle T and a larger triangle ABC, a “tiling” of triangle ABC by triangle T is a
list of triangles T1, . . . , Tn congruent to T , whose interiors are disjoint, and the closure of whose
union is triangle ABC. A “strict vertex” of the tiling is a vertex of one of the Ti that does
not lie on the interior of an edge of another Tj . A “strict tiling” is one in which no Ti has a
vertex lying on the interior of an edge of another Tj , i.e. every vertex is strict. For example,
the biquadratic tilings (illustrated above for N = 5 and N = 13) are not strict, but all the other
tilings shown above are strict. The letter “N” will always be used for the number of triangles
used in the tiling. An N-tiling of ABC is a tiling that uses N copies of some triangle T .

Let a, b, and c be the sides of triangle ABC, and angles α, β, and γ be the angles opposite
sides a, b, and c, i.e. the interior angles at vertices A, B, and C. An interior vertex in a tiling
of ABC is a vertex of one of Ti that does not lie on the boundary of ABC. A boundary vertex
is a vertex of one of the Ti that lies on the boundary of ABC.

By the law of sines we have
a

sin α
=

b

sin β
=

c

sin γ

Up to similarity then we may assume

a = sin α

b = sin β

c = sin γ

Since γ = π − (α + β) we have sin(γ) = sin(α + β), so

p sin α + q sin β + r sin(α + β) = 0.

The meanings of all these symbols will be fixed throughout the rest of the paper.
A non-strict vertex V is one that lies on an edge of Tj , with Tj on one side of the edge and

(more than one) Ti having vertex V on the other side. Consider the maximal line segment S
extending this edge which is contained in the union of the edges of the tiling. This is defined
to be the maximal segment of V . Since there are triangles on each side of S, there are triangles
on each side of S at every point of S (since S cannot extend beyond the boundary of ABC).
Hence the length of S is a sum of lengths of sides of triangles Ti in two different ways (though
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the summands may possibly be the same numbers in a different order). Let us assume for the
moment that the summands are not the same numbers. Then it follows that some linear relation
of the form

pa + qb + rc = 0

holds, with p, q, and r integers not all zero (one of which must of course be negative), and the
sum of the absolute values of p, q, and r is less than or equal to N , since there are no more than
N triangles.

If S is a maximal segment containing a non-strict vertex, then there will be integers n and
m such that n triangles have a side contained in S and lie on one side of S, and m triangles have
a side in S and lie on the other side of S. In that case we say S is of type m : n. For example,
Fig. 3 shows a 5-tiling with a maximal segment of type 1 : 2. This definition does not require
that the lengths of the subdivisions of the maximal segment all be the same (as they are in Fig.
3).

A quadratic tiling is one in which N is a perfect square, say N = m2, and the tiling is
produced by drawing m − 1 equally spaced lines parallel to each side, dividing each edge into
m equal segments. In such a tiling, the tile T is similar to the large triangle ABC. An angle
relation is an equation

pα + qβ + rγ = 2π

where p, q, and r are non-negative integers, not all equal. (Since we always have α +β + γ = π,
we do not count that equation or its multiples as an angle relation.)

A split vertex occurs when two copies of the tile in a triangle share one of the vertices of the
large triangle.

The following lemma is simple and fundamental:

Lemma 1 If, in a tiling, P is a boundary vertex (or a non-strict interior vertex) and only one
interior edge emanates from P , then both angles at P are right angles and γ = π/2.

Proof. If the two angles at P are different, then their sum is less than π, since the sum of all three
angles is π. Therefore the two angles are the same. But 2α ≤ α + β < π and 2β ≤ β + γ < π.
Therefore both angles are γ. But then 2γ = π, so γ = π/2.

The following lemma identifies those relatively few rational multiples of π that have rational
tangents or whose sine and cosine satisfy a polynomial of low degree over Q.

Lemma 2 Let ζ = eiθ be algebraic of degree d over Q, where θ is a rational multiple of π, say
θ = 2mπ/n, where m and n have no common factor.

Then d = ϕ(n), where ϕ is the Euler totient function. In particular if d = 4, which is the
case when tan θ is rational and sin θ is not, then n is 5, 8, 10, or 12; and if d = 8 then n is 15,
16, 20, 24, or 30.

Remark. For example, if θ = π/6, we have sin θ = 1/2, which is of degree 1 over Q. Since
cos θ =

√
3/2, the number ζ = eiθ is in Q(i,

√
3), which is of degree 4 over Q. The number ζ is

a 12-th root of unity, i.e. n in the theorem is 12 in this case; so the minimal polynomial of ζ is
of degree ϕ(12) = 4. This example shows that the theorem is best possible.

Remark. The hypothesis that θ is a rational multiple of π cannot be dropped. For example,
x4 − 2x3 + x2 − 2x + 1 has two roots on the unit circle and two off the unit circle.

Proof. Let f be a polynomial with rational coefficients of degree d satisfied by ζ. Since ζ =
ei2mπ/n, ζ is an n-th root of unity, so its minimal polynomial has degree d = ϕ(n), where ϕ is
the Euler totient function. Therefore ϕ(n) ≤ d. If tan θ is rational and sin θ is not, then sin θ
has degree 2 over Q, so ζ has degree 2 over Q(i), so ζ has degree 4 over Q. The stated values of
n for the cases d = 4 and d = 8 follow from the well-known formula for ϕ(n). That completes
the proof of (ii) assuming (i).

Corollary 1 If sin θ or cos θ is rational, and θ < π is a rational multiple of π, then θ is a
multiple of 2π/n where n is 5, 4, 8, 10, or 12.
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Proof. Let ζ = cos θ + i sin θ = eiθ. Under the stated hypotheses, the degree of Q(ζ) over Q is
2 or 4. Hence, by the lemma, θ is a multiple of 2π/n, where n = 5, 8, 10, or 12 (if the degree
is 4) or n = 3 or 6 (if the degree is 3). But the cases 3 and 6 are superfluous, since then θ is
already a multiple of 2π/12.

5 Quadratic and non-quadratic tilings

In this section we give a simple sufficient condition for a tiling to be quadratic.

Lemma 3 Suppose tile T strictly tiles triangle ABC. If the tile T is similar to the triangle
ABC, and there are no angle relations, then the tiling is a quadratic tiling.

Proof. Note that since there are no angle relations, the three angles α, β, and γ are pairwise
unequal: for example, if α = β, then the relation α + β + γ = π implies 2α + γ = π, which is an
angle relation.

Since T is similar to triangle ABC, and angle A is the smallest angle of ABC, angle A = α.
Then consider the copy T1 of the tile that shares vertex A. Its two sides lie on the sides of
triangle ABC. We can relabel the vertices B and C if necessary so that the angle of T1 at its
vertex P1 on side AB is β, and its angle at its vertex Q1 on side AC is γ.

There must be exactly three copies of the tile meeting at P1, and the three angles at P1 are
(in some order) α, β, and γ, because any other vertex behavior gives rise to an angle relation.
Let the tiles meeting at P1 be T1, T2, and T3, numbered so that T2 and T1 share a side. That
shared side is a, since it is opposite angle A in T1. Then T2 does not have angle α at P1, since
the α vertex of T2 has to be opposite side P1Q1. T2 does not have angle β at P1, since T1 has
angle β there, and only one β can occur at P1. Therefore T2 has angle γ at P1. Therefore T3 has
angle α at P1. Since the tiling is strict, the angle of T3 at its second vertex P2 on side AB must
be β; otherwise the shared sides of T2 and T3 will have different length, since the length of that
side of T2 is b. But now, we are in the same situation with T2 as we originally were with T1: the
two angles along side AB are α and β (in that order). We can argue as before that the three
triangles T3, T4, and T5 meeting at P2 have angles β,γ, and α at P2, in that order. Continuing
down side AB in this fashion, we eventually reach a tile T2m−1 that has B for a vertex; there
will be m copies of the tile sharing a side with AB; there will be m − 1 vertices P, . . . , Pm−1

along AB, each shared by three triangles; the number of tiles used is 2m− 1. The third vertices
of these triangles are points Q1, . . . , Qm−1, lying on a line parallel to AB, and the last point
Qm−1 lies on BC. The triangle Q1CQm−1 is thus tiled by the restriction of the original tiling
to that triangle. This restricted tiling is still strict and has no angle relations. By induction, we
can assume that this restricted tiling is quadratic. Since it has m − 1 tiles along side Q1Qm−1,
we have (m − 1)2 = N − (2m − 1). Then N = (m − 1)2 + 2m − 1 = m2. That completes the
proof.

Remark. The 5-tiling in Figure 1 has T similar to ABC, but it has an angle relation 2α+2β = π,
and it also has a non-strict vertex. It is natural to ask if the hypotheses of the lemma can be
weakened by dropping one or the other of the hypotheses. Does there exist a strict non-quadratic
tiling in which T is similar to ABC? (Angle relations are OK.) Does there exist a non-quadratic
tiling with no angle relations in which T is similar to ABC? (Non-strict vertices are OK, but
the angles meeting there would have to be exactly one each of α, β, and γ.) We do not know
the answer to either of those questions. Note that if γ is a right angle we have an angle relation
2γ = π.

6 The d-matrix, and a related eigenvalue problem

Let triangle ABC be tiled by the tile T , whose sides are a, b, and c. Let the sides of ABC
be X, Y , and Z. We assume the triangle is labeled so that angles A, B, and C are listed in
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non-decreasing order; hence also X ≤ Y ≤ Z. In case triangle ABC is similar to the tile, this
implies that angle A = α, angle B = β, and angle C = γ.

Each side X, Y , and Z is a linear combination of a, b, and c, the coefficients specifying how
many tiles share sides of length a, b, and c with X, Y , or Z. These nine numbers are the entries
of the matrix d, such that

0

@

X
Y
Z

1

A = d

0

@

a
b
c

1

A

If the triangle ABC is similar to the tile, then we have
0

@

X
Y
Z

1

A =
√

N

0

@

a
b
c

1

A

because each side of ABC must be
√

N times the corresponding side of the tile T , in order that
the area of ABC can be N times the area of T . Therefore

d

0

@

a
b
c

1

A =
√

N

0

@

a
b
c

1

A .

That is,
√

N is an eigenvalue of d, and (a, b, c) is an eigenvector for that eigenvalue. If triangle
T is isosceles, then d is not (yet) uniquely defined. In that case we have either a = b or b = c;
our convention is to ignore b, so that when T is isosceles, the middle column of the d matrix
is zero. We will not make use of the d matrix when T is equilateral, but for completeness,
we define the d matrix in that case to have non-zero entries only in the first column. If T is
not isosceles, then the coefficients in the d matrix are integers between 0 and N − 1, inclusive,
assuming N > 2: Not all N triangles can share a side of triangle ABC, since if N > 2, there
would be two adjacent vertices along that side at which only two triangles meet; but then by
Lemma 1, the copy of the tile between those vertices would have two right angles.

For example, consider the 5-tiling shown in Figure 1. Here the shortest side of the large
triangle consists of one c, so the top row of the d matrix is 0 0 1. The middle side of the large
triangle consists of two c’s, so the middle row of the d matrix is 0 0 2. The longest side of the
large triangles consists of one a and two b’s, so the bottom row is 1 2 0. Thus the d matrix for
this example is

0

@

0 0 1
0 0 2
1 2 0

1

A

and the eigenvalue equation is
0

@

0 0 1
0 0 2
1 2 0

1

A

0

@

a
b
c

1

A =
√

5

0

@

a
b
c

1

A

In this example we have α = π/6, β = π/3, and γ = π/2, so a = sin π/6 = 1/2, b = sin π/3 =√
3/2, and c = sin π/2 = 1. One can check the eigenvalue equation numerically with these

values.
Note that the d matrix for a quadratic tiling is

√
N times the identity. We conjecture that

if N is a perfect square, say m2, and d is m times the identity, then the tiling is quadratic.

7 Tilings with T similar to ABC

In this section, we assume triangle ABC is N-tiled by triangle T similar to ABC. In case N
is a square, we have the quadratic tiling of ABC; in this section we assume N is not a square.
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Let the sides of T be a, b, and c, in non-decreasing order; these are opposite the angles α, β,
and γ of T . We start by disposing of a special case.

Lemma 4 Suppose T and ABC are both equilateral, and there is an N-tiling of ABC by T .
Then N is a square and the tiling is a quadratic tiling.

Proof. Since all the angles of T and ABC are equal, and all the sides of T are equal, there is
only one way to place tile T1 at vertex B. Along side BC there must be a certain number m
of copies of T ; hence the side of ABC is mc, where c is the side of X. We prove by induction
on m that such a tiling is a quadratic tiling using m2 triangles. There are m tiles that share
sides with BC. Call them T1, . . . , Tm. This sawtooth-like configuration requires the placement
of m − 1 copies of T , one between each adjacent pair of triangles T1, . . . , Tm. Now we have
identified a total of 2m − 1 triangles that participate in the original tiling, and the remaining
triangles tile the smaller equilateral triangle formed by deleting the tiles identified so far from
ABC. The base of this triangle is smaller than the original base BC by c, the side of T . By the
induction hypothesis, the tiling of this triangle is quadratic, using (m − 1)2 tiles. Combining
this with the row of 2m − 1 triangles along BC, we have a quadratic tiling with a total of
(m − 1)2 + 2m − 1 = m2 tiles, completing the inductive proof.

Next we review the computation of eigenvectors by cofactors. To find an eigenvector of the
d matrix with eigenvalue

√
N , consider the matrix X := d−

√
NI . An eigenvector can be found

by picking any row, and then arranging the cofactors of the elements of that row as a (column)
vector. If these cofactors do not all vanish, then the result is an eigenvector. (The reader may
either verify this or just check directly that the particular eigenvalues produced this way below
are indeed eigenvectors.)

Now we take up the general case of a tiling T with ABC similar to T , when N is not a
square.

Lemma 5 Let triangle ABC be N-tiled by tile T similar to ABC, and suppose N is not a
square. Then the diagonal entries of the d matrix are zero.

Proof. Since the area of ABC is N times the area of T , and T is similar to ABC, the sides of
ABC are

√
N times a, b, and c. Then (as discussed in a previous section) we have the eigenvalue

equation

d

0

@

a
b
c

1

A =
√

N

0

@

a
b
c

1

A .

The characteristic polynomial f(x) of the d matrix, the determinant of d − xI , is a cubic
polynomial with integer coefficients, yet has for a zero the number

√
N . This is only possible

if it factors into a quadratic factor and a linear factor. Since N is not a square, the quadratic
factor must be a multiple of λ2 − N . The coefficient of x3 is −1, and so for some q we have

f(x) = (x2 − N)(q − x)

In general the coefficient of x2 in the characteristic polynomial of any 3 by 3 matrix d is the
trace of d, and the constant term is the determinant of d. Hence q is the trace of d and −Nq is
the determinant of d. Since the entries of d are non-negative integers, the trace is non-negative,
so q ≥ 0.

To avoid so many subscripts, we use separate letters for the entries in the d-matrix, writing
it as

d =

0

@

p d e
g m f
h ℓ r

1

A

Since the similarity factor between ABC and T is
√

N , there cannot be more than
√

N tiles
with a sides along X, the short side of ABC. That is, p ≤

√
N . More formally, a

√
N = X =
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pa + db + ec ≥ pa, so p ≤
√

N . Similarly m ≤
√

N and r ≤
√

N . Since N is not rational, we
have strict inequalities: p <

√
N , r <

√
N , and r <

√
N . It follows that pm < N , etc.

We also note that there is just one tile sharing vertex A, where ABC has its α angle. That
tile must have its b and c sides along AB and AC, or along AC and AB, we don’t know which.
Thus either f and ℓ are nonzero, or m and r are nonzero.

Suppose, for proof by contradiction, that q, the trace of d, is not zero. Then q = p+m+r > 0.
Since the three eigenvalues are distinct (because q is rational and

√
N is not), the eigenspace

corresponding to
√

N is one-dimensional. The eigenvalue equation is

(d − λI)

0

@

u
v
w

1

A = 0

or showing the coefficients

0

@

p −
√

N d e

g m −
√

N f

h ℓ r −
√

N

1

A

0

@

u
v
w

1

A = 0

We claim that there exists an eigenvector (u, v, w) whose components lie in Q(
√

N). To prove
this we will use the cofactor method described above.

The resulting eigenvector is (u, v, w), provided all three components are nonzero, where

u =

˛

˛

˛

˛

d e

m −
√

N f

˛

˛

˛

˛

v = −
˛

˛

˛

˛

p −
√

N e
g f

˛

˛

˛

˛

w =

˛

˛

˛

˛

p −
√

N d

g m −
√

N

˛

˛

˛

˛

Although we have not given a proof of the cofactor method’s correctness, one can easily verify
directly that the exhibited vector is indeed an eigenvector for

√
N ; this also provides a check

that no algebraic mistake has been made. The fact that all three cofactors are nonzero is really
only needed to conclude directly that the eigenspace of (u, v, w) is one-dimensional; but we
know that directly in our case since the eigenvalues

√
N , −

√
N , and q are distinct. It therefore

suffices to check that one of the cofactors u, v, w is nonzero; then the others must automatically
be nonzero because (u, v, w) is a nonzero multiple of (a, b, c). But we give direct proofs that all
three cofactors are nonzero anyway, as it takes only one more paragraph.

We have u = df − em + e
√

N . If u = 0 then e = 0 and hence df = 0. If v = 0 then similarly
f = 0 and eg = 0. Finally if w = 0 then p + m = 0 and hence p = m = 0, so N = dg.

Assume, for proof by contradiction, that w = 0 . Then

(m −
√

N)(p −
√

N) = dg

mp + N −
√

N(p + m) = dg

Since
√

N is irrational this means p + m = 0, and since p and m are nonnegative, that implies
p = 0 and m = 0. Hence dg = N . But d ≤ (a/b)

√
N , with equality implying that p = d = 0,

and g ≤ (b/a)
√

N with equality implying m = f = 0. Since dg = N , equality must hold in
both inequalities. Hence d = (a/b)

√
N and g = (b/a)

√
N and p = e = m = f = 0. But we

showed above that either m and r are both nonzero, or f and ℓ are both nonzero. That is now
contradicted by m = f = 0. This contradiction shows that w 6= 0.

Next we give the proof that u 6= 0; as remarked above, this is technically superfluous, but still
it is interesting because the proof we give is not simply an abstract argument about projecting
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onto the one-dimensional eigenspace. Assume, for proof by contradiction, that u = 0. Then
df − em+ e

√
N = 0. Since

√
N is not rational, e = 0 and df − em = 0. Then df = 0, so d = 0 or

f = 0. If d = 0, then since both d and e are zero, side X of triangle ABC is composed of all a
sides and X = (p−

√
N)a. But since

√
N is the similarity factor between T and ABC, we have

X =
√

Na. Hence p −
√

N =
√

N . Hence
√

N = p/2, so N2 = p2/4. Hence 4N2 = p2 and p is
even, so N is a square, contradiction. This contradiction proves d 6= 0. Since d = 0 or f = 0,
we have f = 0. Now assume, for proof by contradiction, that g = 0. Then since f = 0, side Y
is composed entirely of b sides of tiles, so Y = mb. But Y = b

√
N since

√
N is the similarity

factor between T and ABC. Hence m =
√

N , contradiction. That proves g 6= 0. As shown
above, either f and ℓ are both nonzero or m and r are both nonzero. But f = 0. Hence both
m and r are nonzero. Now

X = pa + db since e = 0

X =
√

Na

(
√

N − p)a = db

b

a
=

√
N − p

d

Y =
√

Nb

Y = ga + mb since f = 0

b

a
=

g√
N − m

b

a
=

√
N − p

d
=

g√
N − m

Cross-multiplying we have

dg = N − (m + p)
√

N + mp

m + p = 0 as the coefficient of
√

N must be zero

m = p = 0 as m and p are nonnegative

But m was proved above to be nonzero. This contradiction completes the proof that u 6= 0.
Now assume v = 0. Then

pf − eg + f
√

N = 0

Since N is irrational we have f = 0 and pf = eg, but since f = 0 we have eg = 0. Hence either
e = 0 or g = 0. Assume, for proof by contradiction, that g = 0. Then the middle side of ABC
(corresponding to the middle row) is equal to mb but also to b

√
N , so m =

√
N , contradiction.

This contradiction proves g 6= 0. Hence e = 0. Since either f and ℓ are both nonzero or m and
r are both nonzero, and we have proved f = 0, then m and r are both nonzero. Now that we
have e = 0 = f , and m 6= 0, we reach a contradiction by the same computation as in the case
u = 0, shown in the series of displayed equations above. Hence v 6= 0.

Thus none of the three cofactors is zero. That completes the proof that there is an eigen-
vector (u, v, w) for the eigenvalue

√
N with components in Q(

√
N). Since the eigenspace is

one-dimensional, this eigenvector is a (not necessarily rational) multiple of (a, b, c).
Recall that the third eigenvalue of the d matrix is the trace q = p + m + r. We can use the

cofactor method to find an eigenvector for this eigenvalue as well, namely

V =

 

˛

˛

˛

˛

d e
m − q f

˛

˛

˛

˛

,−
˛

˛

˛

˛

p − q e
g f

˛

˛

˛

˛

,

˛

˛

˛

˛

p − q d
g m − q

˛

˛

˛

˛

!

=

0

@

df − em + e(p + m + r)
−pf + eg + f(p + m + r)
pm − dg − (m + p)(m + p + r) + (m + p + r)2

1

A
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=

0

@

df + e(p + r)
eg + f(m + r)
pm − dg + r(m + p + r)

1

A

Technically, it is not an eigenvector until we prove that the components are not zero, but we
do not need that right now; it suffices that it satisfy the eigenvalue equation. The eigenvalue
equation dV = (p + m + r)V is

0

@

p d e
g m f
h ℓ r

1

A

0

@

df − e(p + r)
eg + f(m + r)
pm − dg + r(m + p + r)

1

A= (p + m + r)

0

@

df − e(p + r)
eg + f(m + r)
pm − dg + r(m + p + r)

1

A(1)

The first component of this vector equation is

p(df − e(p + r)) + d(eg + f(m + r)) + e(pm − dg + r(m + p + r) = (p + m + r)(df − e(p + r))

Multiplying out and cancelling like terms, and dividing by 2, we find

epm + er(m + p + r) = 0.

We argue by cases, according to whether e = 0 or not. We first take up the case that e 6= 0.
Then pm + r(m + p + r) = 0. Since these terms are nonnegative, they are both zero. Hence
pm = 0 and r(m + p + r) = 0. Hence r = 0 or m + p + r = 0. In either case r = 0. Writing out
the third component of the eigenvalue equation, and setting r = 0, we have

h(df − ep) + ℓ(eg + fm) = (p + m)(pm − dg)

h(df − ep) + ℓ(eg + fm) = −(p + m)dg since pm = 0

hdf − hep + ℓeg + ℓfm = −pdg − mdg

Now we write out the second component of the eigenvalue equation (1), setting r = 0:

g(df − ep) + m(eg + fm) + f(pm − dg) = (p + m)(eg + fm)

gdf − gep + m(eg + fm) + fpm − fdg = peg + pfm + m(eg + fm)

peg = 0

pg = 0 since e 6= 0

Assume, for proof by contradiction, that m 6= 0. Then since mp = 0 we have p = 0. The
equation N(p + m) = hdg + ℓpf + ℓeg becomes

Nm = hdg + ℓeg.

The third component of the eigenvalue equation becomes, with p = 0,

hdf + ℓeg + ℓfm = −mdg

The left side is ≥ 0 and the right side is ≤ 0. Hence both sides are equal to zero. Since m 6= 0
and e 6= 0, we have dg = 0 and hdf = 0 and ℓg = 0 and ℓf = 0. We derived above (by observing
that the b and c sides of the tile at vertex A lie on the two adjacent sides of ABC) that either
f and ℓ are both nonzero or m and r are both nonzero. Since r = 0 we must have f and ℓ both
nonzero. Hence ℓf = 0 is a contradiction. That contradiction completes the proof that m = 0.

Now assume, for proof by contradiction, that p 6= 0. Then since pg = 0 we have g = 0. Then
the equation N(p + m) = hdg + ℓpf + ℓeg becomes Np = ℓpf . Canceling p we have N = ℓf .
But as proved above, ℓf ≤ N , and equality holds if and only if AC is composed only of c sides
of tiles and AB is composed only of b sides. Therefore we have h = 0 as well as g = m = r = 0.
Then since h = 0 and r = 0, the long side AB of ABC is composed entirely of b sides of tiles.
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If T is isosceles, then by convention the middle column of the d-matrix is zero. Since ℓf = N ,
we now have ℓ 6= 0, so the middle column is not zero, and T is not isoceles.

Since side AB is composed entirely of b sides of tiles, there are equally spaced vertices
V0 = A, V1, . . . , Vℓ, spaced b apart, each one of which is one side of a tile Ti. Tile T1, which has
vertices at A and V1, has its α angle at V0. All these tiles have their β angles in the interior of
ABC, and their α and γ angles at the Vi. If γ > π/2 then there is only one possible orientation
for these tiles, as two γ angles will not fit at any Vi. In that case the angle of the last tile at
vertex B must be γ, contradiction, since the angle there cannot exceed β, and β 6= γ since then
T would be isosceles. Hence γ ≤ π/2.

In particular, the tile that shares vertex B has its b side along AB. Therefore the tile sharing
vertex B and part of side AB has its α angle at B, and the angle β at vertex B splits into some
number of α angles, so for some number J , we have β = Jα. Somewhere along AB there must
occur a vertex Vk at which both the tile Tk and the tile Tk+1 have angle γ. There is not room
at Vk for a third tile, since 2γ + α > α + β + γ = π. Hence there are exactly those two tiles at
Vk, and we have γ = π/2.

Since γ is a right angle, we must have a2 + b2 = c2. Since (u, v, w) is a multiple of (a, b, c)
we also have u2 + v2 = w2. We now compute these expressions from the formulas for (u, v, w).
In view of m = g = 0 we have

u = ef − e
√

N

v = f
√

N − fp

w = N − p
√

N

Squaring these equations we have

u2 = e2(f2 + N − 2f
√

N)

v2 = f2(N + p2 − 2p
√

N)

w2 = N2 + p2N − 2pN
√

N

Setting u2 + v2 = w2 we find

e2f2 + e2N + f2N + f2p2 − 2(e2f − f2p)
√

N = N2 + p2N − 2pN
√

N

Equating the coefficients of
√

N and equating the rational parts, we have

e2f − f2p = pN

e2f2 + e2N + f2N + f2p2 = N2 + p2N

Since γ is a right angle, α+β = π/2. Since β = Jα, we have α = π/(2(J +1)), so α is a rational
multiple of 2. We have tan α = b/a = v/u, which belongs to Q(

√
N). We have

cos α =
u

u2 + v2

which is also in Q(
√

N). Similarly sin α belongs to Q(
√

N). Then ζ = diα is of degree 4 over Q,
since Q(ζ) = Q(i,

√
N). By Lemma 2, 4(J +1) is 5, 8, 10, or 12. Since 5 and 10 are not divisible

by 4, we have 4(J + 1) = 8 or 10. But if 4(J + 1) = 8 then J = 1, while we have J ≥ 2 since
β = Jα. The only remaining possibility is 4(J + 1) = 12, which makes J = 2. Then α = π/6
and 2β = α, so β = π/3. Then a = sin α = 1/2, b =

√
3/2 and c = 1. But now AC = fc = f ,

and

ℓb = AB

=
2√
3
AC

=
2√
3
fc
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Now we put in c = 1 and b =
√

3/2:

ℓ

√
3

2
=

2√
3
f

3ℓ = 4f

We have N = ℓf = (4/3)f2, so 3N = 4f2, so f is divisible by 3, say f = 3k; then N = 3(2k)2 is
three times a square.1 It remains to show that p = 0; in fact we claim p = 0 and e = 0, so side
AC is also composed entirely of b sides of triangles. We have

BC =
1

2
AB

=
1

2
ℓb

=
ℓ
√

3

4
= pa + db + ec

Now we put in the values a = 1/2, b =
√

3/2, and c = 1.

ℓ
√

3

4
=

p

2
+ d

√
3

2
+ e

This is an equation in Q(
√

3). Equating the rational parts we have 0 = p/2 + e. Since both p/2
and e are nonnegative, we have p = 0 and e = 0, as claimed. In particular p = 0 so the diagonal
elements are nonzero, which is the conclusion of the theorem; or we could say, in particular
e = 0, contradicting the assumption e 6= 0 and completing the analysis of that case.

Therefore we may now assume e = 0. Remember that r = 0 was derived only under the
assumption e 6= 0, so the equation r = 0 is no longer in force. The third component of the
eigenvalue equation (1) is (substituting e = 0)

hdf + ℓf(m + r) + r(pm − dg + r(m + p + r)) = (p + m + r)(pm + r(m + p + r))

Subtracting r2(m + p + r) from both sides we have

hdf + ℓfm + ℓfr + rpm − rdg = (p + m + r)pm + (p + m)r(m + p + r)

hdf + ℓfm + ℓfr + rpm − rdg = (p + m + r)(pm + pr + mr) (2)

To get rid of h and ℓ, we expand the determinant of the d matrix by cofactors on the bottom
row. That determinant is −Nq = −N(p + m + r), so we have (remembering e = 0)

−N(p + m + r) = h

˛

˛

˛

˛

p d
g m

˛

˛

˛

˛

− ℓ

˛

˛

˛

˛

p e
g f

˛

˛

˛

˛

+ r

˛

˛

˛

˛

p d
g m

˛

˛

˛

˛

= hdf + ℓpf + rpm − rdg

Adding and subtracting ℓpf to the left side of (2) the expression for the determinant appears,
and we have

hdf + ℓpf + rpm − rdg + ℓfm + ℓfr − ℓpf = (p + m + r)(pm + pr + mr)

−N(p + m + r) + ℓfm + ℓfr − ℓpf = (p + m + r)(pm + pr + mr)

Moving everything to the right side we have

0 = (p + m + r)(pm + pr + mr) + (N − ℓf)(m + r) + (N + ℓf)p

1Tilings of this kind actually exist, but with e = 0 (we are now in the case e 6= 0). (In the next draft I will add
some figures to illustrate it.)
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Since ℓ is the number of b sides of tiles on the long side
√

Nc of ABC, we have ℓb ≤
√

Nc, or
ℓ ≤ (c/b)

√
N . Since f is the number of c sides of tiles on AC, whose length is

√
Nb, we have

fc ≤
√

Nb, or f ≤ (b/c)
√

N . Hence

ℓf ≤
 

c

b

√
N

! 

b

c

√
N

!

ℓf ≤ N

Hence all the terms on the right of the previous equation are nonnegative. Hence each of them
is zero. In particular (N + ℓf)p = 0; but N + ℓf > 0, so p = 0. Then then equation becomes

(m + r)mr + (N − ℓf)(m + r) = 0

If m + r = 0 then m = 0 = r and the lemma is proved. Hence we may assume mr = 0 and
N = ℓf . But if N = ℓf then we must have equality in the two inequalities ℓ ≤ (c/b)

√
N and

f ≤ (b/c)
√

N . This implies that side AC is composed only of c sides of tiles and side AB is
composed only of b sides of tiles, so g = m = h = r = 0. In particular m = r = 0. That
completes the proof of the lemma.

We pause to observe that the d matrix for a biquadratic tiling, in case N = m2 + n2, has
the form

d =

0

@

0 0 n
0 0 m
n m 0

1

A

which does satisfy the conditions above (as it must). The hypothesis that N is not a square is
necessary, as shown by the 9-tiling in Figure 7. Its d matrix is

0

@

1 1 0
2 2 0
0 0 3

1

A

and as predicted, the determinant is zero, but the trace is not zero, and the characteristic
polynomial is −x(x− 3)2.

Continuing with the general case of N not a square, some further conclusions can be drawn
about the d matrix. We have shown that p = m = r = 0. The determinant is then given by

det d = dfh + egℓ

Since the matrix entries are nonnegative, that means that each of these two terms must contain
a zero factor. In particular, at most four entries in the d matrix are nonzero.

The negated coefficient of λ in the characteristic equation is (since the diagonal elements are
zero) the sum of paired products of off-diagonal elements:

N = dg + eh + fl (3)

But at least one of these three terms will be zero, as shown above.
In view of the lemma, the d matrix becomes

d =

0

@

0 d e
g 0 f
h ℓ 0

1

A (4)

and the matrix equation

d

0

@

a
b
c

1

A =
√

N

0

@

a
b
c

1

A
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becomes the three equations

db + ec =
√

Na

ga + fc =
√

Nb

ha + ℓb =
√

Nc

Lemma 6 Suppose ABC is N-tiled by tile T similar to ABC, and N is not a square. Then γ
is a right angle.

Proof. First we note that T and ABC are not equilateral, by Lemma 4. Next we will prove
that T and ABC are not isosceles with β = γ. Assume, for proof by contradiction, that β = γ.
Then, by our definition of the d matrix, the middle column of the d matrix is zero, i.e. b is
counted as c. Then we have d = ℓ = 0 and

d =

0

@

0 0 e
g 0 f
h 0 0

1

A (5)

That implies that the short side BC of triangle ABC has only c sides of tiles on it, and the long
side AB has only a sides of tiles on it. At the vertex A, there can only be one tile, since the
angle at A is the smallest angle α so there can be no vertex splitting. This tile has one side of
length a opposite angle A and another along side AB. Hence a = b. Since T is not equilateral,
we must have b < c and β < γ. This contradicts the assumption that β is not less than γ, and
thus completes the proof by contradiction that β < γ.

Since the d matrix has zeroes on the diagonal, no c sides of tiles occur along the longest
side AB of triangle ABC; only a and b sides occur there. There are ℓ + h tiles along AB; for
simplicity of notation, let k := ℓ+h and number those tiles T1, . . . , Tk starting at vertex A. Let
V1, . . . , Vk−1 be the vertices of those tiles on AB. Tile T1 must have its α angle at vertex A,
and since its c side is not on AB, it must have its γ angle at vertex V1. Tile Tk cannot have
a γ angle at B, since β < γ. Hence it has either its α or its β angle at B, and its γ angle at
Vk−1 (since its c side does not lie on AB). Continuing towards C from B with T2, T3, . . ., and
continuing towards B from C similarly, we must encounter an index j between 1 and k− 1 such
that Tj and Tj+1 both have their γ angles at Vj . At that point we know γ ≤ π/2. Assume, for
proof by contradiction, that γ 6= π/2. Then there is at least one additional copy T ′ of the tile
between Tj and Tj+1, sharing vertex Vj , by Lemma 1. If T ′ has its γ angle at Vj then there
are exactly those three tiles meeting at Vj (else γ < π/3) and we have γ = π/3, and hence T is
equilateral, which as noted above is impossible. Hence none of the additional tiles T ′ meeting
at Vj have a γ angle at Vj . None of the tiles T ′ can contribute a β angle at Vj either, since
2γ + β > π. Hence there is an angle relation 2γ + pα = π, where p additional tiles contribute
α each to the angle sum at Vj , and p > 0. But 2γ + pα > γ + β + α = π, since γ > β. This
contradiction completes the proof of the lemma.

Lemma 7 Suppose ABC is N-tiled by tile T similar to ABC, and N is not a square. Then
f = d12 is not zero.

Proof. Suppose, for proof by contradiction, that f = 0. Then the middle row of the d matrix is
(g, 0, 0), which means that all the tiles along side AC of triangle ABC share their a sides with
AC. At vertex A, where ABC has its smallest angle α, there is exactly one tile T1, with angle
α at a. Hence both the side of T1 opposite that angle, and the side shared with AC, are equal
to a. Thus T is isosceles. In that case, by convention we have agreed to write the d matrix with
zeroes in the second column, so the d matrix has the form

d =

0

@

0 0 e
g 0 0
h 0 0

1

A (6)
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Now the bottom row is (h, 0, 0), which means that all the tiles along side AB share their a sides
with AB. In particular the tile at vertex A has an a side along AB. But we have already seen
that its other two sides are a. Hence the tile is equilateral, contradicting Lemma 4, since N is
not a square. That completes the proof.

There are six letters for coefficients in the d matrix, but for any specific tiling, at most four
of those coefficients are nonzero. We will analyze some special cases. The case corresponding
to the biquadratic tilings is d = 0 and g = 0. We call that the “biquadratic case”. In the
biquadratic case the d matrix has the form

d =

0

@

0 0 e
0 0 f
h ℓ 0

1

A (7)

Equation (3) now becomes

eh + ℓf = N (8)

We compute the eigenvector in the biquadratic case, using the cofactor method described
above. Let

X =

0

@

−
√

N 0 e

0 −
√

N f

h ℓ −
√

N

1

A

Taking the cofactors of the bottom row (notice the minus sign in the second component, which
comes from the definition of “cofactor”) we find the eigenvector

 

˛

˛

˛

˛

0 e

−
√

N f

˛

˛

˛

˛

,−
˛

˛

˛

˛

−
√

N e
0 f

˛

˛

˛

˛

,

˛

˛

˛

˛

−
√

N 0

0 −
√

N

˛

˛

˛

˛

!

=

0

@

e
√

N

f
√

N
N

1

A

Note that e 6= 0 and f 6= 0, since the first two sides of ABC are given by ec and fc. Hence the
cofactors do not vanish.

We claim that the bottom two rows of d −
√

NI , namely (0,−
√

N, f) and (h, ℓ,−
√

N), are
linearly independent. Indeed, suppose that for some constants p and q we have p(0,−

√
N, f) +

q(h, ℓ,−
√

N) = 0. From the first component we see that qh = 0. From the third component
we see that pf = q

√
N . If q is not zero, then

√
N = pf/q, contradicting the irrationality of√

N . Hence q = 0. Hence from the second component, p
√

N = 0. Hence p = 0. This proves
that the bottom two rows of d −

√
NI are linearly independent. Hence d −

√
NI has rank 2;

hence the eigenspace associated with the eigenvalue
√

N is one-dimensional. It follows that the
eigenvector computed above is a multiple of (a, b, c). That is, for some constant µ we have

0

@

a
b
c

1

A = µ

0

@

e
√

N

f
√

N
N

1

A (9)

The constant µ is an arbitrary scale factor; changing µ just changes the size of the tile T and
the triangle ABC by the same factor. We are therefore free to choose µ to suit our convenience.
We choose to take µ =

√
N ; then we have

0

@

a
b
c

1

A =

0

@

e
f√

N

1

A (10)

Lemma 8 Let triangle ABC be N-tiled by T , and suppose N is not a square and T is similar to
ABC, and d = g = 0 (the biquadratic case). Then N is a sum of squares, specifically N = e2+f2

where e and f are as above, and tan α = e/f . In particular tanα is rational.
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Proof. By Lemma 6, we have γ = π/2. By the Pythagorean theorem and (10) we see that
γ = π/2 if and only if e2 + f2 = N . Since γ = π/2, we have tan α = a/b, and by (9),
tanα = e/f . That completes the proof of the lemma.

Lemma 9 Suppose ABC is N-tiled by tile T similar to ABC, and N is not a square, and
d = g = 0 (the biquadratic case). Then the right angle of ABC is split by the tiling, and the
tangents of the other angles of ABC are rational.

Proof. We suppose, as always, that the γ angle of ABC is at C, the β angle at B, and the α
angle at A. Since the d matrix has the form given in (7), all the tiles along side BC share their
c sides with BC (there are e of them) and all the tiles along side AC share their c sides with
AC (there are f of them). Suppose, for proof by contradiction, that the vertex at C is not split.
Then a single tile shares vertex C, so the tile has two c sides, and hence is isosceles with b = c.
But by (10), we have c/b =

√
N/e. Hence if b = c we have N = e2, contradicting the hypothesis

that N is not a square. Hence the vertex C is split as claimed. The tangents of the other two
angles are e/f and f/e, which are rational. This completes the proof of the lemma.

We now turn to another important case, when e = 0. We call this the “triple-square case”,
because it will turn out that in this case N must be three times a square. The following lemma
and its proof give a complete analysis of this case.

Lemma 10 Suppose ABC is not equilateral and is N-tiled by tile T similar to ABC, and N is
not a square, and e = 0 (the triple-square case). Then α = π/6, β = π/3, and N = 3d2 is three
times a square.

Remark. There do exist tilings for each N of the form 3d2 that fall under the triple square case,
as we showed in Figures 9 and 10.

Proof. Under the hypotheses of the lemma we have

d =

0

@

0 d 0
g 0 f
h ℓ 0

1

A.

In this matrix, d and h + ℓ are not zero, since they represent the number of tiles along BC and
AB, respectively. By Lemma 7 we have f 6= 0. We have

X = d −
√

NI =

0

@

−
√

N d 0

g −
√

N f

h ℓ −
√

N

1

A

We will prove that the bottom two rows of X are linearly independent. If they are linearly
dependent, then for some p and q, we have

0 = p(g,−
√

N, f) + q(h, ℓ,
√

N)

= pg + pf + qℓ + qh +
√

N(q − p)

Since N is not a square, the coefficient of
√

N is zero, so q = p, and

0 = pg + pf + qℓ + qh

= pg + pf + pℓ + ph

= p(g + f + ℓ + h)

Since the entries of the d matrix are non-negative, and h + ℓ is strictly positive, we conclude
p = q = 0. That proves that the bottom two rows of X are linearly independent, so X has
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rank 2 and the eigenspace of
√

N is one-dimensional. We then compute the eigenvector by the
cofactor method. Taking the cofactors of the bottom row, we find the eigenvector

 

˛

˛

˛

˛

0 e

−
√

N f

˛

˛

˛

˛

,−
˛

˛

˛

˛

−
√

N 0
g f

˛

˛

˛

˛

,

˛

˛

˛

˛

−
√

N d

g −
√

N

˛

˛

˛

˛

!

=

0

@

df

f
√

N
N − dg

1

A

Since (a, b, c) is an eigenvector and the eigenspace is one dimensional, (a, b, c) is a multiple of this
computed eigenvector. By scaling the triangle appropriately we can assume (a, b, c) is actually
equal to the computed eigenvector:

0

@

a
b
c

1

A =

0

@

df

f
√

N
N − dg

1

A

It follows that sin α = a/c = fd/(N − dg) is rational and tan α = a/b = d/
√

N is of degree 2
over Q.

According to the first row of the d matrix, the tiles along BC have only b sides on BC.
Assume, for proof by contradiction, that vertex B does not split. Then there is a single tile
T1 at vertex B, which therefore shares one side with AB and one side with BC. Triangle T
is not isosceles, since then by definition the d matrix would have zeroes in the middle column.
Hence the unique b side of T1 must be opposite angle B; but it must also lie on BC, which is a
contradiction. Hence vertex B does split. Therefore for some integer P we have β = Pα. Since
by Lemma 6, γ = π/2,we have

π

2
= α + β

= α + Pα

= (P + 1)α

Therefore

α =
π

2(P + 1)
=

2π

4(P + 1)
.

By Lemma 2 we conclude that 4(P +1) is one of the numbers n = 3, 4, 5, 8, 10, or 12 for which
φ(n) = 4. Of these numbers, only 4, 1, and 12 are divisible by 4, which implies P = 2, since
the values P = 0 and P = 1 do not correspond to vertex splitting. Hence P = 2 and we have
β = 2α, so α + β = π/2 = 3α, and α = π/6. Hence tanα = df/(f

√
N) = d/

√
N = 1

√
3. Hence

N = 3d2. That completes the proof of the lemma.
Now we have dealt with the biquadratic case (when d = g = 0) and the triple-square case

(when e = 0). It remains to show that these are the only two possible cases, when N is not a
square and T is similar to ABC. Recall that dfh = 0 and egℓ = 0 since detd = 0; that leaves
only a few possibilities to consider. We begin by showing that if d = 0 then we are already in
the biquadratic case.

Lemma 11 Assume triangle ABC is N-tiled by T , that N is not a square, that T is similar to
ABC, and that d and g are two entries in the d matrix of the tiling, in the notation used above
(the ones that are zero in the biquadratic case). Then d = 0 implies g = 0, i.e. we are in the
biquadratic case as soon as d = 0.

Proof. We have

X = d −
√

NI =

0

@

−
√

N d e

g −
√

N f

h l −
√

N

1

A
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By the cofactor method described above we compute the eigenvector
0

@

a
b
c

1

A =

0

@

df + e
√

N

f
√

N + eg
N − dg

1

A

Suppose, for proof by contradiction, that d = 0 and g 6= 0. Then
0

@

a
b
c

1

A =

0

@

e
√

N

f
√

N + eg
N

1

A

By Lemma 6, γ is a right angle, so by the Pythagorean theorem, we have a2 + b2 = c2. That is,

e2N + (f
√

N + eg)2 = N2

e2N + f2N + 2egf
√

N + e2g2 = N2

Since N is not a square, the coefficient of
√

N is zero; that is, egf = 0. By hypothesis, g 6= 0,
so ef = 0. The first row of the d matrix is (0, d, e) = (0, 0, e), so e 6= 0 because there must be
some triangles on the first side of ABC. Therefore f = 0. Then the d matrix is

0

@

0 0 e
g 0 0
h ℓ 0

1

A

Hence all the tiles on the middle side AC of ABC have their a side on AC, and all the tiles
on the hypotenuse AB do not have their c side on AB. Consider the tile T1 sharing vertex A
(there is only one, since ABC has angle α there). It has its a side on AC and does not have
its c side on AB. Hence its b side is on AB and its c side opposite angle A, which is α. Hence
a = c and triangles T and ABC are equilateral, which is a contradiction since γ = π/2. This
contradiction shows that the assumption d = 0 and g 6= 0 is untenable, which completes the
proof of the lemma.

Lemma 12 Assume triangle ABC is N-tiled by T , that N is not a square, that T is similar to
ABC, and that d 6= 0. Then e = 0, i.e. we are in the triple-square case as soon as d 6= 0.

Proof. We have as in the proof of the previous lemma

d =

0

@

0 d e
g 0 f
h ℓ 0

1

A

X = d −
√

NI =

0

@

−
√

N d e

g −
√

N f

h ℓ −
√

N

1

A

0

@

a
b
c

1

A =

0

@

df + e
√

N

eg + f
√

N
N − dg

1

A

By Lemma 6 and the Pythagorean theorem we have

0 = c2 − a2 − b2

= (N − dg)2 − (df + e
√

N)2 − (eg + f
√

N)2

= −2(def + egf)
√

N + rational

Since N is not a square and the entries of the d matrix are nonnegative integers, we have
def = 0 and egf = 0. Since f 6= 0 by Lemma 7, and d 6= 0 by hypothesis, we have e = 0. That
completes the proof of the lemma.
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8 The main theorem

The following theorem completely answers the question, “for which N does there exist an N-
tiling in which the tile is similar to the tiled triangle?” Namely, N is a square, or a sum of two
squares, or three times a square.

Theorem 1 Suppose ABC is N-tiled by tile T similar to ABC. Then either N is a square, or
T is a right triangle and exactly one of the following holds:

(i) T is a right triangle, and N is a sum of two squares, specifically N = e2 + f2, where
tanα = e/f , or

(ii) N is three times a square and T is a 30-60-90 right triangle, i.e. α = π/6.

Proof. Suppose N is not a square. Then by Lemma 6, γ is a right angle. Now consider the d

matrix. By Lemma 5 the diagonal entries are zero, so as stated in (4) the d matrix has the form

d =

0

@

0 d e
g 0 f
h ℓ 0

1

A

By Lemma 11, if d = 0 then also g = 0, i.e. we are in the “biquadratic case”. Then by Lemma
8, N = e2 + f2 f and tan α = e/f . If e = 0 then by Lemma 10, N is three times a square and T
is a 30-60-90 triangle. Finally, Lemma 12 shows that the cases d = 0 and e = 0 are exhaustive.
That completes the proof that at least one of the two given alternatives holds.

We now will prove that N cannot be both a sum of squares and three times a square, since
the equation x2 + y2 = 3z2 has no integer solutions. To see that, we can assume without loss of
generality that x, y, and z are not all even. Note that squares are always congruent to 0 or 1
mod 4, so the left side is 0, 1, or 2 mod 4. Then z2 must be congruent to 0 mod 4, since if not,
the right side is congruent to 3 mod 4. Hence z is even. But x and y must also be even to make
the left side congruent to 0 mod 4, contradiction. Hence the equation has no solutions. Thus
the alternatives in the theorem are mutually exclusive, as claimed. That completes the proof of
the theorem.

9 Conjectures

While the theorem characterizes the possible N for which triangle ABC can be N-tiled by tiles
similar to ABC, it does not completely characterize the possible tilings themselves. Note that
the 9-tiling in Figure 7 shows that not every m2-tiling is a quadratic tiling, so we have not
classified all the m2-tilings. Briefly we conjectured that a tiling in which the d-matrix is m
times the identity should be a quadratic tiling, but even that is not true. One can extend the
9-tiling in Figure 7 by adding more triangles to the right and below, producing a 25-tiling in
which the d-matrix is 5 times the identity. We did show, in Lemma 9, that if N is not a square,
then the right angle of ABC is split by the tiling.

We conjecture that if ABC is not a right triangle, then the only tilings of ABC by a tile
similar to ABC are the quadratic tilings. In case ABC is a right triangle, the possibility arises
that two tiles form a rectangle with diagonal. One can then erase that diagonal and draw the
other diagonal, creating another tiling. Similarly, as in the 9-tiling in Figure 7, several tiles
can form a square, and the square can be rotated. Call two tilings “immediately equivalent” if
one is obtained from the other by re-drawing a diagonal or rotating a square. Let the relation
of “equivalence” between tilings be the transitive closure of immediate equivalence. In other
words, two tilings are equivalent if one can be obtained from the other by a finite number of
immediate equivalences. Then we conjecture that, for any triangle ABC, every tiling of ABC
by tiles congruent to ABC is equivalent to a quadratic tiling.
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