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In these notes we take up some calculations of the second, third, and fourth
variations of area and Dirichlet’s energy. These are useful in investigating
whether a particular minimal surface (for which the second variation is zero)
does or does not furnish a relative minimum of area. With respect to Dirichlet’s
energy, we follow Tromba [27], who worked out these formulas in the case of
variations in forced Jacobi directions. We work them out more generally for
variations in the kernel of the second variation. To be clear: the purpose of
these notes is just to check my understanding of Tromba’s methods.

1 Notation

Conceptually, we follow Tromba in studying spaces of harmonic surfaces (some
of which are minimal). To be completely precise one has to distinguish between
X : [0, 2π] → R, and the function X̂ defined on S1 by X̂(eiθ) = X(θ), and the
harmonic extension of X̂ to the unit disk, also denoted by X̂. We will often
omit the hat, which simplifies the appearance of formulas and does not lead to
confusion.

When we write a tangent vector in the form k = φXθ, technically φ :
[0, 2π] → R and k : B → R3 is the harmonic extension of φ(θ)X̂(eiθ). Thus kr

refers to the radial derivative of a harmonic function defined in the disk. When
we write (φXθ)r we mean the radial derivative of the harmonic extension of the
tangent vector k = φXθ. These slight abuses of notation are convenient and
simplify many formulas, but one must remember for example not to use the
product rule on an expression like (φXθ)r, which would make no sense since φ
is not defined except on S1.

2 The second variation of E

The second variation D2E(X) is a bilinear form on the space of “tangent vec-
tors”, which are sufficiently smooth harmonic vectors defined in the closed unit
disk (or equivalently, on S1, since the harmonic extension to the disk is unique).
The “kernel” is the subspace of tangent vectors k such that D2E(X)[k, h] = 0
for all tangent vectors h. This is given by the “kernel equation” kzXz = 0.
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(We use subscripts for differentiation.) This equation is due to Tromba and is
derived in several of his papers and books, and also for example in [4].

By definition

E(X) =
1

2

∫

B

|∇X |2 dxdy =
1

2

∫ 2π

0

X ·Xr dθ

Consider a variation X(t, θ) = X0(θ + tφ) where φ may depend on t. Then
k = Xt = φXθ and

Et(X) =
∂E(X)

∂t

=
1

2

∫

(XrtX +XrXt) dθ

=
1

2

∫

(XtXr +XrXt) dθ

=

∫

kXr dθ

=

∫

φXθXr dθ

Evaluating at t = 0 we get DE(X)[k], which by the fundamental lemma of the
calculus of variations is 0 for all φ if and only if XrXθ is identically zero, i.e.
X is minimal. We can write this as a complex integral using dz = iz dθ and
Xθ = Re (izXz) and Xr = Re (zXz).We get

Et(X) =
1

4

∫

φ(izXz − iz̄Xz)(zXz + z̄Xz) dθ

=
1

2

∫

Re (iz2X2

z ) dθ

=
1

2
Re

∫

iz2X2

z dθ

= Re

∫

S1

φzX2

z dz

When t = 0 we can write this as

DE(X)[k] = Re

∫

S1

φzX2

z dz (1)

The minimal surface equation is thus X2
z = 0, which can be seen either directly

from XrXθ = 0 or by the fundamental lemma of the calculus of variations.
Differentiating again with respect to t we have

Ett(X) = 4 Re

∫

zXtzXzφdz + 2 Re

∫

zX2

zφt dz (2)

Just to review: when t = 0, the second term vanishes when t = 0 because
X2

z = 0 is the minimal surface equation, and the first term vanishes when t = 0
since Xtz = kz and kzXz = 0 is the kernel equation.
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Converting the kernel equation kzXz = 0 to a form not involving complex
numbers, using k = φXθ and defining k̃ = φXr, we find

D2E(X)[k, k] =

∫

k(kr − k̃θ) dθ

=

∫

kkr dθ −

∫

k(φXr)θ dθ

More details can be found in [4]

3 Another formula for D
2
E(X)

In this section we present a formula for the second variation of Dirichlet’s energy
that involves the geodesic curvature of the boundary. The formula in question
is due to Böhme and Tromba (independently) and can be found on p. 538 of
[10].

We begin with a formula for the geodesic curvature.

Lemma 1 Let u be a minimal surface defined in the unit disk. Let r and θ be
polar coordinates. Then the geodesic curvature along curves given by constant r
(with positive sign corresponding to curvature vector pointing inwards) is given
by

κg =
XθXθr

X2

θ

Proof. The proof can be found on p. 157 (formula 49.9a) of [18], in the more
general setting of orthogonal coordinates (i.e. g12 = g21 = 0). It is a straight-
forward calculation (using the Christoffel symbols). The lemma can also be
proved using Minding’s formula but care must be taken since Minding’s for-
mula requires isothermal coordinates, and polar coordinates are not isothermal.

Theorem 1 (Böhme, Tromba) Let X be a minimal surface bounded by the
C6,α Jordan curve Γ, and let k be any tangent vector to X. Then

D2E(X)[k, k] =

∫

B

|∇k|2 dx dy −

∫

S1

κg|k|
2 dθ

where κg is the signed geodesic curvature of Γ (relative to u), with the sign
positive for curvature vector pointing to the interior of u.

Remark. Tromba (op. cit.) has a positive sign on the second term, corresponding
to taking the sign of κg to be positive for curvature vector pointing to the
exterior.

Proof. Let k = φXθ, and let k̃ = φXr. As discussed above, we have

D2E(X)[k, k] =

∫

k(kr − k̃θ) dθ

=

∫

kkr dθ −

∫

k(φXr)θ dθ
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Integrating
∫

B
|∇k|2 dx dy by parts, we obtain the first term above, since ∆k =

0. Putting that in, we have

D2E(X)[k, k] =

∫

B

|∇k|2 dx dy −

∫

k(φXr)θ dθ

=

∫

B

|∇k|2 dx dy −

∫

kφθXr + kφXrθ dθ

Since k = φXθ is a tangent vector, kXr = 0, so we have

D2E(X)[k, k] =

∫

B

|∇k|2 dx dy −

∫

kφXrθ dθ

=

∫

B

|∇k|2 dx dy −

∫

kφXrθ dθ

Putting in k = φXθ on the right, we have

D2E(X)[k, k] =

∫

B

|∇k|2 dx dy −

∫

φ2X2

θ

XθXθr

X2

θ

dθ

=

∫

B

|∇k|2 dx dy −

∫

|k|2
XθXθr

X2

θ

dθ

By Lemma 1, the fraction in the second integrand is κg, with the sign positive
for curvature vector pointing to the interior. That completes the proof of the
theorem.

Example. In order to check that all the signs and constants are correct, we
calculate all the terms for a trivial example. Take X = (x, y, 0) to be a flat disk,
and k to be a conformal direction, for example k = Re (izXz), so D2E(X)[k] =
0. Then Xz = (1/2,−i/2, 0) so izXz = (iz/2, z/2, 0) = 1

2
(ix − y, x + iy, 0)

and k = 1

2
(−y, x, 0), so |k|2 = r2/4. We have κg = 1 and |Xθ| = r2, so

∫

S1

κg|k|
2 dθ = 2π/4 = π/2. We have ∇k1 = − 1

2
∇y = − 1

2
(0, 1, 0). We have

∇k2 = 1

2
∇x = 1

2
(1, 0, 0). So |∇k|2 = 1

4
+ 1

4
= 1

2
. Integrating over the unit disk

we find
∫

B
|∇k|2 dxdy = π/2. So the formula checks out correctly.

Remark. The term
∫

S1 |k|κg dθ can be written as
∫

φ2κgW dθ where k = φXθ

on S1.

4 The third variation of E

We now follow Tromba [27] in computing the third variation of E, when X
depends on a (single) parameter t. When t = 0 we write X0 for X . When
we calculated the second variation, we allowed any dependence of the surface
X on a parameter t, subject only to the condition that when t = 0, we had
Xt = k = φXθ for some scalar function φ, i.e., the variation is tangential to the
boundary curve when t = 0. As it turns out, the third variation is intrinsic,
in the sense that it also depends only on the tangent vectors when t = 0. We
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consider in more detail what it means for the variation to be intrinsic. We
consider variations of the form

X(t, θ) = X0(θ + tφ)

where φ can a priori depend on t. For the third variation to be intrinsic means
that terms in φt and φtt drop out when the variation is in a kernel direction,
i.e. kzXz = 0 when t = 0, where k = Xt. If we have a proof in advance that
the third variation is intrinsic, then it suffices to consider variations in which φ
does not depend on t at all. But since the fourth variation is not intrinsic, we
do not assume that.

We suppose henceforth that k = Xt belongs to the kernel of D2E(X0) when
t = 0. But we do not yet set t to zero. Differentiating (2) again with respect to
t, we have

∂3E

∂t3
= 4 Re

∫

zX2

tzφdz + 4 Re

∫

zXttzXzφdz

+8 Re

∫

zXtzXzφt dz + 2 Re

∫

zX2

zφtt dz (3)

Lemma 2 Suppose X is a family of minimal surfaces depending on a parameter
t such that k = Xt(0) is in the kernel of D2E(X(0)) and Xt = φXθ. Then the
third variation is given by

∂3E

∂t3

∣

∣

∣

∣

t=0

= 4 Re

∫

zk2

zφdz + 4 Re

∫

zXttzXzφdz

When φ is assumed to be independent of t, we have the following form of the
third variation, also independent of t:

∂3E

∂t3

∣

∣

∣

∣

t=0

= 4 Re

∫

zk2

zφdz + 4 Re

∫

z(φkθ)zXzφdz

Remark. Compare [27], p. 16, where these formulas are essentially proved under
the additional assumption that k is a forced Jacobi field. In that case, zXzφ is
analytic, so the second term does not appear, and the first term takes another
form.

Proof. We set t = 0 in (3). The last term vanishes because X2
z = 0 is the

minimal surface equation. The next-to-last term vanishes because when t = 0,
we have XtzXz = kzXz = 0, because that is the kernel equation. That leaves

∂3E

∂t3

∣

∣

∣

∣

t=0

= 4 Re

∫

zk2

zφdz + 4 Re

∫

zXttzXzφdz. (4)

Now

Xt =
d

dt
X(θ + tφ)

= (φ+ tφt)Xθ

Xtt = (φt + tφtt)Xθ + (φ+ tφt)Xθt
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When t = 0 we have

Xtt = φtXθ + φkθ

Now it is convenient to assume φt = 0, in which case we have

Xtt = φkθ.

We want to differentiate with respect to z, which means to differentiate the
harmonic extension with respect to z. Differentiating with respect to z we have

Xttz = (φkθ)z

Taking the dot product with uz we have

XttzXz = (φkθ)zXz

Multiplying by zφ we have

zXttzXzφ = z(φkθ)zXzφ

Putting this into (4) we have the formula of the lemma. That completes the
proof.

5 The third variation is intrinsic

In the calculation above we assumed φt = 0, i.e. we considered the third vari-
ation only for variations X(t, θ) = X0(θ + tφ) where φ does not depend on t.
There are abstract reasons why, if φ is allowed to depend on t, then we get
the same answer for the third variation, i.e. the terms in the t derivatives of φ
contribute nothing. See [10], p. 533, Theorem 3. In this section we verify this
result by direct calculation.

In the calculation of the third variation in the preceding section, we do not
assume φt = 0, then we get an extra term

4 Re

∫

z(φtXθ)zXzφdz

or in the notation of [27],

4 Re

∫

w(φtẐθ)wẐwφdw

Of course this vanishes if k is a forced Jacobi direction since then zXzφ is
holomorphic. But if we only assume k is a kernel direction then why does it
vanish? The proof uses the kernel equation in the form

Xθ(kr − k̃θ) = 0 where k = φXθ and k̃ = φXr.
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Here is the proof:

Re

∫

z(φtXθ)zXzφdz = Re

∫

(φtXθ)z(Xr − iXθ)φdz

= Re

∫

(φtXθ)z(k̃ − ik) dz

= Re

∫

((φtXθ)r − i(φtXθ)θ)(k̃ − ik)z̄ dz

= Re

∫

((φtXθ)r − i(φtXθ)θ)(k̃ − ik)i dθ

= Re

∫

((φtXθ)r − i(φtXθ)θ)(k̃ − ik)i dθ

=

∫

(φtXθ)rk dθ +

∫

(φtXθ)θk̃ dθ

=

∫

(φtXθ)kr dθ −

∫

(φtXθ)k̃θ dθ

=

∫

φtXθ(kr − k̃θ) dθ

But the kernel equation can be written Xθ(kr − k̃θ) = 0. Hence the integrand
is zero.

6 The fourth variation of E

We now compute the fourth variation along a variation in a kernel direction;
that is, we assume k, the value of Xt when t = 0, is in the kernel of D2E(X).
Tromba computes the fourth variation when k is a forced Jacobi direction; here
we do not assume that. The fourth variation, unlike the second and third, is
not intrinsic. That is, when the variation is given by X(t, θ) = X0(θ + tφ), the
derivative φt and even higher derivatives of φ with respect to t may be involved
in the fourth variation of E(u); it will not depend only on X0 and k.

Lemma 3 Assume that k is in the kernel of D2E(X), and moreover the third
variation in direction k is also zero. Then (writing k = Xt also when t 6= 0) we
have

∂4E

∂t4

∣

∣

∣

∣

t=0

= 8 Re

∫

zkzkztφdz + 4 Re

∫

zkttzXzφdz

+ 12 Re

∫

zkztXzφt dz + 8 Re

∫

zk2

zφt dz

Remark. Compare with the formula in [27], p. 18, Prop. 2.3, which is valid
when k is a forced Jacobi field. Our second term does not occur there, because
it vanishes when k is a forced Jacobi field, and the terms in φt can be expressed
in terms of Xzz in that case.
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Proof. Differentiating (3) with respect to t we have

∂4E

∂t4
= 4 Re

∫

z(X2

tzφ)t dz + 4 Re

∫

z(XttzXzφ)t dz

+8 Re

∫

z(XtzXzφt)t dz + 2 Re

∫

z(X2

zφtt)t dz

Applying the product rule for differentiation, and writing k for Xt (even when
t 6= 0) we have

∂4E

∂t4
= 4 Re

∫

z2kzkztφ+ zk2

zφt dz

+4 Re

∫

zkttzXzφ+ zktzXtzφ+ zktzXzφt dz

+8 Re

∫

zkztXzφt + zk2

zφt + kzXzφtt dz

+2 Re

∫

z2Xzkzφtt + zX2

zφttt dz

When t = 0 we have kzXz = 0, since k is in the kernel of D2E, and X2
z = 0

since that is the minimal surface equation. Hence the last integral vanishes at
t = 0. Similarly the last term in the third integral vanishes. Collecting like
terms we have

∂4E

∂t4

∣

∣

∣

∣

t=0

= 8 Re

∫

zkzkztφdz + 4 Re

∫

zkttzXzφdz

+ 12 Re

∫

zkztXzφt dz + 8 Re

∫

zk2

zφt dz

That completes the proof of the lemma.
An important observation is that the fourth variation is not intrinsic, be-

cause it depends not only on the tangent vector Xt = ψXθ, but also on φt.

7 The cokernel equation

Recall the “weak inner product” of two tangent vectors to X is defined by

〈〈k, h〉〉 =

∫

S1

krh ds

or, by abuse of notation,

〈〈k, h〉〉 =

∫ 2π

0

krh dθ.

(That is an “abuse of notation” since technically k and h are defined on the
closed unit disk B̄, not the interval [0, 2π).) Recall that the kernel of D2E(X) is
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the set of tangent vectors k such that D2E(X)[h, k] = 0 for all h. The kernel al-
ways contains at least the conformal directions; we say it is “one-dimensional” if
it is really four-dimensional. Tromba’s way of dealing with the conformal group
is to choose a “transverse slice” W transverse (in the weak inner product sense)
to the conformal orbits. Once that is done, if the kernel is one-dimensional,
there is just one direction in both the kernel and the tangent space of W . We
write J0 for this subspace of the kernel, and loosely refer to J0 as “the kernel of
D2E(X)” even though technically the kernel also includes the conformal direc-
tions. Then the cokernel J1 is defined to be the set of tangent vectors lying in
the tangent space of W and (weakly) orthogonal to J0.

Assume that the kernel is one-dimensional, generated by k = ψXθ. The
“cokernel equation”, which says that h = φXθ is in the cokernel J1, is

0 =

∫

S1

hrk ds =

∫

S1

hkr ds

Putting h = φXθ and k = ψXθ the cokernel equation becomes

0 =

∫ 2π

0

φXθ(ψXθ)r dθ

The kernel equation tells us

Xθ(ψXθ)r = Xθ(ψXr)θ

so the cokernel equation can be written

0 =

∫ 2π

0

φXθ(ψXr)θ dθ

Integrating by parts we have

0 = −

∫ 2π

0

(φXθ)θψXr dθ

= −

∫ 2π

0

φXθθψXr + φθXθψXr dθ

Since XθXr = 0 the second term vanishes:

0 = −

∫

2π

0

φXθθψXr dθ

8 The orthogonal path and the natural path

If X is any minimal surface, we can consider a “path” through X to be a family
of harmonic surfaces X̃(t) defined for t belonging to some interval containing 0,
such that X(0) = X . Thus technically X(0) is a function from [0, 2π) to R3; we
write X(t, θ) for X(t)(θ). Unless we are explicitly also considering variations of
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the boundary curve, it is assumed that X̃ is bounded by the same curve as X ,
so X̃(θ) = X(γ(θ)) for some function γ. In that case, the partial derivative X̃t

is a tangent vector to X̃. We can compute the variations of E(X) by computing
the derivatives of E(X(t)) and evaluating them at t = 0. Such variations are
called “intrinsic” if they only depend on the tangent vector Xt. We have seen
that the second variation is intrinsic, and the third variation is intrinsic on the
kernel of the second variation.

The fourth derivative is not intrinsic, as we shall see below. In other words,
it may depend on the particular path. When it comes to actual computation in
a particular case (such as for example Enneper’s surface), we want to choose a
path along which it is comparatively easy to compute the variations of E. On
the other hand, to draw conclusions from those computations, not just any path
will do; so we need to make sure that the path we use for the computations is
good enough to support our conclusions. Before proceeding further, we give an
example in a finite-dimensional situation. Consider a function f(x, y) defined
on a neighborhood of the origin in R2, with f(0, 0) = 0 and ∇f(0, 0) = 0,
and suppose fxx(0, 0) = c > 0 but fyy = 0 and fxy = 0. Then the “kernel
direction” is (0, 1). Suppose further that the third derivatives of f all vanish
at the origin. Now consider a path γ through the origin of R2, defined on an
interval containing 0, with γ(0) = (0, 0), and suppose that the fourth derivative
of f along that path is positive at the origin:

∂4

∂t4
f(γ(t))

∣

∣

∣

∣

t=0

> 0.

Can we conclude that f has a relative minimum at (0, 0)?
No, we cannot. Consider this example:

f(x, y) = x2 − y6

γ(t) = (t2, t)

Then γt(0, 0) = (0, 1) is in the kernel direction, and f(γ(t)) = t4 − t6 has fourth
derivative positive at the origin, but f does not have a relative minimum.

The reason that this fourth-derivative test failed to detect that f does not
have a relative minimum is that we computed the fourth derivative on “the
wrong path.” Had we used the path γ(t) = (0, t), we would have gotten “the
right answer”; the fourth derivative along that path is negative. The fourth
derivative of f is not intrinsic: it depends on more than just the tangent vector
γt(0). In particular, the problem here is that γ has too large a component in
the cokernel direction (1, 0), which allows f(x, y) along γ to pick up a quadratic
term from x, masking the negative fourth derivative in the y direction.

Something similar happens in the infinite-dimensional situation of the func-
tionE defined on the space ofH2 harmonic surfaces with a given boundary. Sup-
pose X is a minimal surface, and suppose that D2E(X) has a one-dimensional
kernel (aside from the conformal directions). Let k = ψXθ be a generator of
the kernel. (Technically, we suppose W is a slice through X transverse to the
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conformal orbits and that k is tangent to W at X .) Then two paths of interest
are defined as follows:

Definition 1 The natural path is defined by

X̃(t, θ) = X(θ + tψ).

The (or for now “an”) orthogonal path is the path such that for each suffi-
ciently small t,

DE(X̃)[h] = 0

for all tangent vectors h = ψX̃θ, where ψXθ is in the cokernel of D2E(X).

In the orthogonal path, X̃ is “almost minimal” in the sense that its first variation
is zero in directions orthogonal to the kernel. Of course that statement is not
quite an accurate translation of the definition, since “the kernel” exists in the
tangent space of X̃ only when t = 0.

In the two-dimensional example, the condition for the orthogonal path would
be that fx(γ(t)) = 0 for all (sufficiently small) t. Since fx(x, y) = 2x, that
implies that the orthogonal path is γ(t) = (0, t)–the one on which we “got the
right answer.” Similarly, one can show in the infinite-dimensional context that
one “gets the right answer” on an orthogonal path. But one also has to show
that an orthogonal path exists (and by the way it is unique). We will discuss
that issue in the next section.

The natural path is the path along which we wish to compute variations
in specific examples. But it turns out that the natural path is in general not
orthogonal. This apparent difficulty is reconciled by showing that the natural
path is “close enough to orthogonal”. Let me elucidate this concept. Consider
a path X̃ through X , defined for t in some interval I about the origin. Since X̃
is bounded by the same curve as X , there is some function χ : I × [0, 2π] → R
such that

X̃(t, θ) = X(χ(t, θ))

Consider the tangent vector X̃t = χtX̃θ. When t = 0 we can decompose k =
X̃t(0) into its components ψXθ in the kernel and φXθ in the cokernel. Then
when t = 0 we have

χt = ψ + φ

For t 6= 0 we define φ(t, θ) = χt(t, θ) − ψ(θ), so for all t we have

χt = ψ + φ

where ψ does not depend on t, but φ does depend on t.

Definition 2 The path X̃ = X ◦ χ(t) is almost orthogonal if φt = 0 when
t = 0. That is, χtt vanishes when t = 0.

Lemma 4 Let X̃ be any (sufficiently smooth) almost orthogonal path through
X. Then the fourth variation of E along the path X̃ is the same as along
an orthogonal path. The natural path is almost orthogonal; hence the fourth
variation is the same on the natural path as on any orthogonal path.
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Proof. Let X̃(t, θ) = X(χ(t, θ)) be almost orthogonal. That means χtt = 0
when t = 0. Define φ(t, θ) = (χ(t, θ) − θ)/t, so that

χ(t, θ) = θ + tφ(t, θ).

Then

χt = φ+ tφt

χtt = φt + tφtt + φt

= 2φt + tφtt

χtt

∣

∣

∣

∣

t=0

= 2φt

∣

∣

∣

∣

t=0

= 0 since X̃ is almost orthogonal

Hence φt = 0 when t = 0. But the formula for the fourth variation of E(X̃)
shows that the fourth variation depends only on φt at t = 0. Hence we get the
same value for any almost orthogonal path. In particular any orthogonal path
is almost orthogonal, and the natural path is almost orthogonal since along the
natural path φt is zero. That completes the proof.

One can show that the natural path is not in general orthogonal, although
it is almost orthogonal. Here is one way to understand the situation. Consider
a two-parameter family

X̃(t, s, θ) = X(θ + tψ(θ) + sφ(t, θ))

where ψXθ is in the kernel and φ(0)Xθ is in the cokernel. Then E(X̃) can be
expanded in a Taylor-MacLaurin series in s, whose coefficients are functions of
t. For an orthogonal path, the coefficient of s must be identically zero in t, as

DE(X̃)[φ(t)X̃θ ]

∣

∣

∣

∣

s=0

must be zero for each t, by the definition of orthogonal, but that is the coefficient
of the s term. The coefficient of the st term is zero because k = ψXθ is in the
kernel. The condition that X̃ be almost orthogonal amounts to requiring that
the st2 term is zero. In other words, the coefficient of s is O(t2). This is
exactly what is required to prevent E(X̃) from picking up a quadratic term
from the cokernel directions that would swamp the fourth derivative in the
kernel directions.

9 The gradient of Dirichlet’s energy

Let X be a harmonic surface, or technically, its restriction to S1, so that the
actual surface is the harmonic extension X̂. The space of “tangent vectors” k
(vectors of the form φXθ) admits an inner product

〈〈k, h〉〉 :=

∫

2π

0

krh dθ.
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It is written with two angle brackets to avoid confusion with the ordinary dot
product. Note that by Green’s theorem we also have

〈〈k, h〉〉 =

∫

B

∇k̂ · ∇ĥ dxdy

Tromba proved the existence of a “gradient”, that is, a vector field W = W (X)
such that

DE(X)[k] = 〈〈W,k〉〉 =

∫

2π

0

Wrk dθ. (5)

The vector field W is a tangent vector satisfying the equation

Wr = Xr

where Wr is the radial derivative of the harmonic extension Ŵ of W , and
similarly Xr = X̂r. The existence of W is proved by finding W as the minimizer
of the functional Φ defined by

Φ(k) =

∫

B

|∇X̂ −∇k̂|2 dxdy

in the Sobolev space H1

2
(B,R3). Tromba proves (see e.g. [11], pp. 406ff) that

W exists, is in H2, and satisfies the equation Wr = Xr.

Theorem 2 (Tromba) W (X) = 0 if and only if X̂ is a minimal surface, and
W is the gradient of E in the sense that

DE(X)[k] = 〈〈W,k〉〉 =

∫ 2π

0

Wrk dθ.

Proof. First we prove the gradient equation. Let W = W (X) be the vector
field whose construction was described above, so Wr = Xr. Let k = φXθ and
X̃(θ) = X(θ + tφ). Then we have

DE(X)[k] =
∂

∂t
E(X̃)

∣

∣

∣

∣

t=0

=
∂

∂t

1

2

∫

2π

0

X̃rX̃ dθ

∣

∣

∣

∣

t=0

=
1

2

∫

2π

0

X̃rtX̃ + X̃rX̃t dθ

∣

∣

∣

∣

t=0

=
1

2

∫ 2π

0

X̃rtX̃ dθ

∣

∣

∣

∣

t=0

+
1

2

∫ 2π

0

X̃rX̃t dθ

∣

∣

∣

∣

t=0

=
1

2

∫ 2π

0

X̃tX̃r dθ

∣

∣

∣

∣

t=0

+
1

2

∫ 2π

0

X̃rX̃t dθ

∣

∣

∣

∣

t=0

=

∫ 2π

0

X̃rX̃t dθ

∣

∣

∣

∣

t=0

=

∫

2π

0

Wrk dθ
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as claimed in the theorem.
If W = 0, then by the gradient equation X is a minimal surface. Conversely,

if X is a minimal surface then by (5)
∫

2π

0
Wrk dθ = 0 for all tangent vectors k.

Then for all C2 functions φ on S1 we have
∫

0

2πWrφXθ dθ = 0

whence (by the fundamental lemma of the calculus of variations) Wr is identi-
cally zero. But then Ŵr = 0 so W is constant. But the only constant tangent
vector is 0, so W = 0. That completes the first proof.

10 The flow of the gradient of E

Theorem 3 Let X be an immersed minimal surface bounded by Γ. Suppose
the kernel of D2E(X) has dimension k (not counting the conformal directions).
Then the flow lines of W near X consist of 2k analytic arcs β(t). That is, there
exist k analytic maps β such that for each t in some interval containing 0, β(t)
is a harmonic surface bounded by Γ, β(0) = X, and for t > 0 we have

β′(t) = W (X(β(t)).

Moreover, the vectors β′(0) are a basis for the kernel of D2E(X).

Proof. Finish this.

11 Sufficient conditions for a relative minimum

of Dirichlet’s energy

In [?]1 Tromba used the gradient vector field W discussed above to prove a
version of the Morse lemma for Dirichlet’s energy. The Morse lemma has the
following immediate consequence:

Theorem 4 (Tromba) Let X be a minimal surface with positive definite sec-
ond variation of Dirichlet’s energy. Then X is a relative minimum of Dirichlet’s
energy.

Although this theorem is intuitively very appealing, it seems to require the
Morse lemma to prove; in general if all we know is that the function f has
positive definite second variation at X , it does not follow that X is a relative
minimum of f . For that we need D2f(X)[k, k] to be bounded below by some
positive constant. There is a problem, due to the fact that D2E(X) always has
a (trivial) kernel: the three directions induced by the conformal group. In [11],
§6.5, this problem is solved by taking a “slice” transverse to the orbits of the
conformal group, but not without many technical difficulties.

1This work appears again in [11], §6.5, cf. especially Theorem 1, p. 425.
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Next we ask, what happens if D2E(X) does have a non-trivial kernel? Then
the instead of the generalized Morse lemma, we need the generalized Gromoll-
Meyer splitting lemma, Theorem 2, p. 438 of [11]. In that theorem, we break
the tangent space of X into three pieces, orthogonal with respect to the inner
product 〈〈h, k〉〉: the conformal directions, the non-trivial part J0 of the kernel
of D2E(X), and the orthogonal complement J1 of the other two pieces.

Theorem 5 (Gromoll-Meyer-Tromba) Let X be a minimal surface. Then
with notation as above, there is a local diffeomorphism Φ defined on a neighbor-
hood of 0 in J1 × J0, and range including a neighborhood of X in a slice of the
space of harmonic surfaces transverse to the conformal orbits, and a function
h : J0 → J1, such that for ℓ in J1 and k in J0 we have

E(Φ(ℓ, k)) =
1

2
D2Ē(0)[ℓ, ℓ] + Ē(h(k), k)

where Ē(ℓ, k) = E(Φ(ℓ, k)) by definition.

Proof. See [11], p. 438.

The diffeomorphism Φ in the theorem can be described explicitly. Let k =
ψXθ and h = χXθ be two tangent vectors to X , with k in J0 and h in J1. Then

Φ(h, k)(θ) = X(θ + ψ + χ)

Given a “variation” or “path” X̃(t) with X̃(0) = X , we can calculate the third
and fourth variations of Dirichlet’s energy along that path, namely the third
and fourth derivatives of E(X̃(t)) with respect to t. The fourth derivative is
not intrinsic, as we have seen; it may depend on the particular path. One path
of great interest is the “orthogonal” path defined by

DE(X̃)[χX̃θ] = 0 for all t

This is the path defined by ℓ = h(k) in the Gromoll-Meyer-Tromba theorem, as
we shall soon prove.

The actual definition of Φ is constructed so that for each k, (h(k), k) is a
critical point of the function Ē(ℓ, k) := E(Φ(ℓ, k)). In other words, Φ(ℓ, k) is
“almost minimal” in that the first variation of area is zero in all directions χX̃θ

with ℓ = χX in the cokernel J1. (See the bottom of p. 438 op. cit.) That is,
the path X̃ satisfies

DE(X̃)[φX̃θ] = 0

for all φ such that φXθ is in the cokernel J1.
We now are in a position to prove the main result of this section:

Theorem 6 (Conditions for a minimum) Suppose X0 is an immersed min-
imal surface whose second variation has a one-dimensional kernel (aside from
the conformal directions). Suppose X(t, θ) is a one-parameter family such that
k = Xt lies in that kernel when t = 0. Suppose that the third and fourth or-
thogonal variations of E(X) are zero and positive, respectively. Finally, suppose
that X̃ is an almost-orthogonal variation (for example the natural variation).
Then X0 is a relative minimum of E.
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Remark. The important point here is that, even though the fourth variation is
not intrinsic (there are terms involving φt in the fourth variation), we just need
to calculate the fourth variation along one particular path X(t, θ). As discussed
above, we do not get to choose the path arbitrarily; but as long as we choose
an almost orthogonal path, all will be well. In particular, we are allowed to
compute along the natural path X̃(t, θ) = X(θ + tψ), where k = ψXθ is in the
kernel.

Proof. Let Φ be as in the preceding theorem, and let Φ−1 be its inverse, defined
on the slice W transverse to the conformal orbits. Let X̃ be the orthogonal
path defined above; we may assume that X̃ lies in the slice W transverse to the
conformal orbits. Then define

(x̃, ỹ) = Φ−1X̃.

(So x̃ and ỹ are tangent vectors belong to the cokernel J1 and the kernel J0

respectively.) Then x̃ = h(ỹ) = 0 According to the theorem, we have

E(X̃) =
1

2
D2Ē(0)[x̃, x̃] + Ē(h(ỹ), ỹ)

and along the orthogonal path we have x̃ = h(y) = 0, so the

E(X̃) =
1

2
D2Ē(0)[0, 0] + Ē(0, ỹ)

= Ē(0, ỹ)

By hypothesis, we also have

E(X̃) = Ē(0, 0) + ct4 +O(t5)

for some c > 0. Hence
Ē(0, ỹ) = ct4 +O(t5)

Returning to the Gromoll-Meyer-Tromba formula, we have since h(y) = 0, for
X̃ near X ,

E(X̃) = E(x̃, ỹ)

= E(Φ(x̃, ỹ))

= D2Ē(0, 0)[x̃, ỹ] + Ē(0, y)

= D2Ē(0, 0)[x̃, ỹ] + Ē(0, 0) + ct4 +O(t5)

> Ē(0, 0)

since c > 0 and the second variation is positive definite on the cokernel. Hence
E(X̃) > E(X). Hence X is a relative minimum of Dirichlet’s energy. That
completes the proof.

Remark. We did not need to know that the second variation is uniformly
bounded away from zero on the cokernel. It is in fact so bounded, in terms
of the second eigenvalue of the eigenvalue problem associated with D2A(X).
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Example. The theorem can be applied to Enneper’s surfaceX defined in the unit
disk. The formulas for the third and fourth variation above can be used to show
that the hypotheses are satisfied; hence X is a relative minimum. Of course,
this was known already by Ruchert’s uniqueness theorem [22], also presented in
[19], p. 437, but it is nice to have another proof.

12 Bifurcations of a stable immersed minimal

surface

Consider Enneper’s surface (bounded by Enneper’s wire Γ with R = 1). When
R is increased to be slightly more than one, there occurs a “trifurcation”; in
addition to Enneper’s surface (which is unstable for R > 1) there are two “new”
relative minima of area. Adding one more parameter, thus creating a two-
dimensional family of nearby Jordan curves, at least sometimes leads to the
“cusp catastrophe”, as shown in [?]. What will happen if we distort Γ in some
other way? Could we get five new minimal surfaces? Twenty-seven? No. We
shall see below that you can get two new relative minima, and no more.

In this section we suppose:

(i) Γ is a Jordan curve, and X is a minimal surface bounded by Γ, and

(ii) D2E(X) has a one-dimensional kernel (not counting the conformal di-
rections), and

(iii) Γ(α) is a one-parameter family of Jordan curves depending on a real
parameter α, equal to Γ when α = 0.

The key to analyzing this situation is a generalization of the Gromoll-Meyer-
Tromba theorem. It essentially says that the minimal surface X is part of a
family X(α) of harmonic surfaces bounded by Γ(α); we cannot claim that X(α)
is minimal, but it is has zero first variation in all except possibly the “kernel
direction” φXθ, that lies in the kernel of the second variation when α = 0.

Theorem 7 (Gromoll-Meyer-Tromba) With notation and assumptions as
above, let J0 be the kernel of D2E(X), and J1 its weak orthogonal complement.
Then there is an interval I containing 0 (of α-values), and a local diffeomor-
phism Φ defined on a neighborhood of 0 in J1 × J0 × I, and range including a
neighborhood of X in the slice of the space of harmonic surfaces W(α) transverse
to the conformal orbits, such that for x in J1 and y in J0 we have

E(Φ(x, y, α)) =
1

2
D2Ē(0, 0, α)[x, x] + Ē(h(y), y, α)

where Ē(x, y, α) = E(Φ(x, y, α)) by definition.

Proof. See [11], §6.5.
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Theorem 8 Let X be an immersed minimal surface bounded by a Jordan curve
Γ. Suppose D2E(X) has a one-dimensional kernel (aside from the conformal
directions). Suppose also that the orthogonal fourth variation of E is positive at
X. Let ǫ > 0 and γ > 0 be given. Then any Jordan curve sufficiently close to Γ
(in C6,γ norm) bounds at most three minimal surfaces lying within ǫ of X (in
C6 norm). Moreover, if it bounds three, two are relative minima of area and
one is unstable; if it bounds two, one is a relative minimum and one is unstable;
and if it bounds only one, that one is a relative minimum.

Proof. Let Γ(α) be a path in the space of Jordan curves such that Γ(0) is the
given curve Γ (so α is a real number, belonging to some interval I containing
the origin, and Γ(0) is the boundary of X .) According to the Gromoll-Meyer-
Tromba theorem, for small α we have for y = 0

vE(Φ(x, y, α)) =
1

2
D2Ē(0, 0, α)[x, x] + Ē(h(y), y, α)

and by hypothesis E(0, y, 0) = ct4 +O(t5) for some c > 0, when y = tk = tψXθ.
When α is small but not zero, we consider the function

f(t) := E(Φ(0, tψX̃θ, α)).

When α = 0 it has the form ct4 + O(t5). When α is small but not zero, it
can pick up terms in lower powers of t. If it does not pick up such terms, then
there is still just one minimum near t = 0. If it does pick up such terms, then
considering possible forms of cubic equations near the origin, we see that there
are either two minima and a relative maximum (corresponding to an unstable
minimal surface), or one relative minimum and an inflection point (which also
corresponds to an unstable minimal surface), or possibly still just one relative
minimum. These are all minimal surfaces, because their first variation in the
cokernel directions is still zero, by the Gromoll-Meyer-Tromba formula. That
completes the proof of the theorem.
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