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We Find ouraslves 10 a upigue histarleal paslEian

We conalder Flemt podnt (L1)

in that For the Flret time formal systems are avallabhla (i whish Ehe Bulk of son
structive mathematles can he readlly formalleed,  Thus one way of making the Biin
ciple of Continuity preclse ls am a derived yule of Inferencer  (F Fhe problemn van
be proved in a constructive formal system 'I' to have a solutlong then the dolut o

depends continuously on the parameters ol the problem. And, wea may acdd, provably

so in the theory T. (For those unfamiliar with the presont "hlstorloal ponltlon's

in 1967, Bishop published his book, demonstrating that tho scopo of conatiuct bve
mathematics is vastly wider than was previously suspected, and alwpo demonatiating
vividly the clarity and power of the constructive approach. Thig worl st imalatod
the development of formal systems by Feferman, Friedman, Myhill, and Mavtin ol

which are intended to be suitable for formalizing Bishop's work.)

Next we discuss (i).
applies to problems of the form, given a in X, find b in Y such that <a,b- L@ 4in
P, where X and Y are complete separable metric spaces, and P is any subscl ol
their Cartesian product such that for each a in X, oo <a,b>eP} is closed In
Y. (There are some variants on this form and much more discussion in [Bl]‘ !
may be that the condition on X may permit some generalization, so we should Cthuu

gualify our claim to the: "mest general form'.)

Finally, the answer to (iii) is a bit subtle. One cannot require that b be found
by areontinuous function-of a, defimedion X, as/ the example \{ae Réabs:N a<b
;shows, where N is the integers. This example might seem to "sink the whole ship"
of the Principle of Continuity, until one sees that what should really be formula
ted is a Principle of Local Continuity: We should require that for each a in X,
we can find a stable solution b in Y, where b is called stable if \f€>0?36>o
such that to any c¢ within § of a, there corresponds a solution d within e of b.
As a matter of fact, this definition of stability is a common one in mathematical
practice (for example, see [T]). To require that b should be given by a contin-
uous function defined on some neighborhood of a is too strong in the case of prob~
lems without a unigue solution. For example, every complex number has a square
root, but there is no continuous square-root fﬁnction defined in a neighborhood

of gzero. (Thanks to M. Hyland for showing me this example.)

The proper formulation of the Principle of Local Continuity opens up two distinct

lines of research:

(1) A mathematical program, in which one wants to systematize and clarify various

stability and continuity results in mathematics, and discover new ones, by the
light of the Principle of Continuity, and by making use of the body of already-

developed constructive mathematics.

It seems that the "correct" answer here is that the principlo

R T T

(B) A melamathemat feal prograimn, B0 Wiskah one WantE ta alarlfy Bhe nature af
HELrUCELve Formal mystemns by considering thaly properties in the Light of (he
bnodple of Contloulty,

]
the prosent Clme, the mathematleal program has been carrlod forward mostly in

Wb | L ehad work,  We may mentlon, as [1lustratiye examples, the following known
worens which come within lhy geope of the Principle of Continuity together with
metructively proved uxiutence theorems :

(a) The continuous dependence on initial or boundary conditions of

the solutions of_gny differential equation which can be solved
by a method of successive approximation (contraction mappings) ;
for example the_well—known equation y' = £(x,y), where f s

Lipschitz'in y, and the initial value of y is the parameter.

(b) The continuous dépendence on the domain D in the plane of the
Ab + A = O

eigenvalues of the vibrating-membrane equation

in D, ¢=0 on the boundary of D.

(c) The continuous dependence on the rectifiable Jordan curve C in

R3 of the infimum of areas of surfaces bounded by C.

[BZW a new theorem is proved, whose (ordinary mathematical) proof was first
covered by means of the Principle of Continuity. See also [BS] for another

nﬁple of mathematical work inspired by the Principle of Continuity.

i 4
i metamathematical program, on the other hand, is at present nearly complete.

(ir aim has been to show that various formal systems have various pleasing meta-

i n
Wl hematical properties related to continuity. These properties fall roughly

| two categories: derived rules of inference, and consistency/independence
“ilults. It has turned out that the Principle of Local Continuity has surprising

f‘d gweeping power to systematize and organize the various continuity properties

lilch have been considered in the past. We may draw evidence for two conclusions

lrom the success of this program:

(1) We have in fact found the right connection between

| § constructivity and continuity.

(2) The formal systems in question are in fact good ones, in some

E sense, for formalizing constructive mathematics.

ﬁ (0Ol course some moderation is called for, especially in relation to (2), since
b

{hore may be objections to a given system having nothing to do with continuity.)




The matamathenatioal program oublinsd above was begun i Eiij; Fi Ehak paper Ewe

things are accomplisheds (1) Gepsral condltlons g & Bheney T are glven; such
that Lf they hold then T La cloped under the varfous derived rules ralated fo
continuity, which we shall desmcrlbe Ln more detall below, (4) These conel Elans
are verified, and a number of related consistency/lndependence resulta are oh
tained, for the particular formal systems Introduced by eflarman [PM] (ST}
constructive mathematics.

In this paper, our purpose is to treat the intuitionistic get theorlew developsd

by Friedman and Myhill after the same fashion as we previously Lreatod Folerman's
theories. After the work mentioned above, we do not need to consldor the conl i
uity rules directly, but only to establish that the necessary metamathemallcoal
closure properties (explicit definability etc.) are satisfied. In practice, wha
this entails is the development of suitable realizability and forcing interpreta
tions for these theories; these interpretations also enable us to establish Cho
related consistency and independence results. Before turning to a discussion ol
these various theories, we first wish to summarize the metamathematical conclu-
sions of the work, by stating exactly some of the derived rules which are under
discussion. A more complete list and exhaustive discussion can be found in [Hl].
In this list, X and Y are complete separable metric spaces, and C(X,Y) is the
set of continuous functions from X to Y which are uniformly continucus on, each

compact subset.

(Gh) (Principle of Continuity). Provably well-defined functions from

X to Y can be proved to be in C(X,Y).

(2) (Continuous Choice). If \fas x,3!b€ Y (<a,b>e P) is provable,

then so is Eﬂfa C(X,Y)\fas X (<a,f(a)>eP).

(3) (Heine-Borel's rule). If a sequence of neighborhoods In can be
proved to cover a compact space, then for some k, the union of the

first k neighborhoods can be proved to cover the space.

(4) (Principle of Local Continuity). Suppose \fas:xzabe:Y(<a,b>€ 120)
is provable, and the hypothesis oﬁ P mentioned above is also

provable. Then \/as Xzabe Y(<a,b>e P & b is stable) is provable.

There i also a BPrinciple of Local Uniform Gontinuity,' of which we shall say more
in Section 7 below. 1In [Bﬂ is is shown how the above rules all flow from the
Principle of Local Continuity, with Uniform Continuity being used for Heine-

Borel's rule.

We now turn to a discussion of the various formal systems to which these results

apply, namely, the systems of Feferman and those of Friedman. The systems of

Gpman and Peiedman are quite dlFFergnt, Peferman'a ayslens are bawed on the

» Fhat every ohisck 18 a canebrucilon anq‘:unﬁtvuullunn May apply o other

WEFUCElone, B0 we have a Aokt of A paloulus of ponmtructions; in addltlion, we
Wl aupd float lonn" (Blmllar to satd) and an e=emlation, We do not, however,

b axlenplonallty, an there 18 no reagon Lo aspert Lt for Peferman's underlying
:,plluus iy ledinan ' aysltend, on the other hawsd, are modifications of classical
éhnnty, whiloh oo runlnln oxtoenplonality, but are made "constructive" in some
l by wealkenling the nxlnm of cholce and using intuitionistic logic (for in-—
e, they are wnnnINLunL wlith Church's thesis). There has been considerable

» Walon (In fact "controversy'" is not too strong a word) over the relative

B of the two types of gys®ms, and over the question whether they are in

il wlﬂh Qunquuutive mathematics from a foundational point cof view. The
senl conbribution to this discussion is that all the systems (except perhaps

B Weakest) share the same closure properties under rules related to continuity,
oprenponding principles of continuity are consistent with very strong

Bl tlonietic set theories.

'hié paper, besides developing forcing and realizability for these set theories,
}Ipaﬁﬂ considerable effortanalyzing the role of the axiom of extensionality.

prove {hat this axiom can be eliminated from the proofs of theorems mentioning

1y obhjects of low type, such as reals or natural numbers. This seems to be

’ wHpary from a technical standpoint (or at least the most convenient way to

¥ (ned) in order to obtain the explicit definability results we need. However,

{p also interesting in its own right, principally because nearly every theorem

vmgthematical practice can be expressed at low types (since complete separable

{1l ppaces can be regarded as subsets of N ). Thus extensionality is essen-

Y lrrelevant to mathematlcal practice. (This is not to say that it is

Ilsvmnt from the philosophical, foundational viewpoint.) Another interesting

lilng about this theorem is that it has applications; see [B31 and @4].

g a pleasure to have this opportunity to thank those who have contributed to

,il work, by their interest, by their criticisms, by encouraging me to prove

! Ihepe theorems, and by inviting me to speak at the Colloguium in Mons: H. Baren-

i*nqL, D. van Dalen, S. Feferman, H. Friedman, and D. Scott. I also would like

Lo mention that the dedication to Karel de Leeuw is especially appropriate, since

.{ihil paper was written in his house, while his companionship brightened my days.




§1. Demeriptlon of Aome Intultioniufic  Het Thear s

In this sectlon we describe the principal Intultloniatie st theorles, which

have been invented and studlod by Feledman and Myhl b Pleat we damor e B0 badinan's
systems. (Precise statements of the axloms will be glven bhelow,)

Let ZF  be Zermelo-Fraenkel set theory, with intultlonlatlic logla, and with |he
foundation axiom expressed as (transfinite) induction on © , lostead of he el
way. (The usual foundation axiom implies ghe law of the excluded middle, Ass [Mi!l
We cannot add the axiom of choice AC without gétting the law ol he o ludod
middle, but we can add (some forms of ) dependent choice. The strongesl sel |l
we consider is thus 2ZF + RDC (relativized dependent choice). (Introduced (n
[Frlj.)

Friedman and Myhill have directed their attention to finding subsystems of

ZF + RDC which are formally weak and practically strong: that is, which areo
strong enough to formalize known constructive mathematics (e.g. Bishop's boolk [HI]
and yet are proof-theoretically weak. There are two principal ideas here: ono [n
to replace the power set axiom by the axiom of exponentiation, which says thal A“
exists if A and B are sets. (This was introduced by Myhill in [Ml].) The olhe
is to restrict induction to sets instead of formulae, i.e. to consider

0 € X & \dn(n é X » nt+l € X) 47\dn(n € X) instead of

A(O) & ‘dn(A(n) > A(n+1)) - \/nA(n) . (Note that classical second-order arithmol [
with restricted induction and arithmetic comprehension is a conservative extension
of arithmetic.) The use of restricted induction is the germinal idea of Friedman'n
work. If we use exponentiation instead of power set, and restrict induction, and
restrict separation to Ao formulae (no unbounded quantifiers), and aad a restrles
ted form of dependent choices, we get Friedman's theory T1 , which he showed hau
the same strength as arithmetic.

Friedman also studied a variant of T1 called E , which differs from T1 in
that B has no foundation axiom, and collection is replaced by Ao-apstraction,
which says {{u € x: A(y,u)} : yex} exists, where A is a Ao formula. The
point of this is that % has a model in sets of rank < w + w , and so is
easier to justify by some constructive philosophy (see [Fr2, PartI]).

E also has the same strength as arithmetic.

In between % and ZF + RDC , Friedman considers several intermediate theories,

which all have the full induction schema, and have additional axioms as follows:

T2 2 T1 + induction + RDC Z : Zermelo set theory
T3 3 T2 + transfinite induction
T4 B T3 + full separation.

Thus ZF + RDC is just T4 + power set.

LULYe Firat pubiliahed dnkuitionintye seb theary 080 [M1] 10 clonely related to

| AR éissuggsd i [ ;if. We o il copme (M CHT srplioltly,
B fealure of all Chews wel theor e worth remarlemg (8 that they include
:‘!lmi‘nn»ltllv. i I one Feature which diatingulehes them from other formal
: @lema which have heen ghown adequate for formallzing Bishop's book, such as
ferman' s gystends,  We shall roeturn-to this point in §3. We find it necessary
wall an |nlu|nul|nu5 Lo conglder set theories without extensionality (even
We wainl results unly lfor extensional theories ). We adopt the notation T-ext
; fhe pet theory 1" minus the axiom of extensionality; the proper formulation of
Bie Lheorles requlres a lit;le care, and we give a more complete description
W, Onﬁ‘dlfrurunuu between the extensional and non-extensional theories is

Wil Lhe syntax of the extensional theories is much simpler—-we need only the
ilnary relation of membership. We do not include equality in the extensional
Wt lep,  On the other hand, we must include equality in the intensional case,

© woll as some constants and function symbols to be described below.

l'hﬂe'<x,y> f[or the ordered pair, defined in the usual way from unordered pairs.
 litegers can be developed in set theory in the usual (von Neumann ) way. Each

iula of arithmetic has a natural translation into set theory.

How list the axioms we will be considering; we give them first in the form
| lable when extensionality is present, i.e. in the form used by Friedman.
,eﬁ!tWﬂrds we shall indicate the modifications which are necessary when exten-—

onality is dropped.
A. (extensionality) x=y H\da(x ea <> yea)
B. (pairing) 3xVy(yex < y=aVy=5))

C. (infinity) 3 x(cex &Vy(yex » yU{ylkx) &
VzoOezeaVylyez »yU{ylecz)» xcz))
D. (union) axVy(yexH az(yEZ & z€a))

E. 4 -separation) IxV y(vex—(yea & ¢)) where ¢ is 5,

and x is not free in @




Po (whrang ealieskion) Vs £ é§¥ Ay %!W! £ 339 €8 Ay WALl has glven sEi1] anakher Eheory dn [ME];) Ehie Eheary han variables for hoth

wVye u Inean Alegy))  (Ordinary eslleskian desen't have the Bssand JElone and Aefe, We do nat deal with llnii_{!mnw here, but we skpect that 1t can
clause on B ) handled (48 well an Howan ha) by uslng the Interpretation in B adven by Myhill,
G. (Poundatlon). (Wa,b ((a & b & D& X) * a & %) »
! W we dliaouss carefully the formulatlon of our non=extenglonal set theorles. If T
&\r]y(yex&ygz)>yeu))'x<}.;ﬂ, }
N tne of the gel theorles Ineluding the axiom of extenslionallty, then T-ext is not
(in other words, transfinite induction on € with respect to sels only, R
L wilth axdom A deleted. We musl also (1) include a system of terms such as
not formulae.) R 3 A i
Eoar ) and (1) modify the exponentiation axiom and abstraction axiom,
H. (exponentiation). BxVy(yé X *'"*« Fen(y) & Dom(y)=a & Rng(y) G h) gsinq a form which is equivalent to the .above when extensionality is present,
I. (bounded dependent choice). V x € aay € a Q(x,y) » Il which I8 non-extensionally correct. Let Fcn(f) be WALV ezR sPE RS R e R

N
Vx e adz(Fen(z) & Dom(z) = v & z(0)=x &¥n e w Q(z(n),z(ntl)) ﬁ(uéy*'*w'w>&Vf1€f3b,c(a=<b,c>>. Let Dom (f)=a & Rng(f)g€b abbreviate

& Rng(z)Ca), for 0 a A formula f JyCh (<x,y>Ef) & V<x,y>Ef (x€a & yEb). Then the exponentiation axiom says
Ca), 5 g

O i
This much constitutes T ; note that restricted induction follows [rom Vy('en(g) & Dom(g) = A & Rng(g)E B ~ IFEX VxEA(f(x) = g(x)). Similarly, in

foundation together with our basic axioms. abstraction axiom, we assert 3X(Vy€a IwEX (xEw+>(x€a & P(x,v))) &

EX JyEA (xEw>(x€a & ¢ (x,7)))) .
J. (induction). A(0) &¥n@(n) > A(n'))> Y nA(n), for all formulae A,

(relativized dependent choice RDC). Like axiom I. except that tho ol s low specify the exact system of terms to be included in our non-extensional set

~

a is replaced by an arbitrary formula A , and Q is not required Lo lorles; these terms are built up from the following constants and function sym-

be A . ThHis much constitutes 'T. . o B, We also giVe the defining axioms for these symbols.
o \

2
L. (transfinite induction) .V->¥y(y€ x > P(y)) > P(x)) »VxP(x), where vy & (1) a constant symbol ¢, and the axiom Vx(x ¢ ).
'
does not appear in P(x) . This much constitutes T3. i (ii) a function symbol { }, and the axiom z € {x,y} <z =xVz = y.
M. (Separation)‘axvy(y €x < (Y€ a & Q), where x is not free in Q . i (iii) a function symbol for union, and the axiom
& This much constitutes T, . To obtain 2zF + RDC, we add: 3
4 : ; vyelJ z+ 3z€alye
N. (power set) . 3xY ViV a = Ex), » s
The theory B consists of A-E, G, H and the axiom of "abstraction": i Then aUb abbreviates U z :
: T ) t . z€{a,b} :
f
0. (abstraction). {{uex: A(u,y)}: yex} exists. & i (iv) a constant symbol w and axiom
i BEwW&Vz(z €Ew~> z U {2z} € v &
Note that abstraction follows from collection. (If abstraction is formulated A i VX(F € X &Vz(zEX~>zUI{z} €X) »uw&X)

as in [FrZ:] ;, we need extensionality to deduce it from collection; we shall e . :
(v) for each formula P for which separation is allowed, a function

discuss the non-extensional theories further below.) Thus B differs from 1
& symbol {x € a: P(x,a)} and the obvious axiom.

T1 in that collection is dropped, and a weaker consequence is added back in.

It is worth noting that abstraction is restricted to A -formulae, while | _“ (vi) Symbols for dependent choice: if P is a formula for which dependent
o !’

Colllection sy \not. Ry choice is allowed, we have a function symbol i with the axiom

" Vx € wily € wP(x,y) & x_ € w-+1i (x) €’ & i (x)(©) =x &
fe} jolle) p o e}

Intuitionistic Zermelo set theory 2 consists of B with full separation ;
g b Yn € w P(i (x )(n), i _(x)(n+l)).

(so abstraction is unnecessary); dependent choice, induction, and power set. . - RSO o o

That is, 2 differs from ZF + RDC in that it does not have foundation or

transfinite induction and does not have collection. To list its axioms:

A,B,C,D,J,K,M,N.
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Note that we lnelude eholee wymbole only for Funetlens Fram o B8 iy Thus At
least we have terms for all the primitive recuralve Funebians, #& Lhat auE el
extensional theorles contaln arithmetie Ln a natural aende, Note that thers are

no terms corresponding Lo the collectlon axlon. Ganerally apeaking, LU weams Cha
we get several theories of differcnt gtrength by fncluding or not Inoluding aun
stants and functions symbols corresponding to the varfous axloms, We ceprtalnly
need to include separation terms in order Lo achiove the technleal regulle we walily
the rest seem to be optional.

The above description requires a little elaboration, since the formula P in &
term {x€a: P(x)} may itself contain other terms. One way Lo make our doffnltiong
completely precise is as féllows: Start by adding a list £ of functlon symbols

n

to the language (for the separation terms) and similar lists for the other Lypes
of terms required. Then G&del number all the formulae of the language, and hon
write {xga: P(x,y)} for fn(a,y), where P has Gddel number n. Of couruc,
we now have more terms than we want, since we only want such terms for certain
formulae P . One can either delete the extra terms from the language, or leava
them in, but add no axioms about them. To specify which formulae P are allowad,
for example in the case of Ao~separation, we add a clause to the definition ol o
A O—formula specifying that if terms {xeb: Q(x)} occur in the component for-
mulae, then Q is already AO , and similarly for abstraction and choice termd
occurring in the component formulae. Note that generally when we add more symbol 4

to the language, there are more Ao—formulae.

§2. Complete Metric Spaces and some Auxiliary Theories

Since the derived rules which we wish to establish mention metric spaces, we have
to discuss the formalization in intuitionistic sét theories of the mathematics

of complete separable spaces. This is quite straightforward and offers no diffi-
culties. (X,0) is a complete separable metric space if it is a metric space, and
is has a dense subset, which is the range of a function whose domain is w, and
every Cauchy sequence converges. Using the axioms of % only, we see that from
every Cauchy sequence we can extract a subsequence xn satisfying

p(xn,xm) < 1/n + 1/m . Letting o be the metric on the integers induced by
"pulling back" p from the countable dense subset of S , we see that (X,p) is
isometric to the space of all functions ye;NN satisfying U(yn,ym) <1/n + 1/m
(using the convention yn = y(n-1) to avoid the problem of subscripts beginning
at 1 and functions beginning at O ). Here we follow Bishop in not passing to
equivalence classes of such functions, but allowing instead a broader equality
relation in the space X ; equality of elements of X will not necessarily be

set-theoretic equality. It is worth noting that having the axiom of extensionality

pab Faree e Eo uee edidvalence olasass; This any pamplate suparable #pacs can
pught ta "akandard Form" as A et of aa%ﬁﬁnwsg af Inkegers, The metrlo on such

BE will he n(¥y) = llmnr(n“.v“);
[iE

»
Ugpandard form" conslderad above La not the most useful form for a compact
fﬁﬁ; For lnetance, Jr- LA most nattrally thought of as the space of all y in
3 with VH mQ OF | A compact gpace is one such that for each n , we can
'fg g finice 1/n nppruklmnllnn to the space, 1.e. a finite set Yyre-rYp such
 sach polnt of the space ls witiRin 1/n  of some Yy Using bounded dependent
lom, we can pelect a countable base consisting of such points yj for the

b Loue !ﬁlnéu of 1, and associate to each point of the space a sequence of the

' Auch that p(y,y1) Sl Tt follows that every compact space can be brought

. alandard form as Fnilnws: for some non-decreasing sequence of integers Mi A
BUREs of all y in NN with yn < Mn , and the metric has the same form as in

ulandard form for complete spaces above.

' be any one of the theories considered in this paper, and let X be some
guvably) complete metric space, in standard form. (To be precise, this means
and Q(X) > X is a com-

wre Iy a formula Q such that T proves R0 0:0)

wle moparable space in standard form.) We shall use X both for the space de-

U lpeid Informally by the formula Q , and also to abbreviate formal expressions;

Ul vy ¢ X means VX(Q(X)) >y € X). Let b be an (avbitrary butibixed) selement
’§ %) we shall have occasion to consider the atxilisxy theory Th, ‘which 45 for=
1 (| from T by adding a constant symbol b , the axiom b ¢ X , and axioms

ey — i
L(n) »m where m =b(n), and n is the numeral for n

i tape X is a compact space in standard form, we shall have occasion to con-
Wlder another auxiliary theory, Ta. This theory is formed by adding a constant

ymbol a to T, and the axiom a € X , but no other axioms.

Il will sometimes be convenient to assume that the metric on the countable base
il a space in one of the two standard forms is actually a recursive function. In
daRe X

~ (lune without loss of generality, since for the theories we shall consider, a func-
B

is provably a complete separable space (or a compact space) this can be

~ llon provably in NN is (provably) recursive. (See §5.)

; Il P is a subset of a metric space X in standard form, we say "P  is exten-

mlenal" if px,y) = 0 & P(x) > P(y) Note that this concept has nothing to do
‘ with whether the axiom of extensionality is assumed or not; for instance, as long

Vﬂ i1 we take the reals to be defined by Cauchy sequences instead of equivalence

(lugses, there will be non-extensional sets, in this sense.
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B3, The rale of extensional ity

The intultionistle met theorles propounded by Py lediman and Myl ooantati FHs sl
of extensionality, while Lhe Ethooylon JI Parfarman do not . The actual pract les ol
constructive mathematics can be done stralghtlorwardly without any wncor by b e
tion of extensionality. Of course, in the practice ol mabhemal los we dellne viar o
notions of extensional equality; in fact, Bishop takes tho view that aach nol
should come equipped with an equivalence relation to be uscd an an coual bby rila
tion. These equivalence relations can be used quite straightforwardly wilthoul
assuming that equivalent objects are equal; for instance, many dlffarent Cauchy

sequences of rationals determine the same real number. In DH%], I'rLedman goed il
some detail as to exactly how to formalize Bishop's book in intultioniatic nof

theory. Extensionality is hardly made use of; and where it is, it is eaglly ollml
nated. Why then include extensionality at all? The answer to this is thal I L e
wished to make constructive mathematics formalized in his system look as much |1l

classical mathematics as possible, inorder to make it easier for the classical

mathematicians to appreciate constructive mathematics.

Be that as it may, in this paper we are trying to obtain derived rules related Lo
continuity for intuitionistic set theories, both with and without extensionality.

These results rest on the following theorem.

Theorem 3.1

Let T be any of the theories (with extensionality) discussed in this paper

(Sor R =B Ty T T or ZF— + RDC); or let T Dbe one of the auxiliary

v s A ls Bl
theories T¥a or T¥b, where T¥ 1is one of the theories considered in this papcr .

Then

(i) T can be interpreted in T-ext (without extensionality); that is, we can
assign to each formula A an interpretation A¥* such that T F A implies
T-ext b A¥. Furthermore, we have T F (A <> A¥), for A a Ao—formula.

(ii) T is conservative over T-ext for arithmetical sentences, in fact for sen-

< N
tences with quantifiers over a fixed (definable)subset of N allowed.

(L bBoEh « (i) and  (ii) @re provable in arithmetic.

Proof: We interpret T in T-ext , assigning to each formula 2 a formula A¥

in which € 1is replaced by a formula e, and sets are relativized to a formula

M(a) We shall show that T F A implies T-ext F A¥. In other words, we shall

explain how to give a definable model of T in T-ext. In order to make the model

intelligible, we first give a false attempt. The most natural thing to do is to

define x ~ y if

l‘é & yla v h) lVé& ygta @ #(R % R)y and Ehen to met ww Yy AF

\E vl v g), The Fleel problem with this dg that A L Induotively defined, L=
f af being given by & formula, There aim ways to avercome this, and we shall
F;inlu Phe, Whe slmplest way to think of what we mre doing le to think we are

i;iﬁinu A model of 7 (glven by a elass, not a gel) assuming only that the axioms

i Popul are trus bo the unlverse, This can be Recape In official language as an

Feiprelation, as above,

+ RDC , where we have both power

It of all, let us dimcums the case T = ZF

:‘ and collectlion, M™en we can maaf the above inductive definition of 7 explicit

Lhe most gtralghtforward manner, so that if X 1is any transitive set, then NX

pustricoted to X) 18 a set. (It is the intersection of all binary relations R

e power mel of XZ which satisfy the appropriate inductive condition.) We

i oollectlion in order to prove that every set has a transitive closure TC(x).

Wil we can define the model (interpretation), using for x vy the formula

VR e@re(ix,y) (IR, TC({x,v}) - <x,v> € R),

B T (R,z) says that R satisfies the inductive conditions for "~ on the

N =
PANEltlve. set z It is straightforward to verify that the axioms of ZF + RDC

w valld on this interpretation, using the axioms of ZF + RDC .

V'Vnr&l of the theories we have to consider, however, are not strong enough to
LV%OVO the existence of TC(x) for each x Our model for such theories will
{?lrcfore have to be somewhat more complicated; we take the "sets" to be pairs
Trans (y)

i Y> where y is the transitive closure of x. To be precise, we write

tor Yae yWoe abe y)
Lanely) & x €y &a¥b ¢ y(b=x VIncwd a,:3,....a (b €ay..
BEe that y = TC(x) 1is a Ao—formula (in predicates definable in .E, although it

and we write y = TC(x) for

.,a_ € x)).
n

not strictly AO.)

I deal with the case T = Zermelo set theory, which lacks collection but has

E

(wor set, we can proceed with these sets as we did above for 2ZF  + RDC , using

Jwer set to make an inductive definition explicit. However, to deal with weaker

ol theories, which lack power set, more work is required. Let Q(R,r) express
~ [hat y is transitive and R 1is %y; to be precise, Q(R,y) 1is

i

! ~ Trans(y) &Va,b € vy(<a,b> €R > (¥p e algcb<p,@er Vg € bIp € akp,g> €R))
|
|
]

" Note that Q° is a Ao—formula. Note that with the aid of the foundation axiom, we

Q‘enn prove that for each transitive y , if Q(R,y) and Q(S,y) , then R and S

H
~ are extensionally equal relations, i.e. <a,b> ¢ R <> <a,b> € S (We don't need

- lransfinite induction to prove this.)
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guppose W 1e a Flixed transltive mpet) |||smlfnl W&W , MO(H) ewieba, What aslumns
does Lt take to prove Yx& WIR QR,TC(x)) ¥

It seems to require collectlon and (nnngrlnlkn induetion, as wall am unlon, If wWe
know this to be provable, we could go ahead and define the modelp aelbing

e AT i i R(Q(R,TC({x,y})) & <x,y> €R), or more precliaely, 3, ux NV Ly, v LI
the same condition holds, where the TC's occuring are Lo be extracted From s
This model allows us to handle T4 , which has collection, Lransglinlte Loduct Loy
and full separation. In order to handle the weaker theories, we mupl relline Che

model more.

The first thing that occurs to one is to restrict attention to Choge "sely"

(x,TC(x)) such that there is an R such that Q(R,TC(x)). This is not anongl,

Let us call pairs

<x,y> such that y = TC(x) , M1~sets. Consider an M1—md

LR <a,b> , there is an R such that Q(R,TC({x,a])

Such sets <x,y> we call M2~sets. These are the "sets" of our next model.

<x, TClxI> 0 <y, TS ()2 )

such that for all Ml—sets

iff (more precisely)

iff YRQ(R,TC({x,¥}) > <x,v> € R).

We define <~ as above,

JR(Q (R, TC({x,y}) & <x,y>€ R)

X'\ly
This model wil

leTZVT3 ’ as well. For simplicity we wrilo

x instead of <x,TC(x)> for Ml—sets. Suppose X

work for and incidentally for T4

and y have the same c-mon

bers, that is, every element of x is equivalent to a member of 'y and vice=

versa. We have to show that x and y are equivalent (hence are e-members of

and y are such that

the same set). Since Xx Mé—sets, there is an R

O(RTC Iy TE iz € Tc({x,y}) , and Q(R¥,TC(z)) , then R¥* is a subset ol

R; hence every member of x 1is equivalent to a member of y and vice-versa,

using R for the equivalence; hence <x,y> € R ; this verifies extensionality.

We now check Ao~separation. If a is a fixed M2—set, anicis Al Hitshal Ao—formula,

we have to find an M2—set X

(Here A%

such that for all M2—sets Ze Pty A e S St TiE

z ¢ a & A¥(z). is the interpretation of A .) Since € is not given by

a Ao—formula, and neither is M the range of the quantified variables, it is

2
not obvious how to produce x , using only Ao—separation. We proceed by induction

on the complexity of A . We first have to handle the case of atomic A ; here

there are two possibilities, either A is z€Db or A is b E z. First sup-

pose A is =z € b. Take x to be {z: 2z €a& dy € b(y v z)} . This set can be

formed using {<z,v>: z € a & yeb &z v v} avai-

A -separation, since we have
(e}
lable to use as a parameter, since a

b€z

and b are M2—sets.

Next suppose A is This time take x to be {z €a:3b' € z(b' v b},

This set can be formed, using as a parameter some relation R such that

O(R,TC(a)). It is easy to check that these two sets x are actually M2—sets.

This takes care of the case A atomic. Similar arguments take care of the induc-

tion steps in which A is of the form B & Cuy BV C lor (B CL

K, ahEEFVE Chat an maay dnductien an the eemplesity af A Alows Fhat

¥k AR (%) ¢ A%(y) {e pravable; For each f?‘l‘nati A, Now conmlder the vase In
el A In V Wy Bla vy Blnoe svery e=member af Y |8 aquivalent o some
.1SNh“l; the remark Just made showa thal Lt mufflose to gquantlly over emomber g
e In Che key Lo the verlfloatlion in this case, which we now glve in more detall.
& bhe (nduct fon hypothesls, we have Ghal Nw G wdp(r 1s an Mz—Hct &
1 O R [W* (1, w,y))) . By srtrong collection, there is a set T such
>f§ V w &Y 40 & W(-.-{ tMpen Jwey (... ).As a matter of fact, T is not only

Bi buk an M, =set, gl Y oLe an My—ﬂot. To check this, first note that the

NRltlve closure of T can be oblgined by taking the union of the transitive

i‘ulnﬂ nl/{hn olements of T' and {T} thus T is an Ml—set; if T' is some
» " we have to get f{<a,b> : a v b & a €TC(T) & b ¢ TC(T')} to exist. This
MRtlon R ‘ls just the union of the corresponding relations for the members O f
%jwhlwh can bho formed using collection), union the set Gy IR S < lie () & Tvb),
rrgn {€a,1'> : a € TC(T) & a v T'} , both of which are easily defined. Hence T
'm Mfmm.wmlbmrmesm S={zea:Vwey3PeT<mg>éP},WMd1wn

Formed using Ao—separation. We have
i
i

zeS~>z¢cat& weyB¥(z,wy)

iy completes the verification of the case in which A is formed by bounded uni-

Lihal quantification. The case of bounded existential guantification is much

Bler, and we leave it to the reader. This completes the verification of Ao—sepa—

tion.

[urn our attention to the axiom of infinity. Here the only difficult part of
'ﬁg proof is to prove that <w,w> is an M2~set; we first have to prove that if

{w an integer, then <n,n> is an M2—set. (Each integer is its own transitive

|opure). This is, we have to prove that

Xne wY transitive x3R(<p,g> ¢ R > pE€ n & g € X & <p,p> v <a,TC(q)>)

i obvious way to prove this is by induction on nj; however, in some of the weak

f%ha@ries we do not have full induction available, and it seems to require at least

n and

! 4”A1-induction. Fortunately, we can prove it without induction. Fix an integer

B Cransitive set x then R can be taken to be Rn , where

! i Lm0 and R, = (< pensgexaVaepibea <ab>e€rR &

k+

- Wb ecqlaep <ab>€R]}

~ Now the desired property of R can be proved by a bounded induction.




We next undertake te verlfy the aaund nikétpfﬁhnldsn ff bhe axlom of espaiEns

tiatlon. I our nen=extenslenal sel Uheorles, this axlan Gakes the Fal lowlng
form:
(*)VZMBBXVquMq)&IMmM) A& g () €1
Afe X(Fen(f) & Dom(F) = A & Rng (f) & 1 & Vﬁ @ A(F (M) if(®))

is a sebt of functlong from A 8 Ry

Note it is not necessary to put in that X

because Ao—separation can alway be applied to get
(f ¢ X : Fen(f) & Dom(f) = A & Rng(f) & B}.
Now we have to use this axiom to verify that the ordinary exponentiatlon axliomn (&

satisfied in the model. The first point to make is that if A and B are gats ol

A
the model, then so is B (and indeed any X as in (%) ). This Leg because any

descending € -chain has one of the forms

3 c X, elale fa)l e <a,p> e i€ X

% e %, . € ac {a,b}E<a,b>efeX

X €%, €pbe {a,bl€ <a,p>e f€ X
Hence the transitive closure TC(X) can be defined as the union over all mcmbor o
of such sequences, using the fact ‘Ehats SMEHEAY and TC(B) .are sets.
Now to verify (%) Fix A and B. Let 'X be given by axiom (%) (This X L4
not however the X¥ we choose to verify (¥) - we give this X¥* later). Supponn
g satisfies the hypothesis of (¥) in the model; that is

(i) Wa' e adp' ¢ B <d\b'>eq

Gl iatbis>ie Lgfnial e AR R (e B

(Ll Caty b engl aiall el > el bt sd e
let £={<a,b> :achAsgbebadadb <a,b'>€gsaava' &bvb'}
Now f «can he defined in %—ext , because we can fix a transitive set W con-
Taining both .A,B,dnd g, and then as'we have shown above, £ and ~ restricted

to W are sets and the quantifiers | a'a b' can be relativized to W

We claim £ is satisfied to be a function from A to B. Suppose Lall, bl>tie £

WHeR el e B @by for some! Ka,bx e &, so asd 8 beB ;50 alien e b

Next suppose <a,b>ef & ga,c> € £, Then ' a v a" bra bl ialial el vl el iwaieh

<a',b'>€qg & <a,c'> €49 Hence, by (iii) b' ~ ¢! ; hence b ~ ¢ . Hence f is

satisfied to be a function from A to B.

e Bj

vy, ©onabinbinn A (100 % atn g dew

1 I\Vh’.h P B(%R, ™ 6 F K Sy e3 e q e BN ) , Alnea LF thi

4,2 E T

Ba! & b p! whers €a',h'> € F B0 A MRY R B aR" where <a''h'">dq, and ly

%Il, g Implles onh' j Eines we have BAB! ‘IN'”W , we get bnha,

E!o fhage prallminaries we can glve the mel X% whiceh 18 to work for X din (%)

b fhe model . Note that LF “im satisflod Lo l:iv" o function from A to B , £
net actually be a Iuﬂw!!un; but LE induces a function from A to the set

'll b el , whare Chj g Lhe equivalence class of b 1in the equivalence re-

gn v on B .
g &
can be formed in %—ext by the abstraction axiom; hence

that [[h] b e B}

Wxponentiation we can form the set S of all functions from A to {[p]: b eB!

J It nes, let HF be defined by
<aprent «— [ple B (2
w# = {u¥.H e s} . x¥ can be produced using the abstraction axiom of

L, To see this explicitly, we write

¥# = ({<a,b>:3z ¢ {[b]: beB} (Ka,z> ¢eH & be 2} : HES

B also that TC(X*) exists, so %% 15 a Vsew’ of the model.

nuppose the model satisfies
Fen(g) & Dom(g) = A & Rng(q) € B

'rﬂbove, we can produce f such that £ is satisfied to be a function from A
i
y B and Vx(£(x) = q(x))

B [(<a,b>: achAs&bcBsg<ab>efl}

holds in the model. It remains to show f € X¥. Let

We claim f£¥ € X¥ , and £ 7 f*, To

B8 f v £* , note that £%#C f , and if <a’",b'> € £ , then al e AL RIDE e B Y
}

n!na eagb' vbeBe&a<a",b>eg for some a" and b" with a' v a" &

BN L Hence <a,b> € f also; thus every member <a',b'> of f is equivalent
|0 a member  <a,b> ofit, EX Hence £ M £%
i
b -
Define H Dby H(a) = [f(a)J , the equivalence class

;%nally we prove f* g X¥
%
i (2) in B

\ [unction) so we really must define
4

. Technically, f is not a function (though it is satisfied to be

Lually, looking at the definition of £ it is enough to take

g = (b ¢ B <a,b> € f} Tn any case H 1is a function from A to

'n{bj: b €/B} , and f* v H -, have exactly the same members.

in fact ‘£% and H

i ¥ ¢ x* by definition of = X¥ ; hence £X e XX

H(a) = {beB :dp'e€ B <a,p'™> € f &b’ b},
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»
Hineg a have ) i
oa we have provad ¥ ¢ X% (% v F , L8 fellows Bhat F & N%, Henes Ghe sanel
i ig : BHbEH
glon of the exponentlation axlom e verlllied,
This leaves
his leaves palring, unlon, collectlion, foundatlon, Lnduct bon (TRTETRTR [STUR AR (N
, depandsnt oh
s SR Pty ol ol AN
ransfinite induction still to check. Because of limltations of Hpa / |
et e Wi [=11R i
a ; - i ;
etails of these verifications. Thus we take 1L aw proved that our folerprelal
dss'seund. for. T 5T, 5T nd i
17Ty Ty and qu We have already done A1+ KDC and '\ Whieh
leaves only % to consider.
The abo i i e
ve model uses collection quite heavily; however, in Lhe cape of | Wi
should i i o
be able to describe the model consisting of sets of rank less than o |
uite explici i ide ivi i
q plicitly (incidentally giving another interpretation thal worlks for werm
lo). Defin
e a set x to be of rank less than w + n if every descending @ =ohaii
from x termi i i i ‘
rminates in an integer in < n steps. (This is not exactly thea usial
definiti e = : ;
inition, but it is convenient). Write S(x) if for some n,x is of ranl
> 7 s ank e
than w + n
Again we i "
g shall consider the "sets" of the model to be pairs (x,TC(x)) Nolto ||
g 1

S(x) is A im &

o and TC(x) (we need TC(x)

to be able to quantify over o
cendi = i 1 i

ing € -chains). Let W bhe a fixed transitive set of rank < w + n We prov
is as above.

that ~ 1 i
- is a'set, that is, IR Q(R,W) , where Q

Namel R i = 2
Vo is Rn , where RO = {<n,n>: n € w} and

R = [« SN/ - -
S <Kx,y> ¢ w?:¥Yaecxdb ey <a,b>€Rj b ol y:Jac— x <a,b> € R.}
3]
A ; il
s we discussed near the beginning of this proof, this is all we need to make |
] 16

interpretation work. We interpret x €y as 3z e y(z v x) where 2z n
’ X 1ls

AR(QER,TC({x,y})) & <z,x> € R)

We 1 i i
interpret sets, as mentioned, as pairs <x,y> with S(x) We leave the read
= reacel

to verify that the interpretation is sound for B
b
Ne 15l
xt we turn to the case of the auxiliary theories Ta and Tb, where T is
5 ’

ZF RDC 4 i e
ks or
’ g 2 ! 3 T

Thi 'as £ 3 ini
or T ; to finish the proof, we have to verify that the extra of Ta and

We use the same interpretation for Ta and

Tb are soundly interpreted.

We have t
o tell how the constant a (or b) is to be interpreted; of course it

is as i i
<g,TC{a)> (in the case of the interpretation that works for the T.) and
al

heE : 8 ;
gl a in the case of the interpretation that works for ZF + RDC and 2 This

de ha T i i
pends on the fact that TC(a) is definable from a One easily verifies that

N
every memb i
v er of N (remember a is a member of a subset of NN) has a transitive

CONTTOEN T NI

osnre dafinable Fram & | NEER Ehat eaeh inkeger 1a LER BWi Pranillblve gloEire
Rext we have Lo verlfy that sagh mumbey ol I”‘ (§ actually (with Les transitive
blosure) an M, =mal) Fhab L8, I X |H any tl,wkhl lya Bet, we can form

En > p @ TC(a) K g @R &P i) (More preaciealy, p oand q ghould ha palred with
hedr cransltive closure). This ls easy, nﬂww we know Thnl each integer 1ls an

I ~cet, which wo have alraady discussed. Minally, %F have to verify that the axiom
Pc X and the axioms b(E) = a yhexe ' . = f£{n) ', for some fixed f in X , are

oundly interpreted. Recall from §2 that membership in X is given by a purely
niversal condition on the values of a. Below we give a proof that the interpre-

Epe same proof applies to show that it pre-

ntion preserves arithmetic sentences;

) : s N
nrves the axioms in question

o have now given the interpretation A¥ for each of the set theories discussed

dness of the interpretation. Next we prbve that

| this paper, and proven the soun

- n < a% , for Ko—formulae A . This is established by induction on the comple-

|
ity of A ; to be quite precise, A <> A¥ is only for closed formulae ; for formu-

lne with free variables, say X , We should say

9

S(<x,v>) + (A¥(<x,y>) <> A(Xx)).

ering the interpretation that works for Tl'T2 3

which can be established using

sy ,T4). The basis

(llere we are consid
le S(<x,v>) & g(<a,b>) ~ (<xy,v> € Lo bz mie al,
;he foundation axiom; extensionality is used here. The induction step proceeds
umoothly, using the fact that members of M2—Sets determine M2—Sets; we leave the
fdetails to the reader. Note that we cannot seem to get A¥ <> A for all formulae

7F + RDC we can get it for all formulae, be-

A but only for Ao—formulae. (For

tause the interpretation does not require that transitive closures be tacked on.)

e argument works for the interpretation of B using sets of rank less

uction step over a bounded quantifier uses the

he sam
fact that

Cthan w© + w ; here the ind

ithe members of sets of rank less than are themselves sets of rank less

W+ w

A similar induction works for the interpretation used for Zermelo

Nt n W+ w

. pet theory. This completes the proo of the theorem.

i Re TS (L)

~ We next consider the question of which sentences are preserved by the interpreta-

{{ons; it is for these sentences that we get a conservative extension result. First
Arithmetic sentences are preserved. This is shown by induction on the complexity

ol an arithmetic formula; actually, as above we have to prove

<m,x>€ w & ne w & <m,x§ & <, TE )

(this time without extensionality)

> (A (<m,x>) <> A(n))




‘jg . f‘“g. ot

Note thal every Integer has a transltive olosirs, namely (Easlfy i Fasl; svsry

integer is (part of) an M,=8ak,

Here A is a formula of sel theory translating a formula of arlthmstic, whieh ¥
also call A ¢ the induction 1ls on the complexlty of the aplthmetia Formula, The
details are easy but cumbersome; we leave Cthom Lo Che veader, Next nobe fhal oveg
14 Saliol NN has a transitive closure; this allows ug to exbend Ethe above ndiedd
to formulae involving quantifiers over such objecls. Actually, we musgt ver Ty §hat
each such f. is (part of) an Mz—set; Fo do this, we must be able to form Lo

each transitive set x , the set {<a,b>: a €¢ TC(Ff) & b &x & a ™~ b}, Thia buill
down to the fact that we can form the corresponding scb with an Intoger w1
place of f , in other words that each integer is an My—sul, a facl mlluJud (W]

above.

This completes the proof of part (ii) of the theorem. Part (iii) of tho (heo
rem, which says that the first two parts are provable in arithmetic, is proved 1y
examining the above proof, and noticing that only arithmetic is needed. In oltho
words, we proved by induction on (G&del numbers of) proofs in T that tho (il
pretation of the last formula of the proof is provable in T-ext . This complol:

the proof of theorem 3.1.

§4. Realizability for Set Theories

In this section, we give a variant of g-realizability adapted to set theoric:,
This type of realizability has been used before for arithmetic and the theory o
species to obtain explicit definability theorems {Tr}. Here we extend this proqgiai
to set theories. The extension to set theories without extensionality is relalivel
straightforward, but there seems to be no simple way to handle set theories willl
extensionality. (Myhill gave [Ml] a complicated realizability for his extensiona
set theory; but it cannot be made to work for our purposes.) For this reason, cvoin
if we want to obtain derived rules only for extensional theofies, we have to conl

sider the non-extensional ones and use the results of the previous section.

The plan of the present is to give the realizability interoretation we need and
prove its soundness both for the basic set theories T-ext and for Ta-ext and
Th-ext . Our definition of realizability will proceed by associating to each formu
la A another formula e r A ("e zrealizes A"). We will then prove soundness
theorems of the form, if T F A , then for some e , T & r a . Here e 1is an
integer; all our realizing objects are integers, not arbitrary sets. (We use

i i e etc. to indicate variables whose range is restricted to w .)

§in by assigning ta sach sek variakle ® anather varlable ®*  in Che manner

il In LHI] e Frae varlables of & rBa are @# % and %% , where x are

Fiae varlahlen of A

» y
Bonveitlon 18 that a #&lngle latter oan denote & Tinlte 11t of varlables,) We

B lve (e olaysen definlng e ¥ A , for the netlon of reallzabllicy that works

* x
B heor fow without extanslonal Lty
: ? %
RrX =Yy ] x* yH*
B rNIgY le <@, x,x%> € y*
-
6 r(A&B) 1.8 (n)o r A & (el) r B
o r(AVB) is ((e)O =0 > (e)1 r A & A)
& ((e) # O~ (e), r B & B)
o 1
9 (A BY) is arA&A > {el(a) r B; or more precisely
YatarAg&A~>Jx(T(e,a,k) & U(k) r B)
8 r\v’x A is Vx,x* er A
© r_—lx A is "] x,x¥ (A & e r B)
.Qr toiunmplutw the definition, we have to define e r A for atomic A in-
Fﬂ {ermn L of the non-extensional set theories. This can be done by the same
il A8 above, as soon as we associate to each term t another term el

ntultivaly defines {<e,x,x*>: e r x € t}. These terms t* will be given
Course of the soundness proof below; they could be listed here, but would
lntelllgible For instance we define w* = {<n,<n,n>>:new} . As another exam-
k= (y ¢ a: B(y)}, then t* = {<e,y,y¥>: <(e)o,y,y*>€<a* & (e)1 r B(y)J.
{hin example in order to clarify the following point: There is no vicious
i ihe fact that (e)1 r B(y) appears in the definition of t¥*, which must
{he definition of e r x € t ; for, as discussed above, the definitions
;ifarmu1nm and terms proceed by simultaneous induction, so that B(y) con-
Cunly less-complicated terms than t . To make this completely precise, we
}‘glliqn 1 measure of complexity to both terms and formulae, say C(t), giving
! formulae without compound terms complexity zero, and atomic formulae t=s
L 4 the complexity max(C(t),C(s)); let propositional connectives and quanti-
fferease the complexity by 1 , and let separation terms {xea: B(x)} have
ully limax(C(a),C(B)); similarly for union, pair«and choice terms. Then jouk

flen of e r A proceeds by induction on the complexity of A




=

MG HEUAL For eealisalll ity soundness bheorsia, we procesd by Induckion an

Remerlin !

‘ @ length of the preaf af A, proving that B universal closures af all atate=
(1) If we were doing 1945=reallzabllity (mee [1r) ), we would not need the ssla ‘ HEE L0 the proof are realiged, Thus we have fo verlry fhat the unlverdal closures
variables with stars, but could avold them by definlng & + x€a Lo b c6, 6 € | E 4 all wtatements (n the proof are reallesd, Thus wa"iave Lo verlly that the uni-
g e dousonSrbing, RlnRa for \ardeRLLIRALLIGS QN LEYS RSN SRR NI PEAl cloauresn of all the akloms are reslleed, and the rulem of Inference preserve
e ' il lgabl )ity Tha logloal axioms and rules of (nYerence are handled in the usual

i i ; heck the n<‘m-lm_ leal axioms.
(2) One cannot define e r x€y to be <e,x>e y* , though Chin may seem Cempl g \hee L“,‘ L e b
In thi 7 @l Ehi i thd ent choice | ) realls ] i v !
n is case, a the axioms excep ependunA choice will be reallzed (Lnoludliyg Bairing). <, ;]x‘dy(y ¢ x > (y=aV y=b)
extensionality ), but one will not be able to get anything realized Lo be a ] !
function. Consider Fen(f ) which says Make x* = (<a,y,y** : e ¢ w & y € {a,b} & y* e .{a*,b*} & er(y=aV y=b)}.
Vxoy,w (<x,y>ef & <x,wr €f >y, W opel can bo formed In o B without extensionality. Take x = {a,b}.
In order to get y=w realized, there will have to be some relation beltweaon y* i (Infinity)
onfindty) .

and w¥ , which we cannot get from having the antecedent realized, with Ul

definition of realizability. This is somewhat interesting because it poinls pewsVye w (yUlyle w «Vz(pe zaVy ezy Ulyle z) »uvcz)

Take w* = {<n,<n,n>>: new}

Then @ €w &y e w (y U {yle w) is realized and true.

up the absolute necessity of the axiom of choice in proving the existence of

functions.

ve Lo show that
VuopezaVy ealyU{yl€ z) ~wcz) is realized and true. Suppose ;

given, so that ¢ ¢z & ¥y e z(y U{v} € z) is true and realized, 0

(3) The motivation behind the definition of e r xe¢vy is that y* is thought. o

as the set of <e,x> such that e proves, or verifies, or realizes, that x¢y . 4
mnd 2% are

¢ by <a,b>
B first of all, w & z is true;
» by the recursion theorem to satisfy the equation

Remember that Kleene's original motivation for realizability was that realiziig

numbers were thought of as like proofs. It is no wonder that extensionalily .
in ordérito get w'C z realized, we 1ntro-s

gives trouble, because one can have x and y extensionally equal, without any

relationship at all between x* and y*; yet if Ya(xea <> yea) is to be a recursive function {p}

realized, there has to be some relationship between x* and y*. i e

{p} (v + 1) = {p} (I} (¥N)

Theorem 4.1. (soundness of g-realizability ).
‘ wo prove by induction that {p} (y) r y € z ; that is,

Let T be-any of the set theories corsidered in this paper, without extension-— (y) )y, y¥> € =% (What we are proving by induction has a free variable y*.)

ality. Then for the notion of realizability just given, if T |- A, then for © Lhat only the restricted induction axiom is needed.

some number e, we have T ‘{— e r A.

U z , we

(Union) . vl e U z <—‘>:']z(y €z & z€&a) . If t 1is the term
| ze a

zZEC a
erdz(yezeg&zea)l}; this can be formed in B

B L* to be {<e,y.v*>
(Heparation). Let t be the function symbol such that the following is an
" i V yly €t(a) <> (y € a & B(y)). To get this realized, we define a function

by
t*(a) = {<e,y,y*> : <(e)_,y,y*> €a¥ & (e) r B(Y)}

i i - i i A ~formula ifl B isi.
tan be proved to exist in Brext, since ur B is a Aj




»

Then  t¥(a) = (<o,y,y*s a ¢ (y & a & Biy)) 1} Ehis Findahes the verlFioation, Hol
that /\memmnl lon auffices to Intarprel A.;aauﬁmtlnn, and Full Amparation Foe

full separation,

F. ‘{strong collection).
VaWx ealy a »Jz2(Vx e adveza eVyeazidxean),

Suppose a and a¥* are given, and suppose ol Vx & a f]y A, and Vx @ A ' ¥y A
Let Qx,x*= {c: cr x € a}l ={c: <c,x,x¥> & a¥*}. Then

Vx e aVx* €& Rng Rng(a*)Vc € Qx,x*a v(a & {p}(c) r A) ; applying collection, we
get the existence of some R such that

1y e 2

= Gl * S i
Vxe aWWx* € Rng Rng(a*) Vce o o

Also, applying collection to Vx € aay A, we get some zy such that
Vxe a3y621 |+ Then

Vxe agyé Z A &Vy ez dx e an, i.e. the conclusion of axiom ¥ fg Lrue,

A&VyezlﬁxéaA.Take z=onz

Note that this works because we have strong collection, not just plain colloacl i
the extra conclusion indicated by ... in the choice of Zo is needed. We neod (o

show that this conclusion is not only true but realized.

Define

z% = {<<e,c,x,x*¥>,y> : crx€agx<€asgye€zs & e Rng Rng(a¥*) & e r A(x,y) |

First we show that Vx € a—:] y € z A 1s realized (by a number depending recuralvely
on p ). Suppose c r X € a and x & a . Then for some y in zO,A(x,y) and
{(p}(c) r A(x,y) . Hence <<{p}(c),c,x,x¥>,y>e z¥ , so Yxec adye z A is

realized.

Similarly, we have to show Vy < qu € a A 1is realized. Suppose b r y € z ;
then b has the form <<e,c,x,x¥>,y> where e rA(x,y) and ¢ r x € a and
X € a . Hence Vy [ zq X € a A 1s realized, by a simple combination of unpairing

functions.

G. (foundation). Va,b(a ¢ b&béex>aex) &Vy e x(yCzrye€ez) »>xCz
Suppose z,z*¥ are given, and p rVa,blae b egbex>aecx) , and
q rVy e€éx (y< z ~y & z), and the formulae realized by p and g are true.

Introduce a recursive function {f} by the recursion theorem so that

€l ey = {{q'}(e)}(!\u{f}({p}(<u,e>)))

B A b Geoan dren ef A u ko ma DA G ) () ® hbav) g e b AR
Al uEETul nokakion of Kleepe ) We slatn §\;‘ H@ K ¢ the conelusion af the
fat o aslom, (Whieh will Finleh the proofy #ines the ganeluaton of the axiom
e, heoaues we have assimed e Bypothesin,) We giat show F |Vy(ycx Y& 2

Lo, whenever y € ¥ , and e ¢ y & % ; wa have [fl(e) ry & # . Wa prove
by franafinlite Induotion on A (Chen lager show how Lo gelt by with only
Toundat Lon aselom) . Our Induction hypothesls Ls that for all a ¢y and

Ry Hng (y?)y 4 (e 2 a @ x) > (fl(e) v a €2 . Suppose e r y €x ; we must
(F) (&) 1 y &% . Note that Lf ur ae y , then {p}(<u,e>) r a € x by our

Whesls on p . Applylng our induction hypothesis (substituting {p}(<u,e>) for

E
"W mee that If aey and ur aé€ y , we have {f}({p}(<u,e>)) r a e z
18, A ul (h({ph(“u,e*)) r y € z. Now, applying the hypothesis on g, and the
tlon of f , we reach the desired conclusion, that itlile) v vie'z o This

’ fes our proofl by transfinite induction; now we have to show how to get by
anly foundation. The foundation axiom amounts to proof by transfinite induc-
where what lg proved is membership in some set. Here the set in question is

i

y** @ x x Rng Rng (x*) : Ve € w (Keuy 9> € x* > <{£}(e),y,y*> € 2z¥)}

il lng the induction on the pair <y,y> as an induction on a single variable

Wt Lo the reader.) This completes the verification of foundation.

WHponentiation) . dxVy(y € x <> Fen(y) & Dom(y) = a & Rng (y) C b)
ihn plrong version of the exponentiation axiom is realized.) Suppose
| , and b* are given; we have to produce x and x¥ . Let x Dbe * 5
~,9bL¢m ig to produce x¥ . Suppose for the moment that we had a set Q such
i { Ien(y) & Dom(y) = a & Rng(y) € b is realized, then v¥ & Q . (An

}Bgi bound" on the complexity of y¥.) Then we would like to take x¥ to be
ﬂ,y,u“> ¢ wXxx %X Q: e r (Fen(y) & Dom(y) = a & Rng(y) C:b).}

f'on (y) involves an unbounded quantifier, it is not immediate that this
Uan be formed using the axioms of B . However, we can instead take
4

{G.,y,y*> wxxx Q:er (Wse aVt,t' € bi<s, &> € y & <s,t'> ¢ y~> &t =t')

i (y) = a & Rng(y) < b)} (here = 1is extensional equality).

| 4 member of this x* , we can recursively pass to a realizer of

L bom(y) = a & Rng(y) € b and vice versa, so that the exponentiation axiom

~

o realized. The difficult part, namely producing the get © , is still ahead

. AL first, this seems to be a serious problem. 2 typical element of y¥

1 BR <@, <s, t>,<s*,t*>> with t=y(s): but t¥ is not uniquely determined i




" g,; :

psnésuk ahtee Ynewdy & a o canthe degived Fram dupendent eholos,

(even extenmlonally) o we dannol seem Coo dss Che sspensnb bat bon axlom ta gel o
in which y* must Lle, and power sel (& nol avallable, However ;o Fhe Tl lowlig 48 )
preve by dnductban onon that
gument gets us around the dALfflewlby., Mrat, dal  x¥% v y* (] Vi & hipgirice
& ! »
is realized. Thus {<x¥*,y¥> & RngRng(b*) s x* v y¥]  can be Formed (1 I Niig (#) \/ ne W ‘..', (P A AN l Vl,“: gt :‘/““ G "“'””"'("*) V) it
by ! (5] ]

we can form in B the egquivalence classes |x*‘ under the relatlon v and the i

4" s ok Plyiayes 40wy, = kB By vy, ) 8 YR = xR
set B_ = {\:_x*d\: x¥ € RngRng(b¥)} (using the abstraction axlom). Next, ol oo (lel (1) 1 (V1 a8 y1’, Jrl O (el o
that if < >e AR > e ized, and Fe ged | i i i i

i yoi S = Yo mes e R e Bl R i can be done In Jé glnce the formula being proved by induction:.is a

x¥* o w¥ | Hence, although t* is not uniquely determined, Che oquivalonoo ol ] ; ; ; r T

' E G .y ' l : emula. Apply countable choice to get two functions £ and h such that
[t*] is uniquely determined (extensionally). Suppose i E y i H‘(n) e %, L, y* 1> as in (¥*). Then the functions

St O mm e

prsea->dJt<s,t>€ y; that is, Wl b themselves can be defined. Let f* be defined by

< *> * * (< < > o<g¥, pAue @y
e,s,s%> € a* > t,t*¥(<{pl}(e),<s,t>,<s¥, t e y*) el s e g e B (% ) % w X RngRng (a%))

Then if y* is such that Fen(y) & Dom(y) = a & Rng(y) € b is realized, Chon y = £(n) & y*¥ = h(n)}

v¥* has the form

We will show that, with £ and % gubstituted in, the conclusion of the

3

{<d,<s,y(s)>,<s%,t¥>>: £ ¢ f(s,s*) & d € p} dent choices axiom is true and realized; that is,

for some function £ from a x RngRng(a¥*) to B and some set P C w , whoro (Pen (f) & Dom(f) =w & £(0) = x & VVnew P(E(n),f(ntl) & Rng‘(f)ga)

e}
P has the form {{g}({p}(e)): <e,s,s¥> ¢ a*} , for some g in w. We do nol jre 1
the power set axiom to form the set of all such P ; quantification over inlogors | and realized.

g 1is enough. Using exponentiation, we can form the set of all such functions |} is true and realized. The truth follows from

we show Vn e w P(£(n),f(n+l))

lusl clause in the formula (¥) wused to define
which tells us that a realizer of n€ w

thus the set Q of all such y¥ can be formed; this completes the verifical [ £ For the realizability,

of the exponentiation axiom. L ;
Wve Lo use the definition of

B n , specifically, 'if sxr n € w then (s)o =n
I. (Bounded dependent choice). VX [ ad ve&e aP s¥Vx e an (kn(f) & Bng(f)a ,
C p(f(n),f(n+1)) is actually an abbreviation for

& Dom(f) = w & £(0) = x e¥n € w P(£(n),£(n+1))), with P Al y
; (<n,y> € £ & <n+l,w> € £ > P(y,w)). Take ¢

Suppose p r\;’x S a] ve aP and s r x € a, and these formulae are true,—as
' 3 g =fhs Ap ({e}( (s) )), i then -

|
1
|
I

well as realized. Define a recursive function h by

gr ¥new?P(EMm, f(nt1)) .

- we phow Fen(f) 1is true and realized; Fen(f) 1is

. realizes the left side of this; then
EREREES

h(n+l) = {p}((h(n)) )
& @ & <n,w> € £ >y =w . Suppose P

) i * c ¥ A <3 <n,w>,<n,w¥>>
e R by EameL: <k, > with <k, <n,yv>,<nyT>> € ig and j,<n, . ‘
y = w = f(n) and y¥ = w¥ = h(n) ; here equality is extensional. But since

is realized.

{e}(0) = <s, ({p}(s)) > and w* = y* , we have y = w realized. Hence TFon(f)

~ o is realized since if s rn €uw , then n = (s)o and

{e}(n+1) = h(n)
<0,<n,£(n),<n,h(n)>> € £*, so dy e ay = £(n)
Now, we will prove the existence of a (set-theoretic) function £ such that

{e}(n) r (f(n) € a & P(f(n),f(n+l)). First note that the principle of countable




# realized. Pinally, f(0) = ¥ |u realiged, Beeauss W(B) = #% ahd F(8) = & defipe #¥ = s LI W&
4 3 3

This completes Ghe verlflication aof the axiom of Beunded dependent ahil e, :
, Aoy ytseina(n®) (0 ¥ (y.8 W AVURLE W ALLY) KU CIRRRR
J. (induction). The verification of this axlom ta atandard, o
Dppder -t mliow that the g% mo dafined e the ahmya are meaking, we have Lo
K. (relativized dependent choice RDC). Like bounded dependent oholo, asmept ek e that LF Hy,yM(e rly & ¥ AW ulun @w e Aluy) & ud x))) , then for some
we use full induction and separation instead of bounded induction and meparabiufy & 7, vhnowh, et vk s (equ ute @w X Ry (k%) ¢ q r(Afu,y) & u €x)) g
] IR wh v vk, Binoe =(r=)ll,y,y‘°~ € x* , wa hava v* €& P . This completes the
L. (tranéfinite induction). Like foundation, except that CLyanslindte fnduct bon mis Lfloatlon of abetraction, and with it, the proof of the soundness theorem 4.1.
be used to make the verification, instead of foundation. ‘ i
furn now Lo the auxlllary theories Ta and Tb, and discuss the notion of
{igbl Lty appropriate for them. ’I"Eese theories, as defined in §2 , depend on

M. (full separation). Like A - i
5 separation. ; ; il i
i bdoular definable metric space X , which is a subset of N with a metric

Ligtandard form" as discussed in §2 , the new constant a oY b stands for

N. (power set). AxVvyiyca-~
< y € x). Take x = p(a) and ‘
P ement of X that is, an element of N satisfying an additional condition.

¥ = {<e,y,y¥> € w xpla) x plw x Rng (a¥)
il we use functions recursive in a (or b, as the

ad of recursive functions,
yCasgerycal I may be) to realize the theory Ta (or Tb). The theory of functions recursive
‘ gan be formalized in Tb , a.nd the verification that all the set-theoretical

Suppose y and y¥* are given and y Ca is realized, say by e , and y € . ime are realized proceeds exactly as in theorem 4.1, using {e}g in place of
Then we have to check that y* . is a subset of w xRng(a¥). Suppose <p,z,z*> ¢ y¥ {hpoughout. This leads to

Since Yy ¢ a 1s realize me we have P /2,2 & a*; hence
ized, for so |8}
’ ’ Jat S 140 > e i

<z,z¥> & Rng(a*). This completes the verification m 4.2
of power set.
\
=renlizability is defined using functions recursive in b , then the inter-
similarly for Ta . (Here T is any non-extensional

O. (abstraction). For A a Ao—formula,
flen is sound for Tb ;

}\/ x 3zVwvw e z 3 vy € x gfuue w<r Alu,y) & uex))). ;'ihgoxy considered in this paper.)

Tak = s 3
e z {{ue x: A(u,y)} :ve x }, formed by abstraction. We want to prove
the existence of 2% cuch that ‘

ally, we first have to give a complete description of the interpretation. We

e r x€b are. We shall take e r b & X

<e,w,wt> € z¥ +>Jy,y¥e r (ye x aVuu ¢w <> A(u,y) & uex))). Lo explain what e r b & x and
To prove that z¥* exists, we again need ta use the equivalence relation, w¥ o oyh | . ‘012113_*>€ g o oot Be s 2* Lt 2* LS aRpatE the
iff w extensionally = v is realized iff pet (more precisely, a particular term of our non-extensional set theory Tb)i

) he explicit, b¥* = {<k,<n,m>,<n,m>>: b(n) = m}. Thus (e T b(n) = m)<> b(n) = m.
Ap.ge w¥e,u,u¥((<e,u,u*> ¢ w* > <{p}(e),uu*> € v¥ & the logical and set-theoretical axioms can now De verified exactly as before.
maing only to check the extra axioms involving 2 or b . First, consider

(<e,u,u*> € v¥ > <{g}(e),u,u*> € w¥)
¢

| axlom a € X . This has the form
m LY ne »w Ime w(<n,m>€ a) &Y n,m¢& w(p(an,am) < f/m + 1/n) ; here p

Note that i iv —fo W we [e} e S
a N~ is given by a A -formula. Now, by abstraction, can form th al
o §2. The second of

8 Lkaken to be some recursive function, as discussed in
of course a 1is exten—

P = < *> .
{{<q,u,u*>: q r(A(u,y) &u € x)} ; <c,v,y> € wx Rng(x¥)}. s e S e
1 is reallze essentla Y 5 1tse ;

11y equal to ‘{e}i for a certain number e.
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Next, conslder the axloms hin)=m for btn) =i, (Hemember that Th 18 bagsd gl & par
ticular functlon b, while Ta (& nol hased on any parbleular a,)  We lave
(e r ?_(E)=IT1) -> b(n)'ln, 80 that these axlomn almo are raal fasd o The  Thia v

pletes the proof of Theorem 4...

§5. Explicit Definability

In this section we consider the old metamathematical proporty, |f 'I'[ :‘]n gw Pl

then for some n, T }— P(;) . We call this the "numerical expliclt definablllty"
property. Our goal is to derive various formalized versions ol Chila property o
set theories T and the auxiliary theories Ta and Thb, which will wul flee to gel (he

desired continuity rules. A few general remarks are in order. 'Ihe numorlical o
plicit definability property should be compared and contrasted with Che sol eyl
cit definability property, if t F;Bx P(x) then for some explicitly dellinod ?,

T\— P(®). (One might give different meanings to the words "explicitly dollnod"
here; but for example, any set given by a term of our non-extensional scl Lheor |oh
is explicitly defined.) These explicit definability properties are already known
for certain intuitionistic set theories (See [Fr ﬂ ,[Mi], and @B].) Thesoe
theories have replacement instead of collection. (However, the double-neqgal lon
interpretation has not been made to work for ZF with replacement, but has boon
made to work for ZF with collection; see [Fri}.) Friedman and Myhill use a vall
ant of Kleene's "slash", which becomes quite complicated because extensionalily
is dealt with directly. This realizability is not enough for the needs of tho

present paper, because it is not recursive, and it is not easily formalized.

Numerical explicit definability results for the auxiliary theories Ta and Th pro
vide information generalizing what is usually known as "Church's rule", which
says that if VYndn A(n,m) is provable, then for some e, Vn A(n,{e}(n)) is pro
vable. If we take the complete separable metric space X to be the integers N,
then to say Vnam A(n,m) 1is provable (the hypothesis of Church's rule) is to
say that Ta proves 3m A(a,m) (the hypothesis of explicit definability for Ta).
In the case X=NN or X=2N (not to mention the reals or certain function spaces)
we get other interesting information. The exact form of these results will be
given below. We begin with the most straightforward explicit definability

theorem.

Theorem 5.1 Let T be one of the non-extensional set theories considered in this

paper.  Lf. T [—axin(x) then T F P(;l) for some numeral n.

Proof: Suppose T l— 3 X €w P(x). Then, by the soundness of g-realizability for
T, ther= is some e such that T |— e ig axew P(x). That is, T proves
Ex,x*(éo r X€w & gl r P(x) & P(x)), where e = <eo,e1>. According to the defini-

tion of ¥*,T proves (s r x€ y ~> x=(s)o) . Hence T proves P((éis)o). Now since

aiRE AaFLERmERiE, P praves (&) =i, where (el Menee 0 prvea Plid g Wik

letea Fhe praak; -

palE i der mEpl ol definabl LIbY. For aelanslemal Fheaories e me b hode yisld

'ﬁpal gipllell defipnablility, not For all Formilas By hut only Ffar B of the

0 HE Uy where U 18 A speclble delinabile el Wi Lake "dafinable sl to mEAN
given by vne of Lhe tarma of the non=axtanslonal sst theory 7",  What we
‘é fdeal ly want LB a largsr myilem of tarime, adeguate to prove the sl sgplielt
Aabill iy ||lfiHH'vlu, - biylng to o get much a system of terme, fhars (8 A po bl s
ik the choles and ool leet I,Lm Akloma aseert the exlatencs of a #Bel; Wi thagt
S Betng any obvioun deflnable one,  This (e why the set ssplioll definabl by
Ly I8 known only for theorles with replacement ; and not For theoy lee with
phion:  Although this e an dinteresting phenomenon, we regard L AW 4 #ids
“wlnee our foous here 1 on continulty rulea, We therefore remplilol au
lon to pets deflned by terma, Actually, we could Include exponsnt lallan
AN welly L thisg 1a done, the definable sals seem Lo encompans momMl ssbs

W for mathematloal practice,

Let T be one of the extenmional set theorles consldered in this PapsE;
# b the interpretation of A in the non=extenslonal sel theoary T-sxt; given

e 3.1, Let Q be a definable set in T. Then T |-(x€Q) ¥+ x&Q,

" b Blret we must explain precisely what Ls meant by (x&e@*., Here @ I|& &
7 which belongs to T-ext, but not to T; so xeQ must be Interpreted am Che Fa
Bl 1 obtalned by writing out the definitions of the terms compouliyg (
fly, If A has a free variable x, then A* has two free variables, ¥ and ¥,
¥ LA supposed to "witness" that x is a set. (Technically x lu Intwerpratsd
BB palr <x,y>.) Thus (x€Q)* «> (x€Q) really means ((x€Q)*(x,y) + ¥ &f)
&y aay(xﬁ.Q)*(x,y)). Now, the proof proceeds by induction on the coiipl sl by
W lerm Q. For instance, if Q is {x€a: P(x)}, where a is a term and W {8 Aﬁ;
e (REQ)*(x,y) < S(<x,y>) & (x€aj¥* & P*¥(x,y), where § la Lhe formila
Ny Lhe sets of the model of Section 3. According to Theorem 4,1 (1); W&
B8k, y») = (P(x,y)~> P¥(x,y) ; 50 (XEQ¥*(x,y)«> S(<x,y”) & (k& a)" & FOEH]
et lon hypothesis (x€ a)¥® <> x€ a, since we can prove by induction o Ferms
v Iha transitive closure of a definable set is definable, so that H( a,h=] Fui
' furm b, Thus (x€Q)*(x,y)<> S(<x,y>) & x€a & P(x,y), i.e.
»'liﬂ,y?) & X&Q. But x€Q implies ay S(<x,¥>), since TC(x) can be dellnsd {F
’ known Lo belong to some transive set, and as we have just mentioned, (he
| I{lve closure of Q is definable. Thus x€Q -+3Jy(xe Q) *(x,y) and

)“(x,y) rXE Q. For reasons of space limitation we omit the other canen

i Induction on Q.
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Theorem 5.2 Let T be one of the sel theorles discusssd in BHER papsr; TREIUATHY
extensionality. Supposae T | axem(n &€0), where Q 18 a dalflnable met in 1  Theh
for some numeral n, T|~ ne Q.

Proof: Suppose T‘— Eax € w(xeQ). Then, by Theorem 4.1, 1 uw|| (?L‘ennu.tLulﬁ
HaweT%mt}axew&eQW,simexem is equlvalent to Lt ®=interpratal lon, by
Theorem 3.1 (ii). By Theorem 5.1, T—ext‘—(; eQ)*, for some numeral n, Henie,; hy
Lemma 5.1, T |—r_1€Q. This completes the proof.

Next we turn to explicit definability results for the auxillary theorles Ta aid T8
Theorem 5.3 (i) Suppose Tb |—3x€wP(x) , where T is without extensionallty, 'Theh

Tb|—P(5), for some numeral 5. If T has extensionality, then the same rewsull hiilds

for P of the form x€ Q, where Q is a definable set in T.
Then [or ROl

(ii) Suppose Ta|—3)<eu)P(x), where T is without extensionality.

numeral e, Ta |- (e}2 (@€ w & p({e}2(0)). If T has extensionality, the same oiill

holds for P of the form x €Q, where Q is a definable set in T.

Proof: Exactly like Theorems 5.1 and 5.2, appealing to the realizability uscd [

Theorem 4.2 instead of 4.1. For (i), we also have to observe that in Tb, |

-.b : = =y -,

{e}=(0) € w is provable, then for some numeral n, {e}—(0)=n is provable. Illn
is proved just like the corresponding result for T; it consists in observing [(hal
the axioms of Tb suffice to formalize the computations of a Turing machine; whon
a value b(ﬁ) is called for in the course of a computation, one of the axioms ol I
ig there ‘to formalize the step in which the "oracle" answers. Of course, this
cannot be carried out in Ta, which is why the theorem takes the form it does.

This completes the proof of the theorem.

Formalized Explicit Definability

We have to discuss the formalization of the preceding results on explicit defin
ability. They cannot be formalized as they stand (see the general discussion in
[Bl]), but instead we have to show that there is a sequence of subsystems Tn of
each set theory T, such that the explicit definability theorems for Tn can be
proved in T, for each fixed integer n. This may not be possible for systems T
which have only restricted induction. Here we carry it out for the other theoricy

considered in this paper, which have full induction.

The complexity of a formula of set theory is an integer defined by induction so
that prime formulae have complexity zero, and the complexity increases by one at
each logical connective and quantifier. We can, for each fixed n, introduce a
truth-definition Trn(a formula of two free variables; one of which is a number

variable, d.e. a variable bound to w , and prove T‘— Trn('A',x)++A(x). a0 be

ipleally preciee; We have ko WeEky abgiit Hhe Fast that A wan have more Lhan one
B variahle (% ean ke & Liat of vaviables), G eede Ghene vallabhlen into the

i 18 varlable i the left, #o that we should actually pay

»
i | 'Vln('ﬁi,n)"Al(u)‘.'a-(N)m)

e mafe LO n% g0, The construction of Trn

e lect this distinotion where it

Wlandard) Tr ('A',x) i a disjunction, according to the finitely many possible
1 i

e ofF A

theories, let T be T with all proofs restricted to contain
N

I la one of our meb

- . )
lae of complexity <n; and the axioms of Tn are those axioms of T which are

mplaxlly"n and occur among the first n axioms of T in some natural enumera-

¢ Thue T . has finitely many axioms. Note that Tn is not a formal system in
n

fBual wense, since a formula of complexity <n might be provable from axioms

mmplexity <n, but only through intermediate steps of greater complexity.

Ftheless, Tn is useful for our purposes (chiefly because it saves us from

§ to use formalized cut-elimination theorems, which in some cases are not

proved yet). By the reflection principle for S, we mean

Prs('A‘) -+~ A , for all formulae A.

.ot T be one of the set theories considered in this paper with full

e, 'T T L Z, 7F 4+ RDC). Then T proves the reflection prin-—

ger T
n

have Tr ('A') <> A; and we prove Prfn(j,
n

or Tar Tyr

, for each fixed n-.

'P') > Tr ('A') by induction
n

[. 1| seems that bounded induction will not suffice.
& l-consistency of a theory S, (terminology due tc Kreisel and Levy) we mean,

A rocursive with one free variable,
4

1 pro(3new A(M) > Tnew pr('am ).

ol A, we have A(n) ~> Prs(‘A(;)'), if S contains a modicum of arithmetic,

Indeed this fact itself is provable in any theory which proves that S contains

{oum of arithmetic. Hence |-consistency follows from the reflection princi-

HQH! i, for all the S we have reason to consider.

wo discuss the formalization of the soundness theorems for g-realizability.

4 [lrst discuss what goes wrong with a straightforward attempt to formalize

- theorem, Pr('A") -*ae Pr('e r A'). One would try to prove this by induction

] langtﬁ of the proof of A; the induction step involves proving

Pr('ar (A>B)') & Pr('b r a") » Im Pr('m r B').




Now from Pr('a r (A= B ') & Pr('h ¥ A'), we sankiy gak Pr( Wntmabn & Gfn) ¥ 010 ' Like Letmna B8, appealing ko Thegien 4.8 {nEtead af Thaoren 4.1,

To pass from that to the desired conclusion Gf e dnductlon mtep requlres fhe ¥ ! i ‘\

j-consistency of the theory. However, this (8 Fhe anly phatacle to the atralght 8.4 (Parmal imed expliolt definabiliby)

forward formalization of the proof, In cuher woxds LI yu iave NuNAERRRESSSE. f i s any of the wel theorles dlaunn;md {n this pAPer, Then T proves numet Loal
of a theory S, and we can prove the axioms of § are realizad, Lhen we van pirove Bait definability for 7 Wh|¢ i Wn”, for sagh fixed n. To ba precise, i
the soundness theorem for S, using nothing more complicated Chan hounded bndie s B 6.1, 5.2, and B.3 “n|n‘;1lnrnd by changithy 1, Th, and Ta to T , Tbn'
LS okl ;ii In the hvpulhanla and |J T Wb“", and Ta, in the conclusion, then the
Lemma 5.3 (Formalized realizability). Let T be one ol tho non=extanglonal wel WLy sbatements are provable in T, for some n* depending on n.

theories discussed in this paper, and let Tn be as in Lemma 5.2. Then for éach ‘

il We [lrat choome n* so large that Tn* will prove s r x€uw (s)o=x. Now
-y

fixed n, there is some n* such that ]
Proof of Theorem 5.1 can be formalized directly, appealing to Lemma 5.3 where

L& Tp 1o ' 4 ’
T ,(Prn( a") » Je Prn*( e r-A"))y Boundness of g-realizability {5 used. Next, note that the proof of Lemma 5l

he formallzed in T (with T replaced by Tn in the conclusion), since the

where Prn is the provability predicate of Tn'

:;ﬂnt proved by induction there is AO. The appeal to Theorem 3.1 is all

Remark: By writing Pr(‘é r A'), to be perfectly explicit, we mean e part of Theorem .4

. bocause, as noted in Theorem 3.1

Prn(Sub(Num(e},‘x r A'), where Num is a primitive recursive function produciig large enough, Theorem 3.1 will be

% proved in arithmetic; so 1 m¥* s chosen
from e a Gddel number of the numeral e, and Sub is a function producing a Gbdel Bls in T ,. Now the proof of Theorem 5.2 can be directly formalized, appeal-

number of P(t) from Gddel numbers of a term t and a formula P. vealizability for Ta and Tb is needed.

n i
 Lemma 5.4 where the soundness of 9=

i | Theorem 5.4.
Proof: As sketched above, we go by induction on the length of the proof of A, the proof of Theor .

using l-consistency in the induction step for modus ponens; it is provided by
TLemma 5.2. The use of n* on the right in place of n is necessary because Lho
complexity of e r A is usually greater than that of A. We also have to check
that for each axiom A of Tn' T proves ?ae Prn*(é r &). If n¥ is chosen largo
enough, this will be a true ZT sentence, by Theorem 4.1; therefore provable i
arithmetic, hence in T. (Here we use that Tn has only finitely many axioms.)

This completes the proof of the lemma.

lLemma 5.4 (Formalized explicit definability). Let T be one of the (non-exten-
sional) set theories discussed in this paper. Let Tan and Tbn be as in Lemma ..

For each fixed n, there is an n¥* such that

(i) T\— (Prn(‘A') e-zae Prn*(‘é r A')), whe;e Prn is the provability predicate
of Tb.
(ii) T|—‘(Prn('A') %—?ae Prn*(‘{é}iio) r A')), where Prn is the provability

predicate of Tan.
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§6.  Unlform Continulty and Foralng. Padifieationy nevded to & -
The results of the previous sectlons are sufflelent to eptabil sl the derlved ]
, : Bavi o pllavple

rules concerning local continulty, but not those concerning local unlfori eonl i i »

5 ¥ . ’ | 1 "
nuity. It is worth reviewing the reasons why Cthe preceding resultd are nol sulid FALH  u PH A & p”
cient. What we need to establish is condition (fil) o D\l] which saym roughily { ‘;m ] ﬂﬁ'p“ A b d
that each provably recursive function from a compact metric space X Lo the Lnke V*A i ViU a'HIH’JLA) i .
gers N is provably uniformly continuous (hence provably bounded)., Now, aws i«
cussed inﬁaﬂ, we cannot hope to prove all functions from X Lo N are uillorml, B(AvH) lw VIVJWW“ A > Fnlg e

continucus in any theory consistent with Church's thesis, because Cthere (o o 1o vL
N iy la =<p,x'>@y -
cursive functional defined on all recursive members of 2, but not uniformly i ” _—

1 . | 4=+ wey'):r p |- 4 is
tinuous there. (To compute this functional at an argument y, examine Che vl id o Ywiwe x 2

ine what it means for p to force an ato-

y(0) ,y(1)...until you come to y(n) such that in n steps of computaltion, you B8 a6l clauses will also serve to HaT

» i i so-
Tormala containing terms of the non-extensional set theories, once we as

these clauses. As in the

verify that y cannot be a separation of two fixed recursively inseparable i,
y such term t another term t' to use in
the choice of t' will be apparent in the course

sets; then set the output equal to y(n+l).) This is our first observation. e Lo eacl

Our second observation is that any provably recursive functional can be proved (o ilness proof for realizability,

| i initions of the terms
be continuous, by the derived rules which follow from the results already proveily e poundness proof for forcing, and we postpone the defini
mill then. We do, however, now give the term a' which is necessary in order

hence, classically, it is uniformly continuous, since X is compact. Howavaor,
d determine what it means to force an atomic formula

this is not enough; we want to know that it is provably uniformly continuou . {ha above clauses shoul

%1ang B Namelv): a! ={<p,<n,m>>: n<lh(p) & m=(p)n}. Note that a' does not
Our solution to this problem lies in using forcing to add a generic real Lo lin Bive &, so that generally PH"A is a formula without a.

universe; any function which is defined on all members of a compact space, [l ' ‘
’ i We have logic with no negation symbol, and instead a falsum symbol in

ding generic ones, will have to be uniformly continuous. We used forcing in - ;

’ L ] of which negation can be defined. The above definition shows that pH A
i il 3 - N R "

to establish these rules for Feferman's theories; here we apply a similar tocl i \1 R R

H
\VqﬁquH—A, which is the usual clause.

nique to Friedman's theories. It turns out to be rather complicated to give s
‘uﬁ, I we use classical logic our definition reduces t

o the usual notion of
suitable definition of forcing that works for the exponentiation axiom, althoul

for theories containing power set it is straightforward.

puing.

goal is to give the modification of the above interpretation that will

P next
. We introduce some

N
Suppose the compact space X, whose members are the members x of N with x(n)<M , . ;
([ |lue for theories with the exponentiation axiom.

1
for some fixed recursive sequence Mn' is fixed once and for all. Let C be tho

] ‘ a = @ <p}
set of finite sequences of integers p=<po,p1,...pn> stch thet pijMi. We use the lon: Cp {ge g<p

usual notations (P)i for P, lh(p) for n+l; and we use the notation (borrowed g< p means g<p & lh(q) = n+1h (p)

from forcing) p< g to mean that g is an initial segment of p (so p gives more i x'/p is read "x' restricted to p"

x'/p ={ <q,u'>ex': asp}
formation than g). No harm will result from using $ to denote the empty sequcncc. A - AN i
We use p,q, and r for members of C; thus Vp means Ype€C. We are going to as- {urcing interpretation will be define Gy
fﬂainte to every formula A with free variables x another formula o ol 5

Bl wrilte p|l-A to abbreviate R, (p,x"/p) -
are restrlcted to so-called "gogd sets"
means gx'(G(x') &, where G(x')

With ~ for extensional equality, G(y') is

sign to each £ la A of : ° i ; }
1g. e ormula of a set theory Ta (with an extra constant a for a member Al SRS

of X), a formula p|]—A of T (without a), which is read "p forces A". The free vi o

| R that the varlables 2

riables of p|l-A are p together with x', where x are the free variables of A.
I means Vx (G(x') ~ , and Jx

istal N sEors
o
(The use of x' here is purely for intelligibility; we may technically assume x'

fini d sets, as follows.
is the same variable as x.) We write p,n]PA to abbreviate Yqg<p(lh(g)<n+lh(p)~ delining the goo ?
i bvious that any good
q”-A). We are now ready to give the clauses defining the forcing interpretation ’VQ,.PVW <p, W€y’ ~3Avi<g,v>Eey' & v~ w/q)). It is not o
nes in Lemma 6.3 below. Now here are the

that works for theories containing the power set axiom (below we shall discuss W exlet; we shall encounter our first o
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clauged delinlng the Farmulas H/\(l'l“'"

R lg R &R ] |
'IA]_«] . I\IH i ]

ViR, 1 R in Hy'a

It (0 L
AVI A HyA

4 (Yol it B 2 ‘s '
Rxey(P'X ,Y') e is  <p,x'>€y

= (ot ) - "as wileyliciR. ()" Lg il
(B’ ¥ y'i Ry (p

xX=

PVy(P:X') s Vy';aninp RA(CIIX'/LI)
RA—»B(p'X‘) is tiP(RA(q,x'/q)—ianVrinq RB(YIX'/F‘))

Now, using the abbreviation pH—A for RA(p,x‘/p), the clauses [ox
implication and universal quantification can be rewritten in exactly the
form we gave for the simpler version of forcing!
Lemma 6.1 If pH—A and g<p then qH—A.
Proof: A straightforward induction on the complexity of A, using crucially (ha
the primed variables are restricted to good sets, which in fact is bullt Llnk
the definition just to make the atomic case of this lemma work.
Lemma 6.2 If p,jH—A and p,mH*(A+B), then for some k, we have p,k”—B.
Proof: Let n = max(k,j); by Lemma 6.1, p,nH—A and p,n“*(A+B). So for each ¢ ”p,
qH—(A+B). Hence, for each qinp, 3 i(q,iH—B). Now there are only finitely many
qinp. Let ko be larger than any of the values of i which work for these [inllcl;
many g. Then g<p - q,kOH~B. Set k = n+k_. Then p,k|-B.
Lemma 6.3 pH—ne w iff new; more precisely, there is for each n a term n' il
that pH~new implies new , and n€w implies pH—nEm with n' substitituted [
the corresponding free variable of the formula pH—n.
Remark: This is the analogue of saying new is "self-realizing". We might call
a formula with this property "self-forcing".
Proof: We first define a function n' of n for use in the lemma, by induction:
0' is ¢, and (n+1)'.is {<p,u'/p>: u<n}.By restricted induction on n, one provc:

that for all integers n, n' is a good set. We now define w'

(which we promigsodl
to do in order to complete the definition of forcing) as {<p,n'/p>: new}. The
assertions of the lemma may now be proved by a straightforward induction on n.
Lemma 6.4 Let A be an arithmetical predicate. Then for xeguw, pH—A(x) AEEER ()
Proof: By induction on the complexity of A. The basis case consists of the rela
tions x=y+z, y=x-z, and successor. These relations have their set—-theoretical
definitions, so matters are technically complicated. Consider how to prove
(p“—x=y+1 iff y=y+1). This is done by induction on x, first proving pH—O €z by
induction on z. Then we proceed to + and °, just as in the set-theoretical de-
velopment of arithmetic. (This can all be done in §).

Next we do the induction step of the lemma, in which A is, for instance,
\d z € wB(x,2z). Suppose pH—A(x); then for some n, we have p,n“—(ze = Bilx iz .

mtzewbegmanLmMgz'pm&maimlfmm63,wehwepﬂzem]wmefm

pile 1y We have o (s 8l

Henee B(#8); by Ehe LpAuekion hypatheais, Hinee
L3

Wik ArhlEraFy; WE HAave Al¥): Hanvereely, BUpposs AlR): We will show uﬁl\ Als)j

it 18y all V»iul"ln,él; We ulalm ql]é Culluml‘ﬂa qH Wi, ) Indeed, Lf q“ HE W
i) w0y B R henoe by dnduetlon Pyl hes 1y WH B(K,8)
Biima G 1 y! (6 mubstltuted for x' in e Formala p“ Alx), the resull lut ;
gerlly squlvalent to wH Aly). In othel wor i Hh(x)(p,x'/w) {g equivalent Lo
: (v) (pay' /70
el By Induetlon on the ‘complexity ol A.
the soundness theorem for forcing. Let Ta be the

are now ready Lo state . e
i i i 2 Lt for an element of the compa
{llary Lheory described in §2, with a cgpstant a

te X.

i ries discussed
7 be any of the non-extensional set theori

Brem 6.1 Let
iy pe non-extensional) Tl'TZ'T3'

this paper, except B-ext. Thus T can be (
R, or g 4RDC. Then Tap A implies T‘,—an((b,nH—A) 8

logical
f; By induction on the length of the proof of A. We have to check the g
B i i i ens.
‘ema and rules, then the set-theoretical axioms. We begin with modus pon

B for some k. (Note that
ppose #,nl[-A and @ ,m||- (

A>B); then by Lemma G2 ¢,kH—
e leave the reader to check the other proposi—

t on page 3 of [Tr])‘ We turn to the

€ VxAx » at), for some term t.

8 6.2 was proved within B-) W

nal axioms and rules (using e.g. the lis

Ll ler axioms and rules. Consider the axiom

Milder first the case when t is a variable. Suppose(;“—VxAx; that is,

'an\vlpﬁ q R (p,x"/p) - substitute t' for x';
3 1 A . )
{ The case in which t 18

then for some n we have

a term other than a variable

‘lkA(h)' using Lemma 6.5. ey
] i W

handled the same way, provided we have at hand a corresponding term

V b . . t'—

property of Lemma 6.5. We shall give, in the course of verifying the se
s : ifi i oms

rotical axioms such a term t' for cach term t. The other quantifier axio
fRlce ’

fulos can be treated similarly.

‘ inni i i ich has
now turn to the non-logical axioms, beginning with the axiom a€X, whic

(0] lowing form when written out:
me wlx=<n,m>) &
0l e wnmea s md) & Vxeadn,

{0 (<n,m> €a & <n,r>€a=> m=r) & N¥n,m(p(a(n),am) < 1/ (n+1)+1/ (mt+1))
iy

| i ( e
¢ ecursiv (o} is some recursive sequence (see
e |@ some recursive function and M §2

nl we show Bl-Vne wImew(<n,m>ea & mM ).
1 Suppose g<p has qH‘“ ew ;

Let n and b be given; we claim

s 1 n,m a & m<M 5 hen n e€w by
; He w 3 ew(<n,m> € = ) r

: i = n
n O 3 we must show d, j H am ew(<n,m> €a & m<M ) for some & Take M +1+4n.

i by definition of C,
1 r“—-’.n,m>ei. Also by Lemma 6.4, ¥ l—miMn, since by

I8 true.

1l
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Next conslder the conjunct x€a + Jn,mew(==nm=), Huppusa p“%ﬁ Ea) Lhen .
where n<lh(p) & m=(p) . Thus pllen €w & me&w & (k= me) by Lemmas 6,1 and 6,4
Hence (ZﬁH-—(x €z > An,mew(x=<n,m=). The lasl two conjunctea van he verlFled 5
larly; this completes the verification of the axlom a €X,

We now turn to the set-theoretical axioms. Conslder an axlom of the Form
ExVy(yex <« A(y)). Pairing, union, separation, exponentiatlon, and power wel
are all of this form. TIf we can form x' = {<p,y'/p>: ]JH—/\(y) }, then this awim
will be forced by @, as is easily checked. (If we had not been so careful i v‘ug-»
definition, we would have to form {<p,z'>: pl|-a(y)} ; which cannot be done for b

exponentiation axiom.) We now check the axioms of this form one by one,

Separation: Here we have to form x' = {<p,y'/p>: pH—(B(y) & ye€a)l; that lu,
{<p,y'/p>€a' : pH—(B(y) & y€a)}. This can be formed using separation and abinlia
tion. To check Ao—separation, we have to prove that pH—B(y) is a Ao formula 1F

B is; this is a simple induction on the complexity of B.

The definition of x' just given also determines the term t' corresponding Lo (he
‘ term t associated with this separation axiom. It has to be checked that x' a#
just defined is a good set. Generally if x' is defined as {<p,y'/p>: p||—(fl
then x' is good, since if g<p and p is in x', then g also forces C, so <q,y'/q®
is in x', by definition of x'; but <gq,y'/q> is exactly <q,(y'/p)/q> , which [u
what we must prove is in x' in order to show x' is good. All the terms U whicl
we shall exhibit in verifying the set-theoretical axioms have this form, so wo

need not repeat the argument in each case.

Union: Here we have to feorm x' = {<p,v'/p> : PH—Bz(yez & z €a)}; that is,

we want x' to consist 'of all <p,y'/p> such that for some z', we have

<p,y'/p>€z' and <p,z'/p>€a'. Now <p,y'/p>ez’ is equivalent to <p,y'/p>ez'/|.
l

Hence we want x' to consist of all <p,y'/p> belonging to some u with <p,u> & a',

This set can be formed in B, using the union axiom to take a union over Rng(a).

Pairing: Take x' = U {ar/q,bl/al. " Thus <g,y'/g>&x' iff qll-(y=aVy=b).

qeC
Exponentiation: This is the most difficult axiom to verify. Here we have to
show how to form x'={<p,y'/p>: pH- (Fen(y) & Dom(y)=a & Rng(y)C b}. The problem
is to give in advance a set to which y'/p must belong, so that x' can be formod
by separation. Suppose ¢[|—(Fcn(y) & bom(y)=a & Rng(y)C b); then where must y'

lie? (Remember, we do not have power set available.)

~

Introduce an equivalence relation = on Rng(b') by defining z'=w' iff

¢’n|]_z=w for some n. Then let ‘:z'] be the equivalence class of 7' under this re-

lation; (z ‘] can be formed using Ao—separation. Let S, be the set of all [z 1

2

B! bn g k') (whieh eriEke by ahetyacklan) and let L he the et of all Fi

i BUbEslE Gl E; (sl hg esponent bakban, uul@h and abetraction) . Let ﬁ| he Lhe
af all tunet tane From Al ue B, IL F im R HI' lnl F(r) he
3 § H
|*ﬂ'¢!"':"’l i "hw'.'\l"&r" AVL" V“'(Lf']* | ('|;W',""|) N‘N“ﬁ [(ll'w'/'l) e L‘:'?"X')J.
V@Ell Furm thim mat by the /\” paparatlon ,us\--m,.ulnl'n fhe aqulvalence relation
ia defined by A /\‘ dormulag)
4B Lot ing o Chink that 11 Vﬁ“ |l’n:n(y) & Dom(y)=a & Rng(y)Chb, as we have
iRel; then y' must be (extenslonally) I'(f) for some gty Sl' Now, we can
that y' € I'(f), where
3
B W' /qr) =f Lz']: #'€ Rng(b') & E‘riq rl<w,z>€y}.
il met la finlte, because w,nH—]!sz(<w,z>Gy) for some n; and it can be

el e lng abetract {on and separation. We note that "finite" means to be the

e of gome function defined on some integer, in the intuitionistic context;

1 o be of bounded size.) However, possibly some <q,<w',z'>/g>€ F(f) may

Ave L[H~=~W,'/.L'£y, although z is unique such that q,nH—<w,z>€y. To solve

problem, let us say y(‘J Nn,wyi i

V '€ Rng (b’ )V qinV)(q||—<w,z>€yo+—>qH—<w,z>e y1) .

(w'¢ ]lng(m‘)E‘n(y‘ Nn,w F(£)).  Now, if yc')Nn.wyl' then

g {<q,<w',2z'>/q>: 9= 0 & <q,<w',z'>/q>€y;V ges}
Since the set of all finite subsets of C exists,

ume finite subset S of C.

- 1 l il u:
mn form (by Ao—separatlon) {yé: y(') e yl} for each n,w Y- Thus

1 e U U AR F(£) }) , that is,
e v e Uiv:y~ FE k

vl g U Lty S F(f)} (using abstraction and union).
w'e a' new

| wo form by the collection axiom the set

" () \oi iyt sy iy BiGE) b fesl}, then
5 w'ea' ne w

.&!gn(y) & Dom(y)=a & Rng(y)Cb) implies y‘eS3 similarly, we can construct

; . g P, i
l‘g puch that pH— (Fen(y) & Dom(y)=a & Rng (y)Cb) implies y'/p&S3. Using
Bilen again, set s = U sg, and set
pe C
k! = {<p,y'/p>E€ Cx5S: pH—(Fcn(y) & Dom(y)=a & Rng(y)Cb}
Eﬂempll.cs\tes the verification of the exponentiation axiom. There seems to be

60 0l eliminating the need for collection in forming S3; abstraction is de-

i for collecting sets formed by separation,

but here we have to collect sets
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formed by unfon., It le worth remariing that preplacsmsl world mufflee Ly place uk
collection.

Infinity. We have already given the congtant o Itu associated ferm W', and we HaY¥E
defined a function n }* n', in the proof of Lemma G,3,, with whode ald Fhe Foril
n € w was proved to be "self-forcing". Let P(z) bo Lhe properiy,

0 E€E z & Vx(x € 2 » x+t1 € 2z), where x+1 is the set-theorolle succedpor Funct o
Using n' and the definition of w', we easily see thal ¢\F P(w) « Moreover, BFlsl

is also forced, for if qu P(z) then one proves by inductlon that lor every inis

n, some extension of q forces n € z. We note thalt only restrictod [nductlion 1o e

quired.

Foundation. We first note some facts about well-founded relations. Wo say (14
well-founded if TI holds on (R,4) for sets (not formulae): thus the lfoundalion

axiom says that (W,E) is well-founded, for each transitive set W. Supposo (W, 0]

a well-founded relation, and (R<) is a relation such that for some [unclion I

we have a € b - Q(F(a),F(b)). Then (R,{) is well-founded. Next, let (W,0Q) be &

well-founded relation, and define R=Q, R by a R b iff Ix € W(a R_ x & ¥ W HiS
n 1l

n+1 n+l
Then each Rn (as well as their union) is a well-founded relation on W. A spocind

case of this is when Q is €; then, for example, if <x,y> € z y R3 2z

Now consider the relation R on any subset of C x A, defined by <r,v>R<qg,u> [

<r,v/r> € u/q. Define F(<r,v>) = v/r. Then <r,v>R<qg,u> » <r,F(<r,v>)> € F( 1 )

Hence <r,v>R<g,u> - F(<r,v>) R3 F(<g,u>) . Hence, by the general facts discugnodl

above, R is a well-founded relation.

We now prove that the foundation axiom is forced. Suppose pH— Trans (W) &

Vyly €W & y€ z »y € z). We must prove p[FVu(u € W~ u € z). Define for each nul

2', the set z' = {<p,y>: 3n Vg $ p<q,y/q> € z'}. Then p|- y €z can be writlon
(0] n |

IA

Yu Vg
Yu Vg
V<u,q>R<y6,p>(<u,q>R<Zé,p>). Thus p”— Vy(ly EW & yE€ z >y € z) is equivalent [0

pl<p,u/g> € y' » <q,u/g> € zé), which is eguivalent to

A

p(<q,u/q>55yé » <g,u/q> € zé), which is equivalent to

<y .p> € Wé & V<u,g> R <y FpE (KU, q>R<z ,P>) B S p>R<z ,p>. Since R is a well
founded relation, and since R is defined by a AO formula, we conclude

V<y', p> € Wé(<y',p>R<zé,p>). That is equivalent to p|F Vvl e Wy ez, owhich

was what we had to prove. This completes the verification of the foundation axion,

,ng, Bin
foundation, and since the

? need to use the complicated forcing interpretation given here;

:? 6 6 Let A be arithmetic in a, but not con

V ’ri,wi&e'f‘gﬁ‘y’.n!u.n” ALyl Ahplv!hj pulleetion, we gat some W oon

Hiing a y' aueh Ehat o nlgn|[atey)) -For each s K'=€n'/p, and muoh that each
73“ W arimen thinm way, Pukm' ={<qy'Pi y'aW & du' 6 mngy') (sq,x'»€ a &
}"RW,W)L 1Mm1vH(VNtulyauIHnﬂ)m ViﬁzjxanAUuW),uo

BEpes (e Aatrong vollectlon anlom,

il l)uLmndnnl Chol va,. Suppose |1H—\’/x@u€]yeu Q(x,y) & x €a. We will pro-

g'! such that pH‘(Fvn(y) & Dbom(z)=w & z(0)=x & W new Q(z(n),z(ntl))).

fhe hypothesls about p, we get
T,

i V»q.x" @ a' By'eRnu(y')a.rf_nq(r“-yea & Q(x,y)); that is

\ftq,x"ﬁfﬂ-afr,ylhau' rH—Q(x,y). Applying dependent choice, we get a
; . il 1 - — = " defi
Boe qn,xl“ €a', with q_=p and x! =x', and g, |lFox ,an) Now we define
{ <p,<n,x pl/pP D-iq“}. Here n' is as defined in Lemma 6.3, and <n,xn>'
n ok B

form bullt from n' and xé as discussed in the verification of the pairing

Wi, The rest of the argument is routine.

uily four axioms remain to be checked: (numerical) induction, power set,

1Vlﬁﬂd dependent choices, and transfinite induction. We omit these verifi-

ce the proofs for RDC and TI are exactly like the proofs for DE
proof for numerical induction is completely straight-

| . 5
mid, As regards power set: when considering theories with power set, there
instead, cne

@d yolurn to the simpler definition first given. With that definition, the

{eatlon of power set is also completely straightforward. This completes the

f of Theorem 6.1.
@

taining - (in its formulation as a

[@ & of second order arithmetic). Then p]}A(a) if and only if
{ X(I(lh(p))=p > A(f)). For each fixed A this is provable in B.

By induction on the complexity of A, like Lemma 6.4.

6.2 Let T be any of the set theories discussed in this paper except Bj;

lo either extensional or non- extensional. Suppose Ta\ {e} (0) € w . Then,

Meme m and k, Ta ({e}a(0)< k & a(m ) determines {e}2(0)).
o
i The phrase,in the last line of the theorem means that the Turing machine

1 ng {e} (0) halts using only the first m values of a, and yields a value

" 'his can be expressed in arithmetic using the T-predicate,
Note that, in this case,

without mention-

» constant a, which seems to appear in the formula.
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m will be a modulus of undform continulby Fai fé]ﬁtﬂi yegarded as A Funekion of 8§
Proof: Suppose ra |-{6140) € w. By the vemultn of Heetlon 4, if T I8 eslensiongl
we can replace T by the non=extenslonal verslon, and abill Ta wi bl prove

{e}2(0)e w. Hence, by Theorem 6.1, arguing In Ta, For some 1y we liave
¢,n“—€]iJnew(i={é}é%O) is determined by ﬂ(m)). Ainee Lhis atatemant doess el
involve a, as discussed above, it is provable in T, not just Ta. Now arvdgus i |
Let p5n¢. Then (using Lemma 6.3), for some i and m, we have [or gome )y

i -
,jH—(i={e}*{O) is determined by a(m)). If we choose J large enough, Lhe aaii

j will work for all p< #, so that by increasing n, we may assume that For po @
5]

we have some i and m, depending on p, such that p[— (i= {o}‘%(n L datermlne

by g}m)). Let mo be the largest of these values of m, over all p(ﬂw, and lel K

be the largest of the values of i. Then if pin¢, we have

p,jH—({é}E(o) is determined by é}m) & {é}éio)jrk), for some value of J depending
on p, since the formula in the last line is a consequence of the one forced hy p

Taking the maximum of these values of j, we have
@,n+3{- ({e}7(0) is determined by a(m ) & =32or< ¥ .

By Lemma 6.6, this last formula is true, since it is forced by every condillon
éf length n+j. (Note that it can be expressed without using implication.)
Remembering that we have been arguing in T, we have just proved that

T -3 kﬂmo({é}i(o) is determined by é(mo) & {e}(0)<k). Applying explicit dol (i
bility for T, we get T |-({e}2(0) is determined by a(m ) & {e}2©)< k) for

some numerals ﬁo and k. This completes the proof of the theorem.

Lk

bpaduEtion, we have dledieesd Fhe vatasagi“ésslvaﬁ pules related to oan
iﬁé Lapal sontinuity, whieh form flie Faoul of auy worli,  1n thie meclion,

(T Ssiahliah paul e For dntultlonintio wet theorfes analogous Lo those

o Peferman's Lheorles 1o [#1]: hose remylts are of two kindsr de=
flEs; and eonmletenay ol independanoe resul e, In the preceding sections,

dupie . all the naunnaa{v work to establish the general metamathematical

Fun Nhi“h>W!§! ahown in [hﬂ Lo be sufficlent for the derived rules of

'yég 0 hold, Por the consletency rapulls, we have something yet to prove

g DCEELEI\. a

%

QD glva our maln results, we shall fulfill the promise made in the intro-

i bo mEplaln further the Prinelple of Local Uniform Continuity. In formu-

'Sﬁﬁh A prineiple, we wish to state something like the Principle of Tocal

¥, exoepl that we want & Lo depend only on €. The most curious thing
Prinelple of Local Uniform Continuity is that we cannot express exactly

mean In the usual predicate calculus. What we really mean is
Vaexdbey
\’E » 035 *»0

} I depends only on a, and & only on € . Of course, one can say some-

\d & within & ©of a abo within € of a ...
o

ihe usual predicate calculus which is equivalent to this under some axiom
Wy but {hat is beside the point. We have not pursued this matter further,
Al have formulated a weaker version of Local Uniform Continuity, which
1Qli i all the interesting consequences mentioned in the introduction.
Iﬂflr {0 Local Uniform Continuity in the rest of this paper, what we

{hin version, called LUC(X,Y) in [Bl]. We now state our main theorem
wil rules.
net T be T2 (similar to Myhill's GSTH T3,T4, 7%, or ZF + RDC,

i-exltensional version of any of these theories. Then T is closed under

# of local continuity, continuous choice, local uniform continuity,

i tol's rule, and all the rules discussed in [Bl].

1{ the hypothesis of one of these rules is provable in B , the con-

is provable in T2, i.e. reguires at most some instances of induction and

an beyond B.

e necessary conditions laid out in [Bi] have been derived for these

y‘!lll {1 Theorem 5.4, Lemma 5.2, and Theorem 6.2.
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Romark: In came ' 18 a non=extenslonal Chesey; e Gan allow ain arbibrary Farmiie
in place of a definable mat (n the rule of loval eombbaut by, Toasal il Farm e
tinuity, and continuous cholce,

We now shall obtain some consistency roesul by complamenting Chese penlbn o
derived rules. These results concern Cthe principlos corresponclng boo he e boed
rules we have already studied; their statements arc obtalnod From Che polon

in the obvious way, namely: if a rule says, from A inlfer B, Chen Che coprampeaning
principle is A » B. Foremost among the principles we study are Che Prlnelpl i

Local Continuity, the Principle of Local Uniform Continuity, and the Princljd: i

Continuous Choice. Note that the Principle of Local Continuity lmplles the ol

pler Principle of Continuity, that every function from a complete soparable el

space to a separable metric space is continuous; and the Principle ol Local Uit

form Continuity implies that every function from a compact metric space Lo o

separable metric space is uniformly continuous. Thus our results includo (he con

& . g N Ll
jectures of &T 2] concerning functions from N to N and from zN to N. . The

Principle of Local Uniform Continuity also implies Heine-Borel's theorcm.

At the end of DMl], there is a "postscript" announcing certain theorems ol I/ [l
man, which include special cases of some of the consistency results in thiu o

tion; see also D33,§3j for related results. The theorem announced for Fricdiin
in the last line of [Ml], about the axiom of choice for the reals with the prolis
\jx-ay A(x,y) instead of \/xialy A(x,y), is false; the axiom is refutable, au (lln

cussed in [Bl].

We are going to prove our consistency theorems using realizability. Tho Loy
to these proofs lies in the construction in [Bl] of a so-called "weak BRFT" ||
which all operations on NN are continuous. To explain what this means: Let & o
a set, and suppose € is a class of partial functions from S to S, of several
variables, including a pairing function and a binary "universal function" Dle, %)
such that each unary function £ in C is Ax@(e,x) for some e. If (S,C) satislion
some other, less important conditions ‘spelled out in [ﬁl], then it is called a
"weak BRFT". The use of such structures is fhat the functions in C can be usad
in place of recursive functions for realizability. As mentioned, in [Bl] a spe
cific weak BRFT is constructed in which all operations from NN to N are contin-
uous . (Each weak BRFT contains a copy of the integers, calling some element O
and using p(x,0) for successor, where p is the pairing function. Thus it makes
sense to speak of operations from NN to N.) As a matter:of fact, two specific
weak BRET's are constructed with this property: in one of them, all operations
on 2N to N are uniformly continuous, and in the other, there is a continuous,

; 5 A N
BrRlines tniformly contintous  function on 27 to N. Call these weak BRFT's So and

l{¥¥ﬂi¥z C

A
BF F BOC iE conelelent with Ehukeh's thesle €7 plus "ALL Tunetlong
flEle Baparable Apace X Lo @ u;pﬂtuhlh ppacm ¥ oare oontlnuous,
St bt by vannot ba Linproved |\VIHH||HHI;WNH Il by without dropping
Fligsin,
Wi 4 HOC bW conmiEtent with the Principle of Local Continuity
= 3 N "
e s oA noncundformly contlnuous, continuous function from 27 to N.
WF' { HOC LB conslatent with®™he Principle of Local Uniform Con-
- IFE { Bupe e conmdstent with "All functions from a compact metric
88 BEparable metrlc space are uniformly continuous."
QHQ ldpa of all the proofs is to use realizability to prove the theorem
i Bhe = ext, and then use the ideas of Theorem 3.1 to prove it for

We [lyal show how to use realizability to prove the theorems for

e for mimplicity we write T for ZF + RDC.
1

Hpmaldng, realilzability interpretations can be either formal or infor-
i U8, 8 r A can be elther a formula of the formal system, or an informal
5| Pop Inelance, Kleene's original interpretation for arithmetic can
Blther way. The g-realizability given earlier in this paper for set
neoppEarlly formal, however, since it is not clear how to interpret
1ly, Of course we can also do (formal) "1945-realizability" for set
whioh lw analogous to Kleene's original "1945-realizability" (as it has

L callad) for arithmetic. Here are the clauses defining this interpre-

@ r x€y is <e,x> Ey

e r (A & B) is (e)o r A & (e)l r B

e r (AVB) is ((e)O=O > (e)1 r A) &
(e)O#O > (e)1 r B))

eir (A~ B) is Ma(ara-{el(a) r B)

erExA isaxerA

er‘v/x]—\ is VxerA

liuve the soundness theorem, T-ext FA implies T-ext, F e r A for some
l. Tha proof of the soundness theorem is so similar to the soundness

for q-realizability that we do not write it out here.

“lunl-Lacombe-schoenfield's theorem asserts that every effective operation
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from NV ko N L& continuous; and the same Chesrsm iR GFus far Pl el e ESEE%EEQQN

in place ol NN and separable spaces Lo place aof Ny (Freleel pac

metric spaces
Ihe |eadef

Schoenfield's theorem is proved, lor Inatance, In Rogers |ﬁ, B 4

will have no difficulty making the extenmlon mentioned.) Moreaver, 1F K and ¥ &8

complete separable and separable metric spaces, respectively, with ¥ Lo sbaniaed

form, then KLS(X,Y) (in obvious notation) is 1945=-reallwed, am 18 proved (i |h—]

it is easy to see that (1) Church's thesis 18 reallzed using 1945=ruallsabi

(2)

all functions from X to Y are continuous.

Now ,

lity, and with Church's thesis, KLS(X,Y) is equivalenl to the awssertlon hat

It follows that "all funotions Fiam &

to Y are continuous" is realized, and hence consistent with T'=ext, by the aound

ness theorem for 1945-realizability. Thus Theorem 7.2 is proved wlth T=exl in

place of T.

Now we turn to the proofs of Theorems 7.3 and 7.4. 1In the definition ol

realizability given above, there is nothing particularly sacred aboul Che oo

sive functions. If we have any weak BRFT which can be defined and provad Lo e

a weak BRFT in T-ext, we can use it for (formal) 1945-realizability. Thal [,

instead of using {e}(a)=y we use @(e,a)=y, where § is the universal funclion i

the weak BRFT. To be precise, instead of using 3 n(T(e,a,n) & U(n)=y) wao tHs

the formula defining @(e,a)=y in T-ext. A priori, it is possible that we mlghi

have a weak BRFT which could be proved to be a weak BRFT without having a ol
Also,

able universal function, but that possibility doesn't occur here. one

(Av B) is an integer of

should add to the definition of e r a proviso that (e)O

the BRFT (each weak BRFT contains a copy of the integers).

and S

One can verify by reading the construction of SO 1

sal functions are

all

to be weak BRFT's. To verify that SO has the property thal

sional set theory

. N : 5 : : F et
functions from 2 to N are uniformly continuous requires something like Konig's

lemma, which goes beyond intuitionistic systems, but that doesn't affect tho
usefulness of SO for formal realizability, which only requires that we be ablo |4

prove that it is a weak BRFT.

It follows from the above discussion, and from a soundness proof inessentially
different from the one give for g-realizability, that we can assign to each [0

and prove that

mula A another formula e r, A, for e realizes A in Si’

T-ext | A implies T-ext |- e €s, (e r, A):

in[Bl] that their unlves

definable, and that they can be proved in a very weak non-oxleh

& EEibeiee, Ehen "‘a(s kA I8 treus! pan be pegarded an an dnfaimal

'vii%¥ iiterpretation uf A, Thie luteiﬁ!a#ﬁiluu gan play the mame role

ﬁig[g P ALY duel For Paferman's Eheories 1N fnl] I one reads the argus
1.4 ulf [ul], mak g the sabst Ctut ban Just munllunwd one Flnds that

i1 L8 proved, with T=eul 1n place of % Himllarly, Lf one reads the

e 1,1 af Rl auhalllu!!nu "']U(u lI.A)" for | A/F‘u(u r A)", one

at Theorem /01 la proved, with T exl In place of 7. That is, the proofs

#t i Pantlnuity and related propertlies are or are not realized are not

E g the partlioular theory in datall, but enly on the ex15tence of a
aligakil ity Intarpretation in somg woak BRET with the propertles of S

- FEApEOLLvely,

vnﬁfgmﬁ'l.é, 7.3, and 7.4 are proved for T-ext. Now we discuss how to

Fhisg result to T inetead of M-ext. We have to consider the interpretation
‘? fo Pemxt glven In Theorem 3.1. Suppose for simplicity that we are

With a two=sorted version of 7', with variables for integers and variables
':(“ Weonll thal two sets are v if each member of one is ~ some member

akher, aﬂﬁ Wt b If a v some c&b. The interpretation for two-sorted T

iﬁﬂhi?! alone, It is then easy to check that two functions from N to N

af vrdered palrs)
N
N e any "axtanglonal" subset of N, i.e.

are n  if and only if they have the same values.

whenever a € X and b has the

WEM 4B A then b€ X, we have aeX iff a&X. 1In particular, any complete
W melric mpace in standard form (see §2) 1is such an extensional subset
Wil larly, &f X and Y are complete separable spaces and P is an extension-

BE Bf XX Y In the sense of §2, then xe P iff x€P. We shall now prove

sl lwlngr  let A be an instance of the Principle of Local Continuity.
(A A¥) .
hy=ane.,

Then

We consider the conjuncts of the hypothesis of Local Continu-

¢ ol the "standard form" of X, we may suppose that all references to X

Pilnolple of Local Continuity are implicit: that is, "a€X" actually is

i Conv(a)", where Conv is a formula expressing the convergence conditions

.!. tonv (a)«>n, méN(o(a 2 ) < (1/m)+(1/n)), where ¢ 1is a certain

; v# lunctlon. Hence, the hypothe51s "X is a complete separable metric

i longer needs to actually occur. Similarly for Y. Consider the hypo-
L]

. U |4 extensional™, which says d(a,a')=0 & d'(b,b')=0 & P(a,b) ~ P(a',b"),
il (' are the metrics of X and Y respectively. We have seen already

l I8 squivalent to P%; by a similar argument it follows that (d(4,a'l=0) 1s
BNk to (d(a,a')=0y¥*;

watatlon.

hence, "P is extensional” is equivalent to its 7
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Consldar the hypothesls, “\/n €X (b PFla, ) & ha¥) 1B elowed", We do nek have eHisbanee 9F Ehe van Neumani Ynieiers, and § ean easlly e dnberprated
to check this one, slnce the speclial casa YN lmplles Che gensral oass; provabiy v § partiedlar, the applteation we Wik W Wg in the conslatency proofe of
in a very weak theory plus a slmple axliom of cholow AVN whiah 1w reallesd;, as I8 dider e pemarh i
shown in [Bl]. However, the reader who wlshes can verily dlrectly thal fhis 1
hypothesis, too, is equivalent to its ¥ interpretatien. 7 (1) In Lemna G4 af [B1] page 260, the fypothests ghonld state that for i

fl WE liave "Ml"')‘ (1744 + (L/49) . wheXi (e lemma Ls applied on page 298,
Finally, consider W a€x3dbeY P(a,b). The interpretation of this Lk RRRiIE that b watisfles Vhis hypothesis, by replacing by by by,
W ae x3Jbe ¥ P*(a,b); which we have seen is just tho oviglnal Tormla agiln BEEm 1,4 af (A1), p, 303, Lla correct, bul gomething must be added to the
The conclusion of Local Continuity can be dealt with slmllarvly. Hence, ool Bk Line 26, for as |1 glandg, the proof applies only if X' is provably com-
instance A of the Principle of Local Continuity is provably equlvalent to A% Whileh we gould only assure {n general if X is locally compact. (This is re-

i dﬂfmul of Bishop's dullnilhnn:ﬂfcontinuity pointed out by Hayashi:

Nowite prove ithe, consigteneyiof Wb TCIRG Y. L TE Uk LN et oo 'égy‘nu pompact pets doos not gquarantee pointwise continuity unless the space
conjunction of instances of LC(X,Y), say B, implies O=1 in 1. Than, by "Moo cm ;;ly wumpﬁwl). Mo correct the proof, we appeal at line 26 to the rule of
E e pluplies Gk fn e 6.1 BuE B e prova L e A i . ';faym pontinulty with a parameter X' for a compact subspace of X. Note that
Hence LC(X,Y) is inconsistent with T-ext, which possibility we have already uled BEL Mubset X' of X can be coded as a function from N to N, since it is given

out by realizability.

The proofs of Theorems 7.2, 7.3, and 7.4 can be completed by checking

other statements involved are also equivalent to their ¥ interpretations.

basic reason why this works seems to be that none of these statements
8 i . N
objects of type higher than functions from N to N.

complete separable spaces reduces everything to low types. We check,

. N s
that "All functions from N to N are continuous"

N
tation. Now "F: N > N'" is Fen(F) & Wa,b(aeN® & <a,b>€ F + b&N).

Fcn (F) ¥ says that if <a,b> €F and <a,c> € F then bvc.

N
a vsome a' and b=F(a'). But then a€N and so b=F(a). Hence Fcn(F)#¥

lent to Fen(F). The argument shows also that <a,b> eF iff <a,b>€F.

with what we have already proved, this suffices to complete the proof

N : A i
"F: N » N" is equivalent to its interpretation. Next,

at y" is VyeNN(Viim(z(i):y(i)) > F(z)=F(y), which is equivalent to
interpretation in view of the fact that <a,b>¢F iff <a,b>€F,
Hence, "All functions from NN to N are continuous"
The rest of the statements in Theorems 7.

interpretation, as claimed.

7.4 can be treated similarly. This completes the proof.

Footnote 1: We have formulated our set theories T with a constant w

Neumann integers.
variables for numbers and one sort for sets (or equivalently,
ary predicates.) At first glance it may seem that T and T2
lent, but the problem is more subtle. T2
the converse is more difficult,
if T contains collection,

of the von Neumann integers. However,

The use of standard
is equivalent to its ¥

But <a,b>e F says

as proved above

Alternately one may use a two-sorted theory T2 with one sor

one can use two un
are trivially equiva
can be easily interpreted in T.

y 2 : :
since T does not necessarily prove the existencao

pllon asslgning to each rational € > O a finite e-approximation to X', and

{u Ln atandard form, cach member of X is a sequence of integers. Thus, in

that ! :
it lon of Beclion 2.8 of [B1], 9(e) <r e codes a compact subset of X is an

ha

Ny
B tholee of a set of parameters. In Section 2.8, the rule of local con-

mentlon )
org is derived; the rule of local uniform continuity with para-

With paramot
e mimlilarly treated.

form FeE

for Inulanseg
interprass
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