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1 Enneper’s Surface

Enneper’s surface was discovered in 1863 by Alfred Enneper, who was 33 at the
time. This was seven years after his Ph. D. under the supervision of Dirichlet
at Göttingen, where Enneper lived his entire life, from student to Professor
Extraordinarius.

Enneper’s surface is defined in the entire complex plane, so it is an example
of a complete minimal surface (no boundary). However, we are interested in
considering portions of it, defined in a disk of radius R. Then it is bounded by
“Enneper’s wire”,

ΓR(θ) =





R cos θ − 1
3R

3 cos 3θ
−R sin θ + 1

3R
3 sin 3θ

R2 cos 2θ





The same formula, with r in place of R, defines Enneper’s surface in polar
coordinates.

1.1 Weierstrass representation

To show that Enneper’s surface as defined above is indeed a minimal surface,
we show that it arises from the Weierstrass representation if we take f(z) = 2
and g(z) = 2z. This gives us

uz =





1 − z2

i(1 + z2)
2z





Integrating, we have

u = Re





z − 1
3z

3

i(z + 1
3z

3)
z2





=





r cos θ − 1
3r

3 cos 3θ
−r sin θ + 1

3r
3 sin 3θ

r2 cos 2θ





1.2 Non-parametric form

According to Rado’s theorem, as long as the Jordan curve Γ has a convex project
on the xy plane, any disk-type minimal surface bounded by Γ is expressible in
non-parametric form, i.e. z = f(x, y). Since there is a maximum principle for
the difference of two solutions of the non-parametric minimal surface equation,
the solution for a given boundary is unique.

Let ΓR be “Enneper’s wire”, defined above.

Lemma 1 For R ≤ 1√
3
, the projection of Enneper’s wire ΓR on the xy plane

is convex. Hence ΓR bounds exactly one minimal surface.
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Proof. Let γρ be the projection of Γρ onto the xy plane. Then

γρ(θ) =

[

ρ cos θ − 1
2ρ

3 cos 3θ
−ρ sin θ + 1

3ρ
3 sin 3θ

]

History and references. See pp. 80-84 of [17]; see also [19] ? and [?] ?

1.3 total curvature of Enneper’s wire

1.4 Self-intersection

1.5 First and second eigenvalues

1.6 Ruchert’s uniqueness theorem

1.7 The second variation of D2E

Consider the kernel equation for Enneper’s surface in the disk of radius 1,

kzuz = 0

or in real form with k = ψuθ,

uθ((ψuθ)r − (ψur)θ) = 0.

We will show that ψ = sin(2θ) solves this equation. On S1 we have (even when
t 6= 0)

k = ψuθ

= sin 2θRe (izuz)

=
1

2
i(z2 − z̄2)Re





i(z − z3)
−(z + z3)
2iz2





=
1

4
i(z2 − z̄2)





−iz3 + iz − iz̄ + iz̄3

−z3 − z − z̄ − z̄3

2iz2 − 2iz̄2





=
1

4





(z2 − z̄2)(z3 − z + z̄ − z̄3)
−i(z2 − z̄2)(z3 + z + z̄ + z̄3)
−(z2 − z̄2)(2z2 − 2z̄2)





=
1

4





z5 − z3 − z̄3 + z̄5

−i(z5 + z3 − z̄3 − z̄5)
−2z4 + 4 − 2z̄4





This expression for k is harmonic in the entire plane since evidently ∆k = kzz̄ =
0. Differentiating with respect to z we have (even when t 6= 0)

kz =
1

4





5z4 − 3z2

−5iz4 − 3iz2

−8z3



 (1)
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Taking the dot product with uz we have, when t = 0,

kzuz =
1

4





5z4 − 3z2

−5iz4 − 3iz2

−8z3



 ·





1 − z2

i(1 + z2)
2z





=
1

4





5z4 − 3z2

5z4 + 3z2

−8z3



 ·





1 − z2

1 + z2

2z



 = 0

Similar calculations show that ψ = a+ b cosθ+ c sin θ also yields a solution; this
three-parameter family accounts for the conformal directions, and ψ = 2 cos θ
represents a non-trivial kernel direction.

That k is the only kernel direction (orthogonal to the conformal direc-
tions) can be shown directly by writing a Fourier series for an unknown ψ =
∑∞

n=−∞ anz
n on S1 and showing ψ must have the form a + b cos θ + c sin θ +

d sin 2θ, which is how we found ψ = sin 2θ in the first place.
We also give a more informative proof that k is the only non-trivial kernel di-

rection. The function g(z) in the Weierstrass representation is the stereographic
projection of the unit normal N , and for Enneper’s surface g(z) = z. Hence,
the Gaussian image of Enneper’s surface in the unit disk is exactly the upper
hemisphere. Hence the first eigenvalue of D2A(u) is 2, so the kernel of D2A(u)
is one-dimensional, as the eigenspace of the least eigenvalue. But every member
k of the kernel of D2E(u) gives rise to a member φ = k · N of the kernel of
D2A(u), and the map k 7→ φ is one to one.

For R < 1, the Gaussian area of Enneper’s surface over the disk of radius R
is contained in a hemisphere, so the critical eigenvalue is more than 2 and the
surface is a relative minimum of area. For R > 1, the Gaussian area contains a
hemisphere, so the surface is not a relative minimum of area. Hence R = 1 is
the only value for which the second variation has a kernel.

1.8 The third variation of Enneper’s surface

We now calculate the third variation of Enneper’s surface (defined in the unit
disk). We consider a variation u(t) defined on S1 by

u = u0(e
i(θ+tψ+O(t2)))

where ψ(θ) = sin 2θ and the subscript in u0 indicates t = 0. Differentiating with
respect to t we have

ut = (ψ +O(t))uθ.

Thus k = ut lies in the kernel of D2E(u0) when t = 0.

Lemma 2 The third variation of Enneper’s surface is zero. Specifically, with
the variation u(t) given above, we have

∂3E

∂t3

∣

∣

∣

∣

t=0

= 0.
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Proof. We have (as shown in Lectures on Minimal Surfaces, Chapter 10, follow-
ing [24])

∂3E

∂t3

∣

∣

∣

∣

t=0

= 4 Re

∫

zk2
zψ dz + 4 Re

∫

z(ψkθ)zuzψ dz (2)

By (1) we have kz = z2v for some holomorphic vector v. Then k2
z = z4v2. Then

on S1 we have

zk2
zψ = z5v2 i

2
(z2 − z̄2)

= z3v2 i

2
(z4 − 1)

The integrand is holomorphic in the unit disk, so by Cauchy’s theorem, the first
integral in (2) is zero.

We now work on the second integral. From (1) we have

zkz =
1

4
5z5 − 3z3−5iz5 − 3iz3−8z4

Then

kθ = − Im (zkz) = −2i(zkz + z̄zkz)

=
1

2





−5iz5 + 3iz3 − 3iz̄3 + 5iz̄5

−5z5 − 3z3 − 3z̄3 − 5z̄5

8iz4 − 8iz̄4





ψkθ =
−i

4
(z2 − z̄2)





−5iz5 + 3iz3 − 3iz̄3 + 5iz̄5

−5z5 − 3z3 − 3z̄3 − 5z̄5

8iz4 − 8iz̄4





=
1

4





−5z7 + 3z5 + 5z3 − 3z − 3z̄ + 5z̄3 + 3z̄5 − 5z̄7

5iz7 + 3iz5 − 5iz3 − 3iz + 3iz̄ + 5iz̄3 − 3iz̄5 − 5iz̄7

8z6 − 8z2 − 8z̄2 + 8z̄6





(ψkθ)z =
1

4





−35z6 + 15z4 + 15z2 − 3
35iz6 + 15iz4 − 15iz2 − 3i
48z5 − 16z





(ψkθ)zuz =
1

4





−35z6 + 15z4 + 15z2 − 3
35iz6 + 15iz4 − 15iz2 − 3i
48z5 − 16z









1 − z2

i(1 + z2)
2z





= −z6 + z2

z((ψkθ)zuzψ = z(−z6 + z2)

(

z2 − z̄2

2

)

=
1

2
(−z9 − z5 − z)

Since this is analytic, its integral around S1 is zero, so the second term in (2)
is zero. That completes the proof of the lemma.
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1.9 The fourth variation of Enneper’s surface

We will compute the fourth variation of Enneper’s surface along the path given
by

u(t, θ) = u0(θ + tψ) with ψ = 2 sin 2θ

We write k = ut = ψuθ. Since ψ does not depend on t, we have kt = ψuθt = ψkθ.
The following formula for the fourth variation in a direction belonging to the
kernel of the second variation is given in [4].

∂4E

∂t4

∣

∣

∣

∣

t=0

= 8 Re

∫

zkzkztψ dz + 4 Re

∫

zkttzuzψ dz

+ 12 Re

∫

zkztuzψt dz + 8 Re

∫

zk2
zψt dz

Since we have assumed ψt = 0 the last two terms can be dropped:

∂4E

∂t4

∣

∣

∣

∣

t=0

= 8 Re

∫

zkzkztψ dz + 4 Re

∫

zkttzuzψ dz

We have

ψ = sin θ =
1

2
(−iz2 + iz−2),

By (1), kz is divisible by z2. Hence kzψ is holomorphic. Since the z-derivative
of any harmonic function is holomorphic, and kt is harmonic, so kzt = ktz is
holomorphic. Hence the first term also vanishes:

∂4E

∂t4

∣

∣

∣

∣

t=0

= 4 Re

∫

zkttzuzψ dz

Recall from (1) that (even when t 6= 0)

kz =
1

4





5z4 − 3z2

−5iz4 − 3iz2

−8z3





To use this equation when t 6= 0 we should put z = ei(θ+tψ), so we have

zt = iψz

Differentiating kz with respect to t we obtain

kzt =
1

4

∂

∂t





5z4 − 3z2

−5iz4 − 3iz2

−8z3





=
zt

4





20z3 − 6z
−20iz3 − 6iz
−24z2




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=
i

4
ψz





20z3 − 6z
−20iz3 − 6iz
−24z2





=
i

4
dt
z2 − z̄2

2i
z





20z3 − 6z
−20iz3 − 6iz
−24z2





=
1

8





20z6 − 6z4 − 20z2 + 6
−20iz6 − 6iz4 + 20iz2 + 6i
−24z4 + 24





This came out holomorphic, as it had to, since it is also ktz and kt is harmonic.
Now differentiate again with respect to t:

kztt =
zt

8





120z5 − 24z3 − 40z
−120iz5 − 24iz3 + 40iz
−96z3





=
iψz

8





120z5 − 24z3 − 40z
−120iz5 − 24iz3 + 40iz
−96z3





=
i

8

z2 − z̄2

2i
z





120z5 − 24z3 − 40z
−120iz5 − 24iz3 + 40iz
−96z3





=
1

16





120z8 − 24z6 − 160z4 + 24z2 + 40
−120iz8 − 24iz6 − 80iz4 + 24iz2 − 40i
−96z6 + 96z2





For Enneper’s surface we have

zuz =





z − z3

iz + iz3

2z2





Taking the dot product with the previous equation, we have

zkttzuz =
1

16





120z8 − 24z6 − 160z4 + 24z2 + 40
−120iz8 − 24iz6 − 80iz4 + 24iz2 − 40i
−96z6 + 96z2



 ·





z − z3

iz + iz3

2z2





= 5z +O(z2)

Multiplying by ψ we have

zkttzuzψ = (5z +O(z2))
z2 − z−2

2i

= 5iz−1 +O(1)
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Integrating this around S1, the O(1) part is holomorphic, so it integrates to 0,
and we have

∂4E

∂t4

∣

∣

∣

∣

t=0

= 4 Re

∫

zkttzuzψ dz

= 4 Re

∫

5i

z
dz

= 4 Re
5i

2πi
by Cauchy’s residue theorem

=
10

π

We have proved

∂4E

∂t4

∣

∣

∣

∣

t=0

> 0 (3)

1.10 Relative minimum for R = 1

We need the following theorem, which is discussed in [4].

Theorem 1 Let u be a minimal surface of disk type bounded by a Jordan curve
Γ. Suppose that D2E(u) has a one-dimensional kernel (aside from the conformal
directions) and that for some one-parameter family u(t) of harmonic surfaces
bounded by Γ, with u(0) = u and ut(0) = k in the kernel of D2E(u), the third
and fourth derivatives of E(u(t)) with respect to t are respectively zero and
positive. Then u is a relative minimum of Dirichlet’s energy.

Corollary 1 Enneper’s surface for R = 1 is a relative minimum of area.

Proof. Let u be Enneper’s surface for R = 1, and let ψ = sin 2θ. Let u(t, θ) =
u(θ+ tψ). We have calculated the required second, third, and fourth derivatives
of E(u(t)) in the previous sections, and they meet the hypotheses of the theorem.
That completes the proof.
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