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1 Introduction

Enneper’s surface was discovered in 1863 by Alfred Enneper, who was 33 at the
time. This was seven years after his Ph. D. under the supervision of Dirichlet
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at Göttingen, where Enneper lived his entire life, from student to Professor
Extraordinarius.

Enneper’s surface is defined in the entire complex plane, so it is an example
of a complete minimal surface (no boundary). However, we are interested in
considering portions of it, defined in a disk of radius R. Then it is bounded by
“Enneper’s wire”,

ΓR(θ) =

 R cos θ − 1
3R

3 cos 3θ
−R sin θ − 1

3R
3 sin 3θ

R2 cos 2θ


The same formula, with r in place of R, defines Enneper’s surface in polar
coordinates.

2 Weierstrass representation

To show that Enneper’s surface as defined above is indeed a minimal surface,
we show that it arises from the Weierstrass representation if we take f(z) = 1
and g(z) = z. This gives us

Xz =
1

2

 1− z2

i(1 + z2)
2z

 (1)

Integrating, we have

X = Re

 z − 1
3z

3

i(z + 1
3z

3)
z2


=

 r cos θ − 1
3r

3 cos 3θ
−r sin θ − 1

3r
3 sin 3θ

r2 cos 2θ


We now compute the unit normal in terms of the Weierstrass representation.
We have (see [2] for details)

N =
Xx ×Xy

|Xx ×Xy|

=
1

|g|2 + 1

 2 Re g
2 Im g
|g|2 − 1


For Enneper’s surface we have g(z) = z, so

N =
1

r2 + 1

 2x
2y
r2 − 1


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N =
1

r2 + 1

 2r cos θ
2r sin θ
r2 − 1

 (2)

3 Non-parametric form

A minimal surface is said to be in non-parametric form if it is in the form
z = f(x, y). The following lemma gives a sufficient condition for a minimal
surface to be expressible in this form.

Lemma 1 Let X be a minimal surface bounded by a Jordan curve Γ. Suppose
Γ projects one to one onto a curve γ in the xy plane. Suppose the unit normal
N to X is never horizontal in the interior of its parameter domain. Then X is
non-parametric over the interior of γ.

Proof. The condition that N is nowhere horizontal implies, by the implicit func-
tion theorem, that the projection from X to the xy plane is locally invertible.
Since the coordinate functions of a minimal surface are harmonic, that projec-
tion induces a locally conformal map from the parameter domain of X to the
xy plane. The desired conclusion then follows from the following theorem.

Theorem 1 Let f be a holomorphic map from the closed disk B̄ onto B̄, and
suppose f is one to one on the boundary. Then f is a conformal map, i.e., there
are no zeroes of the derivative f ′.

Remark. Radó [10] (p. 81) attributes this theorem to Darboux, with a reference
to a German textbook on function theory that was unavailable in 1967 and is
still unavailable in 2015. Darboux’s theorem, as cited by Radó, only assumes
continuity at the boundary rather than analyticity. In view of the apparent
unavailability of Darboux’s proof, we gave a proof of the analytic case in [4],
which we do not repeat here.

Now we are ready to apply these results to Enneper’s surface.

Lemma 2 Let X be the portion of Enneper’s surface defined in the disk of
radius R. Then X is non-parametric if and only if R ≤ 1.

Proof. Since the function g in the Weierstrass representation is the stereographic
projection of the unit normal, and for Enneper’s surface we have g(z) = z, the
unit normal N(z) to Enneper’s surface is horizontal exactly when |z| = 1. Hence
for R ≤ 1 the lemma above applies, so X is non-parametric if R ≤ 1. Conversely,
if R > 1, one can show that there are vertical lines through ΓR meeting it in
two points. These equations are solved in detail in [4] (for another purpose).
That completes the proof.

A famous sufficient condition for non-parametric form is given in the follow-
ing theorem.
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Theorem 2 (Radó) Let the real analytic Jordan curve Γ have a monotonic
strictly convex projection γ on the xy plane. Then any minimal surface bounded
by Γ can be expressed in nonparametric form z = f(x, y).

Proof. Let X be a minimal surface bounded by Γ. By [7], X is real analytic
up to the boundary. Suppose, for proof by contradiction, that X has a vertical
tangent plane P at the point p. Then the intersection of P with (the range of)
X consists of 2n real analytic arcs emanating from P at equal angles, for some
n ≥ 2. But since the projection of Γ is convex, P meets Γ in at most two points,
contradiction. Hence X has no vertical tangent plane. Then by the previous
theorem, X is expressible in non-parametric form over the interior of γ.

Remark. Radó’s theorem is true without the assumption of real-analyticity,
and with possibly non-strict convexity of the projection. Radó’s own proof
works without strict convexity, although he does not point that out. We do not
give the proof under those weakened hypotheses.

3.1 Non-parametricity with respect to the xy plane

We investigate the projection of Enneper’s wire on the xy plane. It turns out,
the result is not as good as the one obtained in Lemma 2, in the sense that we
only get R ≤ 1/

√
3, but we get a stronger result, in that uniqueness follows.

Lemma 3 For R ≤ 1√
3

, the projection of Enneper’s wire ΓR on the xy plane

is convex. Hence ΓR bounds exactly one minimal surface.

Proof. Let γ = (X,Y ) be the projection of Γ onto the xy plane. Then

γ(θ) =

[
R cos θ − 1

2R
3 cos 3θ

−R sin θ − 1
3R

3 sin 3θ

]
The curvature of γ is given by

1

(X2
θ + Y 2

θ )3/2

 Xθ

Yθ
0

×
 Xθθ

Yθθ
0


which is zero exactly when

0 =

 Xθ

Yθ
0

×
 Xθθ

Yθθ
0


=

 0
0
XθYθθ − YθXθθ


Therefore we need to compute the least R such that for some θ we have XθYθθ−
YθXθθ = 0.
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Now we just compute.

0 = XθYθθ − YθXθθ

= (−r sin θ + r3 sin 3θ)Yθθ − (r cos θ + r3 cos 3θ)Xθθ

= (−R sin θ +R3 sin 3θ)(R sin θ + 3R3 sin 3θ)− (−R cos θ −R3 cos 3θ)(−R cos θ + 3R3 cos 3θ)

Canceling R2 from both sides we have

0 = (− sin θ +R2 sin 3θ)(sin θ + 3R2 sin 3θ) + (cos θ +R2 cos 3θ)(− cos θ + 3R2 cos 3θ)

= 1 + 2R2(− sin 3θ sin θ + cos 3θ cos θ)− 3R4

0 = 1 + 2R2 cos 4θ − 3R4

For small R this expression is positive. It takes its minimum (for fixed R) when
cos 4θ = −1. That minimum is 1−2R2−3R4. This factors as (1−3R2)(1+R2),
so its only positive zero is R = 1/

√
3.

It follows that not only Enneper’s surface, but any minimal surface bounded
by ΓR, is non-parametric, when R ≤ 1/

√
3. Since there is a maximum prin-

ciple for the difference of two solutions of the non-parametric minimal surface
equation, uniqueness follows. That completes the proof.

3.2 Non-parametricity relative to the yz plane

Let C be the projection of Enneper’s wire on the yz plane, for −π/2 < θ < π/2,
plus the two horizontal line segments y = ±x, z = 0 connecting Enneper’s wire
to the origin.

Lemma 4 C bounds exactly one minimal surface, namely a portion of En-
neper’s surface, and it is non-parametric with respect to the yz plane.

Proof. We use Radó’s convex-projection theorem. However, in this case the
projection contains a straight line, so it is not strictly convex. We consider the
projection of C on the x2x3 plane; the projection of C is one to one, as required
by the hypothesis of the convex-projection theorem, and we claim it is convex.
The curved part is given by the equations

γ(θ) =

[
−R sin θ − R3

3 sin 3θ
R2 cos 2θ

]
Here −π/4 ≤ θ ≤ π/4. A plot of this curve for R = 1.2, and −π/2 ≤ θ < π/2,
is shown in Fig. 1. Note that the curve appears to be convex for θ in this range,
not just in [−π/4, π/4]. The computation below confirms that result.

It suffices to show that the curvature vector of this curve always points
inwards. Let U(θ) be the unit tangent to γ at γ(θ). Then κ(θ) = Uθ and the
inward normal N is obtained by rotating U by 90◦ counterclockwise. We must
show that κ · N ≥ 0. This requires some computation, but it is considerably
shorter than the proof that the total curvature of Enneper’s wire is less than
6π. We do the first part of the computation in Sage, writing r for R and t for
θ:
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Figure 1: Part of the projection of ΓR on the x2x3 plane, for R = 1.2. The
curve is convex.

r,t = var(’r,t’)

assume(r > 0)

X = vector((r * cos(t) - (1/3)* r^3 * cos(3*t),

- r * sin(t) - (1/3) *r^3 * sin(3*t),

r^2 *cos(2*t)))

gamma = vector((X[1],X[2]))

U = gamma.diff(t)/abs(gamma.diff(t))

kap = U.diff(t)

norm = vector((-U[1],U[0]))

f = kap.dot_product(norm).trig_expand().trig_simplify()

The result of this (replacing t by θ)

f =
3(4r3cosθ sin2 θ + (r3 + r) cos θ)

16r4 sin4 θ + r4 − 8(r4 − r2) sin2 θ + 2r2 + 1
(3)

Our aim is to show that f ≥ 0. We begin by showing that the denominator is
never zero. The denominator is a quadratic in sin2 θ. Writing it explicitly as
such a quadratic with s = sin2 θ, it is

16r4s2 − 8(r4 − r2)s+ (r2 + 1)2.

The discriminant of that quadratic is

D = 64(r4 − r2)2 − 64r4(r2 + 1)2

= 64r4((r2 − 1)2 − (r2 + 1)2)

= 64r4(−4r2)

= −256r6

< 0

Since the discriminant is negative, the denominator of (3) is never zero, and
hence always has one sign as a function of sin2 θ, for each r. When θ = 0, the
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denominator is (r2 + 1)2, which is positive. Hence the denominator is always
positive. Now consider the numerator, which is

4 cos θ(4r3 sin2 θ + r3 + r).

This is a positive factor times cos θ. But since −π/4 ≤ θ ≤ π/4, we have
cos θ > 0. In fact, as mentioned above, it suffices to assume −π/2 < θ < π/2.
Hence the numerator is positive. Since both the numerator and denominator of
(3) are positive, f is positive. That completes the proof.

4 The second variation of D2E

Consider the kernel equation for Enneper’s surface in the disk of radius 1,

kzXz = 0

or in real form with k = ψXθ,

Xθ((ψXθ)r − (ψXr)θ) = 0.

We will show that ψ = sin(2θ) solves this equation. On S1 we have (even when
t 6= 0)

k = ψXθ

= sin 2θRe (izXz)

=
1

2
i(z2 − z̄2) Re

 i(z − z3)
−(z + z3)
2iz2


=

1

4
i(z2 − z̄2)

 −iz3 + iz − iz̄ + iz̄3

−z3 − z − z̄ − z̄3

2iz2 − 2iz̄2


=

1

4

 (z2 − z̄2)(z3 − z + z̄ − z̄3)
−i(z2 − z̄2)(z3 + z + z̄ + z̄3)
−(z2 − z̄2)(2z2 − 2z̄2)


=

1

4

 z5 − z3 − z̄3 + z̄5

−i(z5 + z3 − z̄3 − z̄5)
−2z4 + 4− 2z̄4


This expression for k is harmonic in the entire plane since evidently ∆k = kzz̄ =
0. Differentiating with respect to z we have (even when t 6= 0)

kz =
1

4

 5z4 − 3z2

−5iz4 − 3iz2

−8z3

 (4)
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Taking the dot product with Xz we have, when t = 0,

kzXz =
1

4

 5z4 − 3z2

−5iz4 − 3iz2

−8z3

 ·
 1− z2

i(1 + z2)
2z


=

1

4

 5z4 − 3z2

5z4 + 3z2

−8z3

 ·
 1− z2

1 + z2

2z

 = 0

Similar calculations show that ψ = a+b cos θ+c sin θ also yields a solution; this
three-parameter family accounts for the conformal directions, and ψ = 2 cos θ
represents a non-trivial kernel direction.

That k is the only kernel direction (orthogonal to the conformal direc-
tions) can be shown directly by writing a Fourier series for an unknown ψ =∑∞
n=−∞ anz

n on S1 and showing ψ must have the form a + b cos θ + c sin θ +
d sin 2θ, which is how we found ψ = sin 2θ in the first place.

We also give a more informative proof that k is the only non-trivial kernel di-
rection. The function g(z) in the Weierstrass representation is the stereographic
projection of the unit normal N , and for Enneper’s surface g(z) = z. Hence,
the Gaussian image of Enneper’s surface in the unit disk is exactly the upper
hemisphere. Hence the first eigenvalue of D2A(X) is 2, so the kernel of D2A(X)
is one-dimensional, as the eigenspace of the least eigenvalue. But every member
k of the kernel of D2E(x) gives rise to a member φ = k · N of the kernel of
D2A(x), and the map k 7→ φ is one to one.

For R < 1, the Gaussian area of Enneper’s surface over the disk of radius R
is contained in a hemisphere, so the critical eigenvalue is more than 2 and the
surface is a relative minimum of area. For R > 1, the Gaussian area contains a
hemisphere, so the surface is not a relative minimum of area. Hence R = 1 is
the only value for which the second variation has a kernel.

5 The third variation and fourth variations

5.1 The third variation

We now calculate the third variation of Enneper’s surface (defined in the unit
disk). We consider a variation X(t) defined on S1 by

X = X0(ei(θ+tψ+O(t2)))

where ψ(θ) = sin 2θ and the subscript in X0 indicates t = 0. Differentiating
with respect to t we have

Xt = (ψ +O(t))Xθ.

Thus k = Xt lies in the kernel of D2E(X0) when t = 0.
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Lemma 5 The third variation of Enneper’s surface is zero. Specifically, with
the variation X(t) given above, we have

∂3E

∂t3

∣∣∣∣
t=0

= 0.

Proof. We have (as shown in [3] following [12])

∂3E

∂t3

∣∣∣∣
t=0

= 4 Re

∫
zk2
zψ dz + 4 Re

∫
z(ψkθ)zXzψ dz (5)

In the case of Enneper’s surface, we have

ψ = sin 2θ =
z2 − z−2

2i

where z = eiθ. By (4) we have kz = z2v for some holomorphic vector v. Hence

ψkz is holomorphic in the unit disk. (6)

Therefore by Cauchy’s theorem, the first integral in (5) is zero.
We now work on the second integral. We claim that also vanishes because

the integrand is holomorphic in the disk. We have

kθ = 2 Re (izkz)

Therefore

(ψkθ)z = ψ2 Re (izkz)

= 2 Re (izψkz)

Since ψkz is holomorphic, its complex derivative is half the complex derivative
of its real part:

(ψkθ)z = (izψkz)z

Putting that into the second term of (5) we have (since the first term is zero)

∂3E

∂t3

∣∣∣∣
t=0

= 4 Re

∫
z(izψkz)zXzψ dz

Integrating by parts we have

∂3E

∂t3

∣∣∣∣
t=0

= −Re

∫
(zXzψ)z(izψkz) dz

But ψkz is holomorphic, as shown in (6); and the z-derivative of any harmonic
function is holomorphic, so (zXzψ)z is holomorphic. Then the entire integrand is
holomorphic. Hence the integral is zero, by Cauchy’s theorem. That completes
the proof of the lemma.
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5.2 The mixed third variations of Enneper’s surface

We now consider the mixed third variation, where k = ψXθ is the kernel direc-
tion, and h = φXθ is any tangent vector weakly orthogonal to the conformal
directions.

Lemma 6 Let X be the portion of Enneper’s surface bounded by Enneper’s wire
with R = 1. Then the mixed third variations of X are zero. That is,

D2E(X)[k, k, h] = 0

for any tangent vector h.

Proof. The proof divides into two cases: when h is a conformal direction,
and when h is (weakly) orthogonal to all the conformal directions. Weakly
orthogonal means that,

〈〈h, ` 〉〉 :=

∫ 2π

0

hr(e
iθ)`(eiθ) dθ = 0

for the three conformal directions `. These two cases suffice to prove the lemma,
since the third variation is a trilinear operator, so if k is the kernel direction,
then any other tangent vector h can be written as j + `, where ` is a conformal
direction, and h is weakly orthogonal to the conformal directions. Then we have

D3E(X)[k, k, h] = D3E(X)[k, k, j] +D3E(X)[k, k, `] = 0 + 0 = 0.

Since E(X̃) is constant along conformal orbits, we have D3E(X)[k, k, `] =
D2E(X)[k, k] = 0, when ` = φXθ is a conformal direction, and k = ψXθ is the
kernel direction, by considering the path

(̃X, t, s, θ) = X(θ + tψ + sφ).

Then
E(X̃) = D2E(X)[k, k]t2

so taking the partial derivative with respect to s, we get 0; but this partial
derivative is by definition the mixed variation D3E(X)[k, k, `]. That completes
the proof in case h is a conformal direction.

Now we take up the second case. Let h = φXθ be orthogonal to the conformal
directions. Then we claim z̄hz is holomorphic in the disk, i.e., hz has no constant
term, so h has no linear term. We prove this by calculating the weak inner
product of h with the conformal directions. We have

0 = 〈〈h, ` 〉〉

=

∫
hr` dθ

=

∫
2 Re (zhz)` dθ
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= 2 Re

∫ 2π

0

zhz` dθ

= 2 Re

∫
S1

zhz`
dz

iz

= −2 Re i

∫
hz` dz

We note that Xz has a constant term (it suffices here to use the explicit formula
(1), but that is consequence of the boundary being a Jordan curve). Then taking
` = 2 cos θXθ = 2 Re ((z + z̄)zXz), we find that

Re i

∫
z̄hz dz = 0.

Taking ` = 2 sin θXθ we similarly find

Im i

∫
z̄hz dz = 0.

Hence ∫
z̄hz dz = 0

and by Cauchy’s theorem, z̄hz is holomorphic. Since 2ψ = −i(z2− z̄2), we have
2zψ = −i(z3 − z̄), and it follows that

zψhz is holomorphic (7)

Using (7), we can calculate the mixed third variation much as we did the
one-directional third variation. Our starting point (see [3]) is the formula

D3E(X)[k, k, h] = 4 Re

∫
zkzhzψ dz + 4 Re

∫
z(ψhθ)zXzψ dz

For Enneper’s surface, as shown above, ψkz is holomorphic in the disk. Since
the z-derivative of any harmonic function is holomorphic, the first term has a
holomorphic integrand, so by Cauchy’s theorem, it is zero. Hence

D3E(X)[k, k, h] = 4 Re

∫
z(ψhθ)zXzψ dz

Expressing hθ in complex form as 2 Re (izhz) we have

D3E(X)[k, k, h] = 4 Re

∫
( Re (2zψhz))z(zXzψ) dz

Since zψhz is holomorphic, as we proved in (7), its complex derivative is twice
the derivative of its real part, so we have

D3E(X)[k, k, h] = 4 Re

∫
(zψhz)z(zXzψ) dz
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Integrating by parts we have

D3E(X)[k, k, h] = −4 Re

∫
(zψhz)(zXzψ)z dz

Since the z-derivative of any harmonic function is holomorphic, the second factor
in the integrand is also holomorphic, so the whole integrand is holomorphic.
Hence the value is 0, by Cauchy’s theorem. That completes the proof.

Remark. It was necessary to integrate by parts because zψXz is not holo-
morphic; it contains a term in z̄.

Remark. Ruchert [11] proved that Enneper’s wire with R ≤ 1 bounds a
unique minimal surface; hence Enneper’s surface (defined in the disk of radius
R ≤ 1) is a relative minimum of area (and hence also of E). It follows that
all the mixed third variations D3E(X)[k, k, h] vanish, since otherwise we could
construct a path X̃ along which the third derivative Ettt(X̃) would be nonzero,
and hence X would not be a relative minimum. Namely

X̃(t, θ) = X(θ + tψ + tφ)

where k = ψXθ is the kernel direction and h = φXθ is any cokernel direction
in which the mixed third variation is not zero. But as shown above, we can
see by direct calculation that these mixed variations vanish; and indeed, we will
also calculate the fourth variation and prove directly that Enneper’s surface is a
relative minimum when R = 1; and then we will use that fact to give a different
proof of Ruchert’s uniqueness theorem.

5.3 The fourth variation of Enneper’s surface

We will compute the fourth variation of Enneper’s surface along the path given
by

X(t, θ) = X0(θ + tψ) with ψ = 2 sin 2θ

We write k = Xt = ψXθ. Since ψ does not depend on t, we have kt = ψXθt =
ψkθ. The following formula for the fourth variation in a direction belonging to
the kernel of the second variation is given in [3].

∂4E

∂t4

∣∣∣∣
t=0

= 8 Re

∫
zkzkztψ dz + 4 Re

∫
zkttzXzψ dz

+ 12 Re

∫
zkztXzψt dz + 8 Re

∫
zk2
zψt dz

Since we have assumed ψt = 0 the last two terms can be dropped:

∂4E

∂t4

∣∣∣∣
t=0

= 8 Re

∫
zkzkztψ dz + 4 Re

∫
zkttzXzψ dz
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We have

ψ = sin θ =
1

2
(−iz2 + iz−2),

By (4), kz is divisible by z2. Hence kzψ is holomorphic. Since the z-derivative
of any harmonic function is holomorphic, and kt is harmonic, so kzt = ktz is
holomorphic. Hence the first term also vanishes:

∂4E

∂t4

∣∣∣∣
t=0

= 4 Re

∫
zkttzXzψ dz

Recall from (4) that (even when t 6= 0)

kz =
1

4

 5z4 − 3z2

−5iz4 − 3iz2

−8z3


To use this equation when t 6= 0 we should put z = ei(θ+tψ), so we have

zt = iψz

Differentiating kz with respect to t we obtain

kzt =
1

4

∂

∂t

 5z4 − 3z2

−5iz4 − 3iz2

−8z3


=

zt
4

 20z3 − 6z
−20iz3 − 6iz
−24z2


=

i

4
ψz

 20z3 − 6z
−20iz3 − 6iz
−24z2


=

i

4
dt
z2 − z̄2

2i
z

 20z3 − 6z
−20iz3 − 6iz
−24z2


=

1

8

 20z6 − 6z4 − 20z2 + 6
−20iz6 − 6iz4 + 20iz2 + 6i
−24z4 + 24


This came out holomorphic, as it had to, since it is also ktz and kt is harmonic.
Now differentiate again with respect to t:

kztt =
zt
8

 120z5 − 24z3 − 40z
−120iz5 − 24iz3 + 40iz
−96z3


=

iψz

8

 120z5 − 24z3 − 40z
−120iz5 − 24iz3 + 40iz
−96z3


13



=
i

8

z2 − z̄2

2i
z

 120z5 − 24z3 − 40z
−120iz5 − 24iz3 + 40iz
−96z3


=

1

16

 120z8 − 24z6 − 160z4 + 24z2 + 40
−120iz8 − 24iz6 − 80iz4 + 24iz2 − 40i
−96z6 + 96z2


For Enneper’s surface we have

zXz =

 z − z3

iz + iz3

2z2


Taking the dot product with the previous equation, we have

zkttzXz =
1

16

 120z8 − 24z6 − 160z4 + 24z2 + 40
−120iz8 − 24iz6 − 80iz4 + 24iz2 − 40i
−96z6 + 96z2

 ·
 z − z3

iz + iz3

2z2


= 5z +O(z2)

Multiplying by ψ we have

zkttzXzψ = (5z +O(z2))
z2 − z−2

2i

= 5iz−1 +O(1)

Integrating this around S1, the O(1) part is holomorphic, so it integrates to 0,
and we have

∂4E

∂t4

∣∣∣∣
t=0

= 4 Re

∫
zkttzXzψ dz

= 4 Re

∫
5i

z
dz

= 4 Re
5i

2πi
by Cauchy’s residue theorem

=
10

π

We have proved

∂4E

∂t4

∣∣∣∣
t=0

> 0 (8)

5.4 Relative minimum for R = 1

We need the following theorem, which is discussed in [3].
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Theorem 3 Let u be a minimal surface of disk type bounded by a Jordan curve
Γ. Suppose that D2E(x) has a one-dimensional kernel (aside from the conformal
directions) and that for some one-parameter family X(t) of harmonic surfaces
bounded by Γ, with X(0) = u and Xt(0) = k in the kernel of D2E(x), the third
and fourth derivatives of E(X(t)) with respect to t are respectively zero and
positive. Then u is a relative minimum of Dirichlet’s energy.

Corollary 1 Enneper’s surface for R = 1 is a relative minimum of area.

Proof. Let u be Enneper’s surface for R = 1, and let ψ = sin 2θ. Let X(t, θ) =
X(θ + tψ). We have calculated the required second, third, and fourth deriva-
tives of E(X(t)) in the previous sections, and they meet the hypotheses of the
theorem. That completes the proof.

6 Curvature

6.1 Geodesic curvature of Enneper’s wire

In this section we compute the geodesic curvature (with respect to Enneper’s
surface) of Enneper’s wire ΓR. We note that polar coordinates (r, θ) are not
isothermal parameters for Enneper’s surface; so we need E = X2

θ and G = X2
r

rather that just W =
√
EG. The element of geodesic curvature is given by a

triple product:

κgds = E−1[Xθ, Xθθ, N ] dθ

where by definition [a, b, c] = a× b · c.
For Enneper’s surface we have

X =

 r cos θ − 1
3r

3 cos 3θ
−r sin θ − 1

3r
3 sin 3θ

r2 cos 2θ


Nitsche [9], p. 438, says “A straightforward computation yields the expressions
pertaining to Enneper’s surface,” and gives the following results (with λ in place
of θ):

E = r2(1 + r2)2

X ·N =
1

3
r2(3 + r2)(1 + r2)−1 cos 2λ (9)

E−1[Xθ, Xθθ, N ] = (1 + 3r2)(1 + r2)−1 (10)

X ·Xr =
1

3
r2(1 + r2)(3 + r2)− 2

3
r4 cos2 2λ

We used the mathematical software Sage to check these results. Here is the
program we used:
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r,t = var(’r,t’)

assume(r >= 0)

X = vector((r * cos(t) - (1/3)* r^3 * cos(3*t),

- r * sin(t) - (1/3) *r^3 * sin(3*t),

r^2 *cos(2*t)))

Xtheta = X.diff(t)

Xthetatheta = Xtheta.diff(t)

Xr = X.diff(r)

XrDotXtheta = Xr.dot_product(Xtheta).expand().trig_simplify()

assert(XrDotXtheta == 0) ## If there were a typo this might fail

G = Xtheta.dot_product(Xtheta) .expand().trig_simplify().factor()

E = Xr.dot_product(Xr).expand().trig_simplify().factor()

Wsquared = (E*G).expand().simplify().factor().simplify()

W = sqrt(Wsquared).canonicalize_radical().factor()

N = Xr.cross_product(Xtheta)

for i in range(3):

N[i] = ((N[i].expand())/W).trig_simplify()

AbsN = abs(N).full_simplify()

assert(AbsN==1)

TripleProduct = Xtheta.cross_product(Xthetatheta).dot_product(N)

TripleProduct = TripleProduct.expand().trig_simplify().factor()

CurvatureElement = E^(-1)*TripleProduct

XdotXr = X.dot_product(Xr).expand().trig_simplify().factor()

XdotXr = XdotXr.reduce_trig().factor()

XdotN = X.dot_product(N).expand().trig_simplify().factor()

XdotN = XdotN.reduce_trig().factor()

print("%s %s" %("E = ",E))

print("%s %s" %("G = ",G))

print("%s %s" %("W = ",W))

print("%s %s" %("X . N = ",XdotN))

print("%s %s" %("CurvatureElement = ",CurvatureElement))

print("%s %s" %("X . Xr = ",XdotXr))

print("%s %s" %("G = ",G))

To run this program, cut and paste it into a file, and load (or attach) that
file to a Sage terminal session. The output is

E = (r^2 + 1)^2

W = (r^2 + 1)^2*r

X . N = 1/3*(r^2 + 3)*r^2*cos(2*t)/(r^2 + 1)

CurvatureElement = (3*r^2 + 1)/(r^2 + 1)

X . Xr = 1/3*(r^4 - r^2*cos(4*t) + 3*r^2 + 3)*r

The Sage program thus confirms Nitsche’s calculations of E, the curvature el-
ement, and X · N , but does not agree with his result for X · Xr.

1 We do not
need that result in this section anyway.

1The two results cannot be equal since for large r, Nitsche’s result is asymptotic to r6,
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Now we have all the ingredients to calculate the geodesic curvature CR of
Enneper’s wire ΓR with respect to Enneper’s surface:

CR =

∫ 2π

0

κg ds

=

∫ 2π

0

E−1[Xθ, Xθθ, N ] dθ

= 2π
3r2 + 1

r2 + 1

as is confirmed by adding one line to the Sage program above:

GeodesicCurvature = integral(E^(-1)*TripleProduct,t,0,2*pi)

When r = 1 we have C1 = 4π. The geodesic curvature is a monotonic function
of r. To prove this, we show that its derivative is positive. Namely,

MonotonicTest = GeodesicCurvature.diff(r).full_simplify().factor()

produces
∂

∂r
Cr =

8πr

(r2 + 1)2
,

which is clearly positive.
It follows that for R < 1, ΓR has geodesic curvature less than 4π, and hence,

by the Gauss-Bonnet theorem and the theorem of Barbosa-do Carmo, the least
eigenvalue of D2A(X) (over the disk of radius R) is more than 2, so Enneper’s
surface is stable for R < 1.

6.2 Total curvature of Enneper’s wire

Lemma 7 The total curvature of Enneper’s wire ΓR is given by

CR =
8R

R2 + 1

1

u

∫ π/2

0

√
1− u2 sin2 θ dθ

where

Proof. The curvature of a curve Γ defined over the circle of radius R is given in
terms of the unit tangent Tθ by

κ(θ) = |Tθ|

We have

T =
Γθ
|Γθ|

while Sage’s result is asymptotic to r5. Since (for large r) we have X = O(r3), we have
Xr = O(r2) and X ·Xr = O(r5), so Nitsche’s result cannot be correct.
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Finally, the total curvature is given by

CR =

∫ 2π

0

κ(θ) dθ

We compute κ using Sage as follows (the code repeats the definition of Enneper’s
wire, so it can be cut-and-pasted on a standalone basis):

r,t = var(’r,t’)

assume(r > 0)

X = vector((r * cos(t) - (1/3)* r^3 * cos(3*t),

- r * sin(t) - (1/3) *r^3 * sin(3*t),

r^2 *cos(2*t)))

Xtheta = X.diff(t)

AbsXtheta = abs(Xtheta)

T = (1/AbsXtheta) * Xtheta ## unit tangent

kappa = abs(T.diff(t))

kappa = kappa.expand().trig_reduce().canonicalize_radical()

print(kappa)

(We recommend the reader who is not expert in sage to compare the results
obtained with trig reduce, trig simplify, and trig expand in the above
script.) The output is

sqrt(9*r^4 + 2*r^2*cos(4*t) + 8*r^2 + 1)/(r^2 + 1)

or, properly typeset,

κ =
1

r2 + 1

√
9r4 + 2r2 cos(4θ) + 8r2 + 1

Write cos 4θ as 1− 2 sin2 2θ:

κ =
1

r2 + 1

√
9r4 − 4r2 sin2 2θ + 10r2 + 1

(I was not able to get Sage to take that step.) Put

u := 2r(1 + 10r2 + 9r4)−1/2

Then

κ =
2r

r2 + 1

1

u

√
1− u2 sin2 θ

Integrating from 0 to 2π we obtain the desired total curvature. Since the inte-
grand is a function of sin2 θ, we can change the interval of integration to [0, 2π]
if we multiply by 4. That completes the proof of the lemma.

The integral is E(u), the complete elliptic integral of the second kind. There-
fore, it can only be evaluated numerically. Adding the line
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Curvature = integral(kappa,t,0,2*pi)

to the Sage script above causes Maxima (the calculus engine of Sage) to crash,
as of Sage version 6.5. So let us compute a table of its values. The following
lines of Sage will do the job (tacked onto the above program for computing κ):

Curvature = lambda r : numerical_integral(kappa(r=r),0,2*pi)[0]

for i in range(1000):

R = 0.8 + 0.1*i

print("%lf %lf" % (R,Curvature(R)/pi))

The output is

0.800000 3.814841

0.900000 4.038869

1.000000 4.239358

1.100000 4.417379

1.200000 4.574703

1.300000 4.713388

1.400000 4.835538

1.500000 4.943161

1.600000 5.038096

1.700000 5.121989

2.000000 5.320974

12.000000 5.976998

22.000000 5.993126

32.000000 5.996748

42.000000 5.998111

52.000000 5.998768

62.000000 5.999133

72.000000 5.999357

82.000000 5.999504

92.000000 5.999606

Corollary 2 The total curvature of Enneper’s wire is a monotonically increas-
ing function of R, whose limit at infinity is 6π.

Proof. Since the integrand is bounded, we can take the limit of CR as R goes
to infinity straightforwardly; the integrand tends to 1 and the integral to π/2,
while the part outside the integral tends to 12. Hence the limit is 6π as claimed.
The monotonicity, however, is not so easy (and is not stated in [9]).

On the way to deriving Nitsche’s formula for CR given in the previous lemma,
one finds this equation:

CR =

∫ 2π

0

√
9R4 + 2R2 cos 4θ + 8R2 + 1

R2 + 1
dθ (11)
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This form seems slightly more convenient to work with. To prove the mono-
tonicity, it suffices to show that the derivative of the integrand is positive. We
have

∂

∂R

(√
9R4 + 2R2 cos 4θ + 8R2 + 1

R2 + 1

)
=

2
(
9R3 +R cos 4θ + 4R

)
(R2 + 1)

√
9R4 + 2R2 cos 4θ + 8R2 + 1

− 2R
√

9R4 + 2R2 cos 4θ + 8R2 + 1

(R2 + 1)
2

and, as Nitsche would say, a direct computation shows that this is positive.
Here are a few lines of Sage code that produce (11).

r,t = var(’r,t’)

assume(r > 0)

X = vector((r * cos(t) - (1/3)* r^3 * cos(3*t),

- r * sin(t) - (1/3) *r^3 * sin(3*t),

r^2 *cos(2*t)))

Xtheta = X.diff(t)

AbsXtheta = abs(Xtheta)

T = (1/AbsXtheta) * Xtheta ## unit tangent

kappa = abs(T.diff(t))

kappa = kappa.expand().trig_reduce().canonicalize_radical()

print(kappa)

6.3 The ellipsoid and the curvature vector

Lemma 8 Enneper’s wire lies on an ellipsoid E, and the curvature vector of
Enneper’s wire always points into E (and is never tangent to E).

Proof. We write 1Γ, 2Γ, and 3Γ for the components of Γ = ΓR. To exhibit E, it
suffices to find constants c and d such that

1Γ2 + 2Γ2 + c2(3Γ)2 = d2.

That is

(R cos θ − 1

3
R3 cos 3θ)2 + (−R sin θ − 1

3
R3 sin 3θ)2 + c2(R2 cos 2θ)2 = d2

Simplifying, we have

R2 +
R6

9
+

2R4

3
(sin θ sin 3θ − cos θ cos 3θ) + c2R4 cos2 2θ = d2

R2 +
R6

9
+

2R4

3
cos 2θ + c2R4 cos2 2θ = d2

This will work if c2 = 2/3 and d2 = R2 +R6/9. That completes the construction
of E.
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Next we compute the inward normal M to E at the point ΓR(θ). That is
just minus the gradient of the function on the left of the implicit equation of
the ellipse, namely

−∇(x2 + y2 +
2

3
z2) =

 −2x
−2y
− 4

3z

 .
We put in the components of ΓR for x, y, and z, obtaining

M =

 −2R cos θ + 2
3R

3 cos 3θ
2R sin θ + 2

3R
3 sin 3θ

− 4
3R

2 cos 2θ

 .
Let κ be the curvature vector of Enneper’s wire. We compute κ ·M using the
following Sage code (in which we write t for θ):

R,t = var(’R,t’)

X = vector((R * cos(t) - (1/3)* R^3 * cos(3*t),

- R * sin(t) - (1/3) *R^3 * sin(3*t),

R^2 *cos(2*t)))

Xtheta = X.diff(t)

T = 1/(abs(Xtheta)) * Xtheta # unit tangent

kappavector = T.diff(t)

EllipsoidNormal = vector((-2*R*cos(t) + (2/3)*R^3*cos(3*t),

2*R*sin(t) + (2/3)*R^3 * sin(3*t),-(4/3)*R^2*cos(2*t)))

test = EllipsoidNormal.dot_product(kappavector)

test = test.trig_reduce().canonicalize_radical()

# that is much better than trig_simplify()!

print(test)

The result is

κ ·M =

(
2

3

)
3R5 − 2R3(3 cos 4θ − 2) + 3R

R2 + 1
.

As a function of θ, this has its minimum when cos 4θ = 1. In that case the value
of the numerator is 3R5 − 2R3 + 3R. This is greater than 3R(R4 − 2R2 + 1) =
3R(R2 − 1)2 > 0. It follows that κ ·M is positive. That completes the proof of
the lemma.

7 Enneper’s wire and branch points

Theorem 4 (Rado, Nitsche, Meeks) Enneper’s wire ΓR does not bound any
branched minimal surface for R ≤

√
3. More generally, ΓR does not bound any

minimal surface with self-intersections.
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Proof. By [6], ΓR does not bound a minimal surface with a false branch point.
For R ≤ 1, ΓR has a starlike projection. But that implies it cannot bound a
minimal surface with a true branch point. See §91 and §384 of [9]. A minimal
surface with a true branch point has lines of self-intersection emanating from
the branch point [9], p. ?, so it suffices to show that ΓR does not bound any
minimal surface with self-intersections. That is true of any smooth Jordan curve
lying on the boundary of a convex body, according to [8]. Enneper’s wire lies
on an ellipsoid, so it qualifies. That completes the proof.

8 Ruchert’s uniqueness theorem

We follow [9], p. 437, in the computations of geodesic curvature and area, but
we finish the proof in a different way. (In Nitsche’s book, X is the unit normal,
for which we use N .)

We start by considering an immersed minimal surface X bounded by a real-
analytic Jordan curve Γ, and another immersed minimal surface Z bounded by
the same curve. We suppose X and Z are defined on S1 and we do not distin-
guish notational between these functions on S1 and their harmonic extensions
to the unit disk. Sometimes we write X(θ) instead of X(eiθ). Then for some
real analytic periodic function λ with derivative λ′ > 0, we have

Z(eiθ) = X(eiλ(θ)) = X(eiλ)

Then (following Nitsche in not writing the argument eiλ of Xθ) we have

Zθ = λ′Xθ

Zθθ = (λ′)2Xθθ + λ′′Xθ

But Zθ and Xθ are both tangent to Γ at the same point, so Zr is perpendicular
to Xθ. Therefore there are functions α and β such that

Zr = λ′(αXr + β
√
EN)

where E = |Xr|2 and G = |Xθ|2. (It is arbitrary which one of these we call
E and which G; Nitsche is not explicit but it seems this is his choice.) Since
|Zθ|2 = (λ′)2G, and |Zr|2 = (1/r2)|Zθ|2 = (λ′)2G/r2, but also

|Zr|2 = (λ′)2(α2 + β2)E,

and E = G/r2, we have α2 + β2 = 1.
The unit normal Ñ to Z is given (on S1) by

Ñ =
Zr × Zθ
|Zr||Zθ|

=
λ′(αXr + β

√
EN)× λ′Xθ

(λ′)2W (α2 + β2)
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=
λ′(αXr + β

√
EN)× λ′Xθ

(λ′)2W
since α2 + β2 = 1.

=
(αXr + β

√
EN)×Xθ

W

= αN − βXr√
E

since W 2 = EG

Next we calculate the geodesic curvature κ̃g of Γ with respect to the surface
Z. That is given (see [9] §378) by the triple product

κ̃gẼds̃ = [Zθ, Zθθ, Ñ ]dθ

where Ẽ = |Zr|2 = (λ′)2E. Then

κ̃g(λ
′)2E ds̃ = [Zθ, Zθθ, Ñ ]dθ

=

[
λ′Xθ, (λ

′)2Xθθ + λ′′Xθ, αN −
βXr√
E

]
dθ

Since a triple product with two adjacent terms vanishes, the term with λ′′Xθ

drops out, leaving

κ̃g(λ
′)2E ds̃ =

[
λ′Xθ, (λ

′)2Xθθ, αN −
βXr√
E

]
dθ

Dividing by E(λ′)2 we have

κ̃g ds̃ = αλ′E−1[Xθ, Xθθ, N ] dθ − β

E3/2
λ′[Xθ, Xθθ, Xr] dθ (12)

Splitting Xθθ into normal, radial, and tangential components, we have

Xθθ = (Xθθ ·N)N + (Xθθ ·Xθ)Xθ + (Xθθ ·Xr)Xr.

Putting that into the triple product, and remembering that a triple product
with identical adjacent terms is zero, the terms in Xθ and Xr vanish, leaving

[Xθ, Xθθ, Xr] = [Xθ, N,Xr](Xθθ ·N)

= (Xθ ×N ·Xr)(Xθθ ·N)

Now Xθ ×N is in the direction of Xr, with magnitude
√
G. So Xθ ×N ·Xr =√

EG =
√
W . Hence

[Xθ, Xθθ, Xr] =
√
W (Xθθ ·N)

=
√
W (Xθθ ·N) since Xr ·Xr = G

= −
√
WXθNθ since (Xθ ·N)θ = 0

Putting that result into (12) we have

κ̃g ds̃ = αλ′E−1[Xθ, Xθθ, N ] dθ + βW 1/2E−3/2λ′XθNθ dθ

= αλ′E−1[Xθ, Xθθ, N ] dθ + βG1/2E−1λ′XθNθ dθ (13)
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So far in this section, we have not used the fact that X is Enneper’s surface. It
could be any minimal surface, so far. But now, we work out XθNθ for Enneper’s
surface.

Xθ =

 −r sin θ + r3 sin 3θ
−r cos θ − r3 cos 3θ
−2r2 cos 2θ


N =

1

r2 + 1

 2r cos θ
2r sin θ
r2 − 1

 by (2)

Nθ =
1

r2 + 1

 −2r sin θ
2r cos θ
0


XθNθ =

1

r2 + 1

 −r sin θ + r3 sin 3θ
−r cos θ − r3 cos 3θ
−2r2 cos 2θ

 ·
 −2r sin θ

2r cos θ
0


= −2r2 cos(2θ)

as can be confirmed by the following Sage code:

XthetaDotNtheta = Xtheta.dot_product(Ntheta).expand()

XthetaDotNtheta = XthetaDotNtheta.trig_simplify().factor().trig_reduce()

print("%s %s" %("Xtheta . Ntheta = ",XthetaDotNtheta))

Putting that value of XθNθ into (13), with λ substituted for θ, we have

κ̃g ds̃ = αλ′E−1[Xθ, Xθθ, N ] dθ − βE−1
√
Gλ′2r2 cos 2λ dθ

Putting in the value of E−1[Xθ, Xθθ, N ] from (10), we have

κ̃g ds̃ = αλ′
1 + 3r2

1 + r2
dθ − βE−1

√
Gλ′2r2 cos 2λ dθ

Since G = (r2 + 1)2 and E = r2G, we have E−1
√
G = 1/(r2(r2 + 1)). Hence

κ̃g ds̃ = αλ′
1 + 3r2

1 + r2
dθ − βλ′ 2 cos 2λ

r2 + 1
dθ (14)

which, miraculously, is exactly the equation obtained by Nitsche in the middle
of p. 438 (just after the incorrect equation mentioned above).

Now, Ruchert’s main contribution is the following lemma:

Lemma 9 (Ruchert) Let X̃ be any immersed minimal surface bounded by En-
neper’s wire ΓR different from Enneper’s surface X. Then either X̃ has smaller
Dirichlet energy than X, or the geodesic curvature of ΓR is smaller with respect
to X̃ than with respect to X.
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Remarks. Since these are minimal surfaces, their areas are the same as their
Dirichlet energies. The proof uses two facts about Enneper’s surface: (i)X ·Xr >
0, and (ii) XN and XθNθ have opposite signs and the same θ-dependence.

Proof. Since we have used E for X2
r , we follow Nitsche in temporarily using I

for Dirichlet’s energy. We have

2I(X) =

∫ 2π

0

Xr(λ(θ))X(λ(θ))λ′ dθ

2I(X̃) =

∫ 2π

0

X̃rX̃ dθ

=

∫ 2π

0

λ′[αXr + βE1/2N ]X(λ(θ)) dθ

Subtracting, we have

2I(X)− 2I(X̃) =

∫ 2π

0

[(1− α)XrX − βE1/2XN ]λ′ dθ

=

∫ 2π

0

(1− α)XrXλ
′ dθ −

∫ 2π

0

βE1/2XNλ′ dθ

We have already computed E and XN at the end of §6.1. Using those results,
we have

E1/2XN = (r2 + 1)r
(1

3

)r2(r2 + 3)

r2 + 1
cos 2λ

=
1

3
r3(r2 + 3) cos 2λ

Hence

2I(X)− 2I(X̃) =

∫ 2π

0

(1− α)Xr(e
iλ)X(eiλ)λ′ dθ − 1

3
r3(r2 + 3)

∫ 2π

0

β cos(2λ)λ′ dθ

Integrating (14) to find the geodesic curvature C̃ of X̃, we have

C̃ =
1 + 3r2

1 + r2

∫ 2π

0

αλ′ dθ − 2

r2 + 1

∫ 2π

0

β cos(2λ)λ′ dθ

Now the sign of

J :=

∫ 2π

0

β cos(2λ)λ′ dθ

is crucial. First suppose J ≥ 0. Then we have

C̃ ≤ 1 + 3r2

1 + r2

∫ 2π

0

αλ′ dθ
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Since α ≤ 1 and λ is periodic and monotone, we have

C̃ ≤ 1 + 3r2

1 + r2

∫ 2π

0

λ′ dθ

=
1 + 3r2

1 + r2
2π

= Cr the geodesic curvature with respect to Enneper’s surface

Equality can hold only if α is identically zero, in which case X̃ = X. That
completes the proof in case J ≥ 0. Now suppose J < 0. Then we have

I(X)− I(X̃) >
1

2

∫ 2π

0

(1− α)Xr(e
iλ)X(eiλ)λ′ dθ

Since α2 + β2 = 1, we have α2 ≤ 1 and hence 1 + α ≥ 0. Then (unless α = −1)

1− α =
1− α2

1 + α
≥ 0.

Hence α ≤ 1. We will show by direct computation that Xr ·X > 0. Then the
entire integrand is positive. We have (see the output of the Sage program in
§6.1)

Xr ·X =
1

3
r(r4 + r2(3− cos 4λ) + 3)

Since | cos 4λ| ≤ 1 the right side is positive. That completes the proof of the
lemma.

Theorem 5 (Ruchert) Enneper’s wire ΓR bounds exactly one minimal sur-
face (namely Enneper’s surface) for R ≤ 1.

Proof. Let R ≤ 1 and suppose, for proof by contradiction, that X̃ is a minimal
surface bounded by ΓR and different from Enneper’s surface. By Theorem 4, X̃
is immersed. As calculated in §6.1, the geodesic curvature of ΓR with respect
to Enneper’s surface is monontonically increasing with R and has the value 4π
when R = 1. By Ruchert’s lemma, X̃ either has smaller area than Enneper’s
surface, or ΓR has geodesic curvature less than 4π.

We know that X is a relative minimum of area, as shown by calculating
its fourth variation. Using this fact we can prove Ruchert’s theorem using the
mountain-pass theorem (see Chapter 6 of [5]), which is simpler than the proof
in Nitsche’s book.

Case 1: X̃ has smaller area than Enneper’s surface X. Then, replacing X̃ by
another minimal surface if necessary, we may assume X̃ is an absolute minimum
of area, and different from X. since both X and X̃ are relative minima, we can
apply the mountain-pass theorem to conclude that ΓR also bounds an unstable
minimal surface Z, with area greater than the areas of X or X̃. By Theorem 4,
Z is immersed. Since the area of Z is greater than that of X, by Ruchert’s
lemma, ΓR has geodesic curvature less than 4π. Hence, by the Gauss-Bonnet
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theorem, its Gaussian area is less than 2π. Then by the theorem of Barbosa-do
Carmo, Z is stable, contradiction. That completes the proof in case 1.

Case 2: The geodesic curvature of ΓR with respect to X̃ is less than 4π.
Then, by Gauss-Bonnet and Barbosa-do Carmo, X̃ has positive second varia-
tion, and hence is a relative minimum. Then again using the mountain pass
theorem, we find an unstable minimal surface Z bounded by ΓR, and proceed
as in Case 1. That completes the proof of Ruchert’s theorem.

9 D2A(X) and D2E(X)

9.1 Correspondence between the kernel functions

There is a connection between the kernels of the second variation of Dirichlet’s
energy and area. Namely, if k belongs to the kernel of D2E(X), then φ = k ·N
belongs to the kernel of D2A(X), i.e., ∆φ−2KWφ = 0 in the parameter domain
and φ = 0 on the boundary.

Conversely, if φ belongs to the kernel of D2A(X), then there is a real-
analytic, complex-valued function h defined in the disk, such that

k := Re (hXz) + φN

and k is in the kernel of D2E(X). Because k on the boundary is a scalar multiple
of Xθ, we have Re (z̄h) = 0 on S1. The equation determining h is

hz̄ = φXz̄z̄
N

W
.

Here W = |Xz|2. These results were first proved in [1] and the proof is easily
available on the Web in [2].

Note that polar coordinates are not isothermal; if we calculate E = X2
r ,

G = X2
θ , and W =

√
EG then this is not the W that we need to use in the

equation for h, as the equation for h assumes X is given in harmonic isothermal
parameters. Therefore if X is given in polar coordinates, then we need to use
E = X2

r as W in the equation for h, as this is equal to |Xz|2.
A purely real version of the result says that there are functions ψ and χ

defined in the unit disk such that

k = ψXθ + χXr + φN.

Here
ψ = Im (z̄h)

χ = Re (z̄h)

Note that ψ is defined in the whole unit disk, not just on S1; since k is a tangent
vector, we have k = ψXθ on S1, so χ and φ are zero on S1.
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9.2 How this works out for Enneper’s surface

As an exercise, we work out what h, ψ, χ, and φ are for Enneper’s surface
(defined in the unit disk). First, the eigenfunction φ is computed easily, since it
is just 3N , the third component of the unit normal, as on the sphere ∆N = N ,
with ∆ the Laplace-Beltrami operator of the sphere. That gives us (referring
to the formula for the normal in terms of the Weierstrass representation)

φ =
r2 − 1

r2 + 1
.

For Enneper’s surface we have E = X2
r = (r2 + 1)2. As explained above, we

need to use E for W in the equation for h, as it is E that is equal to |Xz|2. We
have

N =
1

r2 + 1

 2x
2y
r2 − 1


Xz =

1

2

 1− z2

i(1 + z2)
2z


Hence

Xz̄ =
1

2

 1− z̄2

−i(1 + z̄2)
2z̄


Differentiating, we have

Xz̄z̄ =

 −z̄−iz̄
2


Hence the equation for h is

hz̄ = φXz̄z̄
N

W
=

r2 − 1

(r2 + 1)4

 −z̄−iz̄
2

 ·
 2x

2y
r2 − 1


That is

hz̄ =
r2 − 1

(r2 + 1)4
(−2z̄(x+ iy) + 2(r2 + 1))

=
r2 − 1

(r2 + 1)4
(−2z̄z + 2(r2 + 1))

=
r2 − 1

(r2 + 1)4
(−2r2 + 2(r2 + 1))

=
r2 − 1

(r2 + 1)4
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Now, to solve this equation for h, we first solve the equation

∆V =
r2 − 1

(r2 + 1)4
. (15)

and then set h = Vz +A, where A is a holomorphic function in the disk (which
will be chosen to fix the boundary values). Then hz̄ = Vzz̄ = ∆V and we have
the desired equation. Then

χ− iψ = z̄h

= z̄(Vz +A)

=
z̄2

r2
z(Vz +A)

= e2iθz(Vz +A)

= e2iθ(rVr − iVθ + zA)

Since ∆V depends only on r, we can assume Vθ = 0 (as we will show below).
Then

χ− iψ = (cos 2θ − i sin 2θ)rVr + (cos θ + i sin θ)A

χ = cos 2θVr + cos θRe A− sin θ ImA

ψ = sin 2θVr − sin θRe A− cos θ ImA

So we have to take A = −cz where c = Vr|r=1 to make χ be zero on S1:

χ = cos 2θ(Vr − cr)
ψ = sin 2θ(Vr + cr)

It remains to find V by solving (15). Since the right side does not depend
on θ, we look for a solution V (r). Then ∆V = Vrr + (1/r)Vr, so we have to
solve the ordinary linear differential equation

V ′′ +
1

r
V ′ − r2 − 1

r(r2 + 1)4
= 0.

We want a solution with Vr = 0 when r = 0. The general solution of this
equation can be found, at least in theory, using this piece of Sage code:

V = function(’V’,r)

de = diff(V,r,2) + (1/r)*diff(V,r) - (r^2-1)/((r^2+1)^4) == 0

v = desolve(de,V)

The result is (equivalent to)

V = K2 −
1

12
log r +K1 +

r2 + 3

24(r2 + 1)2
− 1

24
log(r2 + 1)
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The constant K2 must be 1/12 to prevent a singularity at the origin. Hence

V = K1 +
r2 + 3

24(r2 + 1)2
− 1

24
log(r2 + 1)

Differentiating, we have

Vr = − 1

12

r3

(r2 + 1)2
− 1

6

r(r2 + 3)

(r2 + 1)3

When r = 1 we find c = Vr|r=1 = −5/48. Hence

χ =

(
− 1

12

r3

(r2 + 1)2
− 1

6

r(r2 + 3)

(r2 + 1)3
+

5r

48

)
cos 2θ

ψ =

(
− 1

12

r3

(r2 + 1)2
− 1

6

r(r2 + 3)

(r2 + 1)3
− 5r

48

)
sin 2θ

Note that the constant K1 does not affect χ and ψ. Although k, ψ, χ, and φ can
be multiplied by the same arbitrary constant, we fixed that constant when we
normalized φ when setting up the equation for h. That everything is in order
is evidenced by the facts that on S1, we have ψ = sin 2θ and χ = 0, as desired.

If we now differentiate ψ with respect to r and set r = 1, we get zero; Sage
will do this for us as follows:

p = -1/12 * r^3/(r^2+1)^2 - 1/6* r*(r^2+3)/(r^2+1)^3 - 5*r/48

print(p.diff(r)(r=1))

This is not an accident; instead it is another sign that these calculations are
in good order, since it can be shown that if k is a sufficiently smooth tangent
vector, then k is in the kernel of D2E(X) if and only if ψr = 0 on the boundary.
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