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Abstract

Let T be a real-analytic Jordan curve in R®. Let w be a minimal sur-
face (of the topological type of the disk) bounded by I'; having a boundary
branch point of order 2m. Suppose n < m. Then u does not furnish a C"
relative minimum of Dirichlet’s integral or area. In particular, the abso-
lute minimum of Dirichlet’s integral, and indeed any relative minimum in
the C* norm, among disk-type surfaces bounded by I', has no boundary
branch points.

More generally, T' can be a CV'* Jordan curve (with N > 3) in R®,
such that at each point, each component of I" has a nonzero j-th derivative
for some 7. Then we call I’ “nowhere planar.” In that case we obtain the
same conclusion provided n < N as well as n < m. Again it follows
that the absolute minimum of Dirichlet’s integral, and indeed any relative
minimum in the €' norm, among disk-type surfaces bounded by I, has
no boundary branch points.

These theorems are proved by explicit construction of a family @ of
harmonic surfaces and an explicit calculation of the Dirichlet integral
Eld) = Eu] — ¢t + O™ ™). The technique is called “splitting
the branch point” because it is based on replacing z™ with a product of
terms z — a;(t).

Introduction

The history of the problem is somewhat convoluted. Before discussing it, note
the following issues: interior branch points vs. boundary branch points; true
branch points vs. false branch points; real-analytic boundary vs. smooth bound-
ary; absolute minimum of area or Dirichlet’s integral vs. C° relative minimum



vs. CT relative minimum vs. C™ relative minimum; and explicit construction of
a family that decreases Dirichlet’s integral, or no explicit construction.

Choosing one from each category there arise many possible theorems con-
cerning the absence of branch points from certain minimal surfaces, some of
which have been proved in the past, some of which are proved here, and some
of which are still open. The main contributions already in the literature are the
following: Osserman [19] proved that the absolute minimum of area has no true
interior branch points. R. Gulliver [11] and H. W. Alt [1] independently proved
that the absolute minimum of area has no false interior branch points. Gulliver,
Osserman, and Royden [13] proved that a disk-type minimal surface spanning
an analytic Jordan curve has no false branch points in the interior or on the
boundary. Gulliver-Lesley [12] proved that the absolute minimum of area has
no true boundary branch points, if the boundary is real-analytic, by adapting
Osserman’s method to the boundary case. These proofs should actually ap-
ply to C? relative minima as well as the absolute minima. Beeson [7] gave an
explicit construction that decreases Dirichlet’s integral near an interior branch
point; the family can be made C* smooth (not C™ as claimed in the paper), so
C" relative minima have no interior branch points.

In this paper we give a (quite different) explicit construction that decreases
Dirichlet’s integral near a boundary branch point, and again the family can be
made C! smooth—-in general it can be made C™ smooth, where 2m is the order
of the branch point—but since m might be 1, the best general result is C'.

This applies first to any real-analytic boundary, but by quoting known rep-
resentation formulae for a minimal surface in the neighborhood of a boundary
branch point, we are able to extend the construction to the case of a C® bound-
ary, provided the boundary is “nowhere planar.” It is worth noting that we do
not need to appeal to previous results eliminating false branch points—they are
eliminated by the calculation, along with true branch points, using the hypoth-
esis that the boundary is nowhere planar.

‘We leave open two questions: can the boundary regularity theorem be proved
for C® boundaries without the hypothesis that the boundary curve is nowhere
planar? and, can either the boundary or interior regularity be proved for C™
relative minima as well as for C! relative minima? So far as we can prove at
present, there might be a disk-type minimal surface with an interior or boundary
branch point of order 2 whose energy cannot be decreased along a C? one-
parameter family of harmonic surfaces (that is, a one-parameter family in the
C? metric) with the same boundary, although (after this paper) we know how
to decrease it along a C! family.

Preliminaries and Definition of the Variation

We deal with harmonic mappings u from a subset of the plane to R®. The
components will be indicated by 'u, 2u, and 3u. Although the use of a super-



script in this position is not standard, it makes it possible to denote (partial)
differentiation by a subscript, for example 1uy, when otherwise we would have

to write the more cumbersome P
U1

dy -’
It is also convenient, when the components of a vector are given by long formulae,
to use a column-matrix format for a vector. We omit an explicit dot for the dot
product, writing for example uu, instead of u - u,, as no other interpretation is
possible. Otherwise our notation is standard.

All the minimal surfaces considered in this paper are of the topological type
of the unit disk. At the very beginning, we consider a disk-type minimal surface
parametrized in the disk of radius 1 centered at (0, 1), with a boundary branch
point at (0, —1). Our first step, however, is to make a conformal transformation
of the parameter domain to the upper half plane H ', taking the branch point
to the origin. We need to consider this transformation in order to be able to
speak of the “harmonic extension” of a function defined on the real line, and
bounded at infinity. This harmonic extension can be defined by pulling back
the boundary values to the disk, using the Poisson integral formula, and then
mapping back to the upper half plane. In particular if we consider a 3-vector
of such boundary values that traces out a Jordan curve I' monotonically except
for one point, then the harmonic extension is a harmonic surface spanning I'.

From now on, we consider a minimal surface u(z) parametrized in the upper
half plane, with a branch point at the origin, and bounded by a C™ Jordan
curve I' defined on the unit interval, which does not lie in a plane. For the time
being, we suppose that I' is real-analytic, and later consider the case when I is
only C™. We suppose that I'" passes through the origin tangent to the X-axis,
and that u takes the portion of the real axis near origin onto I', with »(0) = 0.
Then since I' is a Jordan curve, it is not contained in a line. We still are free
to orient the Y and 7 axes. We do this in such a way that the normal at the
branch point (which is well-defined) points in the negative Z-direction. With
I' oriented in this way, there will be two integers p and ¢ such that I' has a
parametrization in the form

-
q+1
r(r)= | S +0(17?)

c;r:l“ + O(1P2)

for some nonzero real constants C'; and C3. We therefore have

1
I'(r) = | C179+0(r9™h)
CotP + O(7P 1Y)

We write u(z) = (X (2),Y(2), Z(z)). We make use of the Enneper-Weierstrass



representation of u (see e.g. [8], p. 108)

s/ f—fgdz
u(z) =Re | & [ [+ fg*dz
J fgdz

where f is analytic and ¢ is meromorphic in the upper half-disk. By the bound-
ary regularity theorem of Lewy (see [9], p. 38), u can be extended analytically
into some neighborhood of the origin, and hence f can also be so extended, and
g can be extended meromorphically.

Definition 1 The order of the branch point is the order of the zero of f. The
index of the branch point is the order of the zero of g.

The order of a boundary branch point must be even (since the boundary is taken
on monotonically). It is customary to write it as 2m, and to use the letter k
for the index. Thus f(2) = 2™ + O(z™"1) and g(z) = cz* + O(z**1) for some
constant c.

Let 7(z) = X(z) = Reg [ f — fg?dz. Then on the boundary we have

u(z) = I(7(2))
This parametrization and function 7(z) were inspired by Lewy’s equation (see
[9], p- 38).

We suppose for the time being that I is real-analytic; it follows from Lewy’s
theorem op. cit. that u is also real-analytic up to the boundary. Hence f and g
are also analytic at the origin. We have f(z) = > ¢;2° and g(z) = >_ ¢;2*. Note
that the first nonzero e; is eps, where M is the order of the branch point. If u is
monotonic on the boundary, as is the case in Plateau’s problem, then M must
be even, and we have M = 2m; but it is not necessary to assume that yet, so
we continue to write M for the order. Because of the orientation of I', we have
ey real. The first nonzero ¢; is ¢g.

If not all the coeflicients of ¢ are pure imaginary, define 6 to be the least
integer such that cx1 s has a nonzero real part. If not all the coefficients of f are
real, we define v to be the least integer such that eps,, has a nonzero imaginary
part. It cannot be that the coeflicients of g are all imaginary and the coeflicients
of f are all real, for in that case the coefficients of fg? would be all real, and so
dY/dx = —%Im(f + fg?) would be identically zero on the real axis, so Y would
be constant on the real axis and I' would lie in a plane. Since es,, = 1 is real,
we have v > 0 if v is defined, but we may have 6§ = 0 if ¢ has a nonzero real
part. The imaginary part of ey, will occur in many of our equations, so it
will be useful to give it a short name:

Definition 2 F := Im epy, is the imaginary part of the coefficient of the
lowest power of z in f that has a nonzero imaginary part. G := Re cx1s is the
real part of the coefficient of the lowest power of z in g thal has a nonzero real
part.



‘We have
T(2) = X(2)
= Re%/f—ngdz

- ]\j—]\ilReZMH +O(zM1?)

Plugging this into the equation for I'’ above, we have for real z:

1
F’(T(Z)) = Cla,(]]wZ(MJrl)q + O(Z(M+1)q+1)
CQG,;]DWZ(MJA);D + O(Z(M+1)p+1)

Since z~™ f(z) is analytic and nonzero at origin, we can write
f(z) = A§(2)2*"

where Ag(z) is analytic and does not vanish at origin. By scaling the entire
minimal surface and curve I' we can assume Ag(0) = 1. Similarly we can find
an analytic function By, such that

fg*(z) = B3z,

We do not know anything about Bg(0) except that it is nonzero; in particular
it might have a nonzero imaginary part for all we know. If we expand Ag in a
power series > 7;2°, the first +; with a nonzero imaginary part will contribute
a power 22T to f = 22 AZ; therefore by the definition of v we have i = v.

We choose some distinct complex constants ajq, ..., Q. About the a; we
assume, for m > 1,

(i) at least one of the «; is nonzero.

(il) If «v; is not real and not zero, then its complex conjugate &; occurs as another
a;. In particular each nonzero real «; (if any) occurs an even number of times
in the list o, ..., oy

It is always possible to choose «; satisfying these conditions, when m > 1.
The case m = 1 has to be treated differently; this will be done in a subsequent
section.

These conditions given above are enough for our main computations about
the Dirichlet integral. But to ensure that the family @ takes the boundary
monotonically, we need a third assumption:

(iil) Re(oy) > 0, and for at least one i we have Re(a;) > 0.

Henceforth, we assume that the «; are chosen to satisfy (i), (ii), and (iii).

We also need numbers @; for i = 1, ..., m, which we shall eventually specify
to be 0, 1 or —1. About the @; we assume the following:

(iv) @, is nonzero if and only if «; is nonzero.



(V) If Q; = Q; then CALZ = dj.
We then define

a; (t) — Oéit -+ &Zt2
A(t,z) = Ao() [z — ai(r)

i=0

B(z) = Byz™"*

Thus fg? = B2, and B does not depend on f. Fix a number R much larger
than all the |o;|. We will choose R large enough that certain terms are positive.
Specifically, we require that R > 2|a;| for each i, and

R Z 23m+17 (1)

and two more conditions on R. One of them is given in equation (31) near the
end of the paper.

Let N be the number of nonzero complex-conjugate pairs among the ;.
We can index the «; in such a way that «;,...,asn are the nonzero «; and
&; = any, for i < N. The following equations define two polynomials h and p:

N

ne) = -t =™

i=1
p) = [ e e g
The last condition on R is that the following inequality is satisfied:
p(w) <0 forw> R (2)
We now prove that it is possible to choose R so that this condition is satisfied:
Lemma 1 For sufficiently large R, (2) is satisfied.

Proof. We begin by showing that the leading coefficient of h is negative. h is
of degree at most 4N — 1, since the term in é*V evidently cancels out to zero.
The coefficient of ¢2V~1 is —4 sz\;1 Re(q;), which is negative by assumption
(iii). Thus h has degree 4N — 1 and a negative leading coefficient. Then p(w) =
fow £2m=4Np(£) d¢ is a polynomial in w of degree 4N, with negative leading
coeflicient. Hence, for large positive w, h(w) is negative. That completes the
proof of the lemma.

We will always assume that t is small enough that Ay and By are analytic
in the disk of radius Rt. Let ¢; be a C™ real functions of a real variable x such



that

pi(x) = 0 for x < —t*R

H(x) > 0 for —?R<2<0
() = 1 for0<x< Rt

d(x) < 0 for Rt <ax < (1+t)Rt
d(x) = 0 forx > (1+t)Rt

It follows from the stated conditions that 0 < ¢(x) < 1 for all z. Define
da(x) = 1 — ¢1(x). Thus ¢ + ¢2 = 1 and hence ¢] + ¢4 = 0. We can obtain
¢1 by translating and scaling a similar functions which varies on [0, 1] instead
of [Rt, (1 + t)Rt], and joining it with another such function that increases from
0 to 1 on [0, 1] instead of [—Rt?,0]. We will need an estimate on ¢|. Since ¢;
must change by 1 in an interval of length t?R, the magnitude of ¢} must be
somewhere at least 1/(2R), but we can arrange that its magnitude is at most
a constant times that. For reasons that will become clear below we choose the
constant to be 3.

63
61()] < (3)

That will follow if the unscaled function which varies on [0, 1] instead of [Rf, (1+
1) Rt] has derivative bounded by e®, which is easy to arrange. We shall eventually
need to control the n-th derivatives of ¢ as well. If we start with a CV function
1 varying on [0, 1] and scale it to vary on [0,?] instead, by defining ¢(z) =
Y(t2x), then ¢ () = t279p(") (x). Tt follows that we can construct ¢, to satisfy

d" ¢
dx™

o). (4)

It is easy to see by induction that the exponent in an estimate of this form
cannot be improved.

However, we will need a sharper estimate on ¢{ in order to prove mono-
tonicity. We need this only on the interval [—Rt2,0]. Essentially, the following
lemma says that we can choose ¢; to have its steepest slope near the origin,
so that when z is near —Rf?, ¢/ is not so large. The previous estimates could
be satisfied by a (smoothed-out) linear ¢;, but the sharper estimate requires a
(smoothed-out) logarithmic ¢4.

Lemma 2 We can construct ¢, to satisfy the properties stated above, including
(8) and (4), and also

1@ < 5 ()

when —Rt? < z < 0.



Proof: As above, we could re-scale by a factor of £2, and then assume £ = 1.
However, it is not difficult to retain the factors of ¢, and we do retain them for
the benefit of any readers who may doubt that it is sufficient to assume ¢ = 1.

Define ) N
z
=—=Iln—5
for —RI? < x < —lﬁ—f. Then ¥ (x) increases monotonically from 0 to 1 over that
interval, and

1
/
< —.
@) < 3o
The maximum value of v is at the right-hand end of this interval, namely
xr = —Rt?/e?, and hence

e3

!
< —.
W= e

(6)
Extend 1 to be defined for all 2 by making v(x) = 0 for x < —RI? and ¥(x) = 1
for —Rt?/e® < 2 < Rt. Then for Rt <z < (1 + t)Rt, 1 (x) decreases from 1 to
0. On this interval a linear decrease will suffice, as we do not need the sharper
bound on %' that would result from a logarithmic decrease.

Then we could take ¢1 = v except for the fact that % is not smooth at the
“corners”, ¥ = —Rt? and x = —RI?/e®. We will define ¢, by “rounding off
the corners” of 1, so as to make ¢ a C™ function. Specifically we define ¢; as
a convolution integral with a “mollifier” T. Define T to be a positive smooth
function with support in [—#,#%], and integral 1, and define

o1(x) = / T(w — £)(e) de.

The limits of integration are unimportant because both 9 and T have bounded
support; we may take the limits of integration to be —1 and 1 for example.
We can differentiate this equation, differentiating under the integral sign on the
right and then integrating by parts to obtain

o) (x) = / T(w — )p(€) de.

Hence
lpi(x)] < sup  [¥'(€)]
lz—g|<t3
< supy|

That proves (3), since [¢'| < e3/3Rt? by (6).



For  between —Rt? — t3 and —Rt?/e® — 13, we have

p1(x)] < W'+ t)

N 1
|3z 4 13
N 1
3| =13
1
<
~ 2
For z within 3 of —Rt?/e3, we have
3
e
/
<
Ghir) < oo
N 1
ey
< 1
= 3(lz[+0())
1
<
— 2

for sufficiently small . Thus we have established the desired bound on ¢} for x
between —Rt? — 13 and —Rit%/e3 4 12, But outside these regions, for negative
x, ¢1 is constant; so the bound is established for negative x. Then ¢, decreases
in the interval [Rt, (1 + t)Rt]. Here we do not need a pointwise bound, and a
(mollified) linear decrease from 1 to 0 would suffice, but the shortest way to
finish the proof is simply to let ¢, on this interval of length R? be defined as
a reflection and translation of ¢, on the interval [—Rt2, 0]; since reflections and
translations preserve the magnitude of the derivative, the bounds we established
on [—Rt?,0] apply to ¢, so defined.

The function ¢; is as many times differentiable as T; in particular it is C™.
We do not claim that gbgn) is given by convolution of 1™ with T, because after
the first derivative there may be boundary terms if we integrate by parts, since
1)’ is not continuous. But we do not need to integrate by parts to establish that
¢ is in C™, and we do not need an explicit bound on any derivative above the
first; we only need the O(t~2") bound given in (4). This completes the proof of
the lemma.

We define X (t,z) :=

%Re {gbl /r A%(t,x) + B%(x) dr + ¢ /r A%(0,z) + B%(x) da
0 0

and finally we define (%, -) to be the harmonic extension of the boundary values
I'(X(t,-)) to the parameter domain of u. @ is a one-parameter family of harmonic



surfaces bounded by I'. The fact that for each fixed positive (sufficiently small)
t,  takes the boundary monotonically, will be established in Lemma 10 below.
Note that when ¢ = 0 we have ¢, identically zero and ¢o identically 1, and @
then coincides with .

Remark. Originally it seemed natural to make ¢; an even function, taking
the value 1 on the interval [—Rf, Rt], but then the family % does not take the
boundary monotonically on both sides of the origin. It is necessary to make the
variation essentially only on one side of the origin, by letting ¢; be 1 only on
[0, Rt]. We let ¢ return to zero as near the origin as possible for negative .
This works against monotonicity, but not enough to destroy monotonicity, as
there are other terms that outweigh the contribution from this interval of length
only #?R.

Geometric bounds on the index

Theorem 1 Geometric bounds on the index. Let u have a boundary branch
point of order M and index k on a real-analytic boundary segment I paramelrized
asT/ = (1,Chit?+ ..., CotP 4+ ...). Then k < (M +1)p.

Remark: Wienholtz has shown (private communication) that this bound is best-
possible, by constructing examples of branch points bounded by real analytic
arcs using the solution of Bjorling’s problem given in [8].

Proof: We have f(2) =Y ¢;2* and g(2) = >_ ¢;2°. Note that the first nonzero
e; is apr, where M is the order of the branch point. If u is monotonic on the
boundary, as is the case in Plateau’s problem, then M must be even, and we
have M = 2m; but it is not necessary to assume that in this section, so we
continue to write M for the order. We have defined 6 and v in the previous
section.

We have

m(z) = X(2)
= Re%/f—fg%lz

= ]\j]\j 1Re ML oM

Plugging this into the equation for IV above, we have for real z:

1
F’(T(Z)) = Cla,(]]wZ(MJrl)q + O(Z(M+1)q+1)
CQG,;]DWZ(MJA);D + O(Z(M+1)p+1)

We have u(z) = I'(7(z)) for real z. To emphasize that we are considering
real z we write z instead of z. Differentiating with respect to x we have du/dx =

10



I'(7(x))7'(x). Since 7(z) = X(z) we have
du/dr =T"(X (x))dX /dx

Writing out the third component of this vector equation, we have (on the
real axis)

dZ/dz = dZ/dx =Re fg
(Caah 2 MFVP  ydX/dz
(Caah 2 MFVP Y (ap 2™ 4+ O(MHY)

Cgazjg\jlz(M+1)p+M 4+

Working now on the left-hand side, the real part of fg begins either with the
term in 2™ 1*% or with the term #™ %17, depending on which is smaller, § or
v; or conceivably, these two terms could cancel and the first term would be an
even higher power of z. If one of § or v is not defined because the coeflicients
of f are all real or those of g are all imaginary, then the real part of fg begins
with whichever term does exist. Thus we have one of the following alternatives:
Either
(M+1lp=k+v

or
(M+1)p=k+6

orv==~6and k+v < (M+1)p. Note that if all the coefficients of f are real, so v
is not defined, only the second alternative is possible, while if all the coefficients
of g are imaginary, only the first alternative is possible. In all three cases, we
have the desired conclusion k < (M + 1)p.

Another geometric lemma

Recall that the number v is the least exponent such that the coefficient E of
2™+ in the Weierstrass function f of v has a nonzero imaginary part. Also
recall the definition of 6: ¢ s2*T? is the first term in g whose coefficient has a
nonzero real part. (It is possible a priori that § = 0.)

Lemma 3 Lel u be a minimal surface parametrized in the upper half plane, with
a boundary branch point at origin. Suppose that v spans a C? Jordan curve T
such that at the branch point, I' passes through the origin tangent to the X -azxis.
Suppose that near the origin I' has a parametrization as discussed above, so that
(1) = (0,C17%,CotP) for some p and q. Then with v as defined above, we
have v > 1.

11



Proof. We have by the Weierstrass representation, for real z,

_ Ex2m+z/ 4 Ex2m+2k+z/ 4 O(x2m+k+§) 4o
Ex2m+z/ 4 O(x2m+2k+§) N

where . .. stands for terms involving higher powers of x than those shown. Sup-
pose that v = 1. Then we have

2u:c _ Ex2m+1 + O(x2m+2k+§) ..
Ex2m+1 +O(x2m+2) (7)

On the other hand, from the parametrization of I' and the fact that u spans T,
we have

Therefore
e = [Cas? + O(s771)] s,

Arc length s is given by

1 2m+1 2 2
- - m O m+
ST T ARG G

and substituting this expression into the previous equation, we have, with Cg =

Ca/(4(2(2m +1))7),

2U:c _ [Qng(2m+1)q+O(x(2m+1)q+1)]8r
_ 06x(2m+1)qx2m + O(x(2m+1)q+2m+1)
= gzt =1 4 o(g2m+ha+l))

Comparing this with (7), we find 2m + 1 = (2m + 1)(¢ + 1) — 1. Subtracting
(2m) from both sides we find 1 = (2m + 1)g, which is impossible since ¢ > 1
and m > 1. Since v > 1 by definition, that completes the proof of the lemma.

A potential-theoretic lemma

We will need to bound the normal derivatives 271y and 3ﬁy, or at least their

differences from 2uy and ?’uy, in terms of the boundary values of @. Let h be a
harmonic function in the unit disk. Tt is well-known (and easily proved, see e.g.
[9], p. 16) that Vh is bounded by 7/v/3 times a bound for d?h(e*?)/d0?. We

apply that theorem to prove the following lemma.

12



Lemma 4 Suppose that for some function K(t) we have
"llge — “Upe| < K(t)  on —(1 + )Rt <2 < (1+1)Rt.

Then ", — ‘u,| < CzK(t) for all x, for some constant C7 depending only on
R, and all sufficiently small t.

Proof. Let { be a conformal mapping from the unit disk to the upper half plane.
Define h(z) = *a({(2))—"u({(2)). Since @(x) = u(x) for real z outside [—t R, tR],
we have d2h(e'?) /d6? = 0 outside (~}([—tR,tR]). We define

We need to check that a bound on the second derivative H,, translates to a
bound on the second derivative d2h(e’)/df?. For this computation we need an
explicit expression for {(z). We can take

zZ+1
z—1

((z) =i

Observe that ((—i) = 0, {(i) = oo, and (1) = —i(1 —4)/(1 + i) = —1; since ¢
is a linear fractional transformation, it takes circles onto circles or lines, so it
takes the unit circle onto the x-axis. Since it takes 0 to 4, it takes the unit disk
onto the upper half-plane. We have

d¢(et) 2ie®?
do o (e — )2
d—2§(ew) B —2¢? B 2120
do? o (ew _ i)2 (ew _ i)4
d? ; d? ;
Wh(e 9 = 02 (<))

2 2
= e (B ) (e e

_2ei0 2i62i0

= Hanlo(e) (e ) + D) | e —

Now, for —Rt < x < Rf, assuming ¢ < 1/R and 2 = ((e"?), we have ¢¥ in the
lower half-plane, and hence |¢?? —i| > 1. Hence

d2 h(ew)

T < dsup|H"|+ 4|H'|.

13



Since H is nonzero only on [—(1+¢)Rt, (1 +t)Rt], Hy is bounded by 4Rt times
any bound for Hgg. We have assumed |Hgp(z)| < K(t). Putting in the bounds
for the derivatives of H, we have

d2 h(ew)

g | SAK(1) + 16RK (1)

For sufficiently small ¢, the second term is dominated by the first and we have

d2h(ei0)

— | < 8K.

Now we are in a position to apply the theorem cited at the beginning of the
section. It yields the desired conclusion of the lemma, with C7 = 87+/3. That
completes the proof of the lemma.

The real and imaginary parts of A?
We define w = z/t. Most of our calculations will take place in the w-plane.

Recall that A(t,z) = Ag(2) [[[2y(z — a;(t)) and that a;(t) = toy + t%ia;. We
define

@w): Ap(tw)
Alw) = A(tw)
Aw) = JJw—a)

Observe that
A = "A+O()
/r Alde = Pmfl /w A?dw + O(t*™2)
’ Ag(w) = 1+Re OO(t) + i BtYw” + ITm Ot Tt 1)

Lemma 5 We have, for real w,

Re A2 _ t2mA2+O(t2m+1w2m72N)

al d;(w — Re o)
I A2 _ _4t2m+1A2 ? — ? o) t2m+2 2m—2N
§ > e O

where there are N pairs of non-real, complex-conjugate ;.

14



Proof. Without loss of generality we may suppose that the nonzero «; with
positive imaginary part are «g,...,an, and that &; = ayy; for i = 1,...  N.
That is, the complex conjugates of aq,...,an are any1,...,2n. The first
imaginary term in A% is the 2¥ term, and the imaginary part of its coefficient
has already been given the name E. Thus for real w we have

A2 = 14+ ReO(t) +iBt'w” + Ot ™)
A = A= w®)?
=1

[(1+Re O(t)) + iBt"w” + Ot ¥ 1) | 2™ 2N
N

H [(w — i — iast)(w — @; — dinit)]

Since a; = apn; we have

A? = [(1+Re O(t) +iEt'w” + O )] ?p?™ 2N
N
1w = as — iaat) (w — @; — iast))?
=1

The terms in the indexed product can be simplified as follows (for real w):

[(w — a; —iast)(w — a; — iagt))
2

[|’LU — Oéi|2 — dzt(w —o; +w— di) — &zt2]
= [|w - Oéi|2 - 2&Zt(w —Re Oéi) - &it2]2

= Jw— oy|* — 4ia;|w — o |*(w — Re o) + O(?)

Putting this expression into the indexed product again we obtain

A? = [(1+Re O(t)) + iBt"w” + O(t" tw” )| t#map?m 2N
N
I [l — ail* — 4das|w — il (w — Re o) + O(#)) (8)
=1

Taking the real part, we find

Re A> = (1+Re O®))*™w*™ 2N ] [lw — aul* + O(t?)]
_ t2mw2m72N H |’LU _ Oéi|4 + O(t2m+1w2m72]\7)

t2mA2 4 O(t2m+1w2m72]\7)

for real w. This is the first formula claimed in the lemma.

15



Now take the imaginary part of (8). We have

Im A*> = (14 Re O@))t*"w?™ 2N [Et"w” [ lw — aul*
dzt(w — Re Oéi)
—4 — b S il 2
- o'y =)
Since v > 1 by Lemma 3, we can drop the term in . We then have
N
2 2, 2m— 2N a;t(w — Re o)
Im A* = —4(1+Re O())t H w— ;) ;W
al a;(w—Re o;)
4t2m+1 2m—2N — oy 4 2 2
e =ed s Smar

+ O(t2m+2w2m* 2N)

N
_g2ml A2 Z a;t(w — Re a;) 4 O 222N
=1

That completes the proof of the lemma.

The case m =1

The case m = 1 requires a different treatment, since there are only m of the «;,
so in case m = 1 there is only one of them, so we cannot have two «; which
are complex conjugates. Instead we will split A% as a whole, instead of splitting
only A. Recall that the Weierstrass function f(z) of the original surface, given
by f(2) = (d/dz)(*u — 2u), is AZ2%™. We choose a complex number «, and a
real number @, which will be 1 or —1; we will specify the sign of & later. For z
real and w = z/t we have

Ay = A2(z—at —iat?)(z —at —iat?)
Ay = (w—o)(w—a)
_ |’LU2+Oé|2

w? — 2Re(a) + |af?

Of course, if we were to use this formula in the Weierstrass representation of a
minimal surface, we would be introducing g(z) = V/As, which is not analytic,
since Ao has a zero at it so there is a branch cut of the square root function
in the parameter domain. But, we will not introduce A5 into the Weierstrass
representation. We use A, only to define X, and we define, as before, @ to be
the harmonic extension of I' o X. Specifically we take

X = %/Or As(z) + B*(x)dx

16



where as before B? does not depend on t but is just the — fg? of the given surface
u. This defines a one-parameter family of harmonic surfaces jointly analytic in
t and z.

Lemma 6 Suppose m =1 and As is as defined above. We have, for real w,

Re Ay = t?A, 1+ O(th)
Im Ay, = —2t3A2M +O(th
lw — al?

Remark. This is the same formula as in the previous lemma, with As in place
of A2 and m=N = 1.

Proof.
Ay = Aiz—at —iat?)(z— at—iat?)
= (1+02)(wt — at —iat®)(wt — at —iat?)
ReAs = 12(1+ O(tw))(w? + |af* — a*t?))

t2(w? — 2Re(a) + |af?) + O(t*)

proving the first part of the lemma.
The first term with nonzero imaginary part in A3 (for real 2) is Ez.

ImAs; = TmAgt?(Re Az + O(t)) + Re Aot*Tm((w — o — i at) (w — & — iat))
= (B2 + O(2"7)Re(Az)
+ 2(1 4+ 0(2))Im((w — o — i at)(w — & — iat))
= t*(1+0(2)) [0(z*) + Im((w — o — i at) (w — & — iat))]
= *(1+O(tw)) [O(t*w®) — 2t(w — Re(a)a — t%67]
= (1 +O0(tw)) [O(t*w®) — 2(w — Re(a)a — ta?|
= =23 [(w — Re(a)a + O(t)] + O(t*w?)

~— T

0
0

—2t%(w — Re(a)a) + O(t*)
- —2t2A27d(l|Uw__R;|(2a D\ o

in view of Ay = |w — a|?. That completes the proof of the lemma.

Remark: Nothing prevents us from using this method when m > 1. In particular
when m is odd, if we wanted to avoid having «; = 0, we could split the last zero
of f as we have done here for m = 1.

Calculation of the Dirichlet Integral

The Dirichlet integral is given by

Elu] = %//|Vu|2dxdy

17



o0
= / U Uy, dr
0

The last formula can obtained by conformal transformation back to a disk, then
integrating by parts in the disk and then transforming back to the half plane,
which is easier than integrating over a semicircle of large radius and worrying
about the integral on the circular part.

We divide this integral into pieces as follows: |x| < Rf is the first piece;
Rt < |z| < (1+1)Rt are the second two pieces; and (1 +¢)Rt < |z are the third
and fourth pieces. The first piece includes the branch point when £ = 0.

Before calculating E[@], we begin by calculating Efu]. On —(1+ )Rt < x <
(1+t)Rt, we have

[ iRe [ f+ fg?dx
u = %Imff—ngdx
Re [ fgdx

1 2m-+1
72(2771“):)0 + ...
B

2(2m+v+1)
G x2m+k+§+1 N

2m+k+6+1

u, = —Imu,

s(F+ 199
= —Im| i(f—fg?)
fg

B p2mtv GIH;(Ck)x2m+2k+§ T

Im(cp)a®mF 4.

We note for future reference the first component of this last equation:

1uy _ _§x2m+u _ Glm(ck)x2m+2k+§ I (9)
2 2
Continuing with the calculation of E[u], we have
uuy _ 03x4m+z/+1 + C4x4m+2k+§+1 + 08x4m+2k+§+1 ..
03x4m+z/+1 4 C5x4m+2k+§+1 NI

where the C; are constants whose exact value does not matter. Incidentally,
C5 #£ 0, since
E E
Cs = — 10
ST A@m v 1) 4@2m+1) (10)

but we do not need this fact (and in the non-analytic boundary case, we will not
necessarily have such fine control over this term). When we substitute x = fw,

18



we get
03t4m+1/+1w4m+1/+1 +Cst4m+2k+§+1w4m+2k+§+1 (11)

+ O(t4m+u+2) 4 O(t4m+2k+§+2)

Uy =

valid in the region |w| < R.
Now we turn from v to &. We have

dit, = ‘ata, + *un, + S6ta,
and the plan is to compute each of the three terms separately (on the real axis),
then add them up and integrate. We have, for m > 1,

La Re/ A%+ B%dz
0
= Re/ A2dz+Re/ B%dz
0 0

For m = 1, we must write As in place of A%2. Otherwise the same arguments
will apply. We could introduce a new letter, for example As, to stand for 42 if
m > 1 and Ag if m = 1, but it seems less confusing to simply ask the reader to
remember that when m = 1, A? means As. Note that A never occurs by itself
below, but only in the context AZ2.

We transform to the w-plane, changing 42 to A2. The factor Ay becomes
1+ O(t) and disappears. The B? term starts with a higher power of # and is
absorbed into the O(f) term. On the real axis, A? is real, so we can drop Re.

la = t2m+1(1+0(t))/wA2dw (12)
0

Differentiating, we have

1~ o ~
t, = —Im u,

d z
—Im—/ A%+ B%dz
dZ 0

— —Im (A% + B?)
= —Im A? + O(z*™3k)

2m-+1 A 2 al ai(w — Re a;) 2m+2, 2m—2N
= g2y Gl Re ) g amzy o)

by Lemma 5 if m > 1. In case m = 1, we take N = 1, so the sum contains only
one term, and appeal to Lemma 6 to justify the last step. The error term in
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Lemma 6 is also correct, namely O(1*), which is what results in the last equation
with N =1 and m = 1. Multiplying this by (12) we find (for real w)

1711& t4m+2A2/ A2dw (Z az(ﬁ:ie;‘z)) JrO(tzmq,+?,u]27w21\7) (13)

Now we turn to the calculation of 2%, which is the harmonic extension of
I'2(X). On the real axis we have

C X0+ .
2 — DX o)
qg+1

Substituting X = 1 [ A% 4 B2z = 512! [ A%dw + O(t*™"2) we have

~ O, +(2m+1)(g+1) q+1 -
20 = W(/A%lw) + Ot DlaF)+) (14)

O(t2m+ha+h) (15)

since g > 1.
Similarly we can calculate i

3~ ClXerl
m -
p+1
C t(2m+1 (p+1)

_ 2 (2m+1)(pr1)+1
- i (/Adw) + o PHDEL)(16)

_ O(t(2m+1)(p+1 (17)

Lemma 7 On |z| < Rt we have

|27ly _ 2Uy| _ O(t(2m+1)(q71)+4m)
|37-Ly _ 3uy| _ O(t(2m+1)(p71)+4m)
Proof. We have
Chsdt!
2'11 — 728 =+ O(Sq+2)
g+1
2y = Cy8%s, + O(s7)s,
Ylee = CoqsT 182 4 Cus%5,0 + O(59)82 + O(s7 )5,
1 x
s - —/ 42| 4 | B do
2 Jo
1
Sy = (|A2| + |B2|) 2t2mA2 + O(t2m+1)

20



1 2
o _ _A2 O 2m-+2k—1
N 2 x—a;(t) +0( )
=1
’”’ 1
_ 2 2m+-2k—1
= A;x—ai(t)JrO( )

Changing z to fw, and adding the pairs of terms in the sum corresponding
to complex-conjugate pairs o; and a4, and noting that the terms for which
a; = 0 all have a factor of w in the denominator, so they can be grouped
together, we have

1
s = —tQmH/A2 dw + O(t*™2)
N w— Re o4
xxT - t2m 1A2 7771 2 i O t2m
: eyt ogen
e = Cogsi™ Sr+028q8rr+O(Sq)8r+0(8q+1)8rr
w q—1 jam A4
= Cyqt¥mila—1) l/ Adw A
2 /o 4

1 /2 / m—N w— Re o
2m+l)q | = 2 2m—1 A 2 i
+ Cat (2/0 Adw> A {—w +227|w_0%|2}
+ O( (2m+1)q)o(t4m) +O( (2m+1)(q+1))0(t2m71)

271:0:0 _ ng t(2m+1 (g—1) / A2dw)q 1t4mA4
29+1

+&t(2m+1)q / A2dw qt2m71A2 m—N 2Zw Re oy
24 0 W —ai?

+ O(t(2m+1)q+4m)

Cy (2m+1)(g—1)+4m (/w 2 >q1
= —=t A“dw
qA2 v 2 w — Re o
— A“d + 2
[ | 2y e

+ O(t(2m+1)q+4m)

A2

|

and therefore, for some constant C'j5 depending only on R, we have
Plige| < Cht@mDa—D+4m s

We can make a similar calculation for u instead of 4:

Cos?Tt
20 = L+O(Sq+2)
g+1
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Uy = o895, + O(s9)s,
Ny = ngsq’18§ + Cy8%5,, + O(sq)si + O(s7 ) 5,4,

1 x
s = —/ f = foPda
2 Jo
1

o t2m+1w2m+1 4 O(t2m+2w2m+2)

2(2m + 1)
1 1
Sy = §x2m 4 O(x2m+1) _ §t2mw2m 4 O(t2m+1)
Spx = mx2m71 4 O(x2m72)
_ mt2m71w2m71 4 O(t2m72)
2u _ 02 t(2m+1)(q71)w(2m+1)(q71)t4mw4m
o 21 (2m 4 1)a—1
n mCa H2mA1)q,, (2m+1)gy2m—1, 2m—1
24(2m + 1)4
+ O(t(2m+1)q+4m) + O(t(2m+1)(q+1)+2m71)
dm+1

_ (2m+1)(g—1)+4m,,,(2m+1)(g—1)+4m 2m+1)g+4m
20 (2m 1) Cat ! w ! +o(t R

and therefore, for some constant C1g depending only on R, we have
|2urr| < 016t(2m+1)(q71)+4m (19)

Remark: Both second derivatives (of uy and ) have the same asymptotic power
of t, but a different function of w as coeflicient of that power. A calculation
can be made directly from the Weierstrass representation of u, but this involves
the unknown powers v and 6. These powers can be connected to the geometric
numbers p and ¢ by a Lewy-style analysis, as above, but this directly geometric
analysis is better for our purpose (namely, getting rid of the terms in Dirichlet’s
integral arising from wug and ug3).

By (18),(19) and the triangle inequality, we have
|27v~b:c:c _ 2ur:c| < (015 + 016)t(2m+1)(q71)+4m'
Applying Lemma 4, we have for some constant C7 depending only on R,

|27ly _ 2Uy| < C«17t(2m+1)(qf1)+4m7

which proves the first claim of the lemma. The bound on |34, — 3u,| is proved
by the same calculation, changing >u to *u and ¢ to p. That completes the proof
of the lemma.

Lemma 8 For |w| < (1+t)R we have

|2ﬁ2 2u2uy| 4 |3ﬁ3ﬁy _ 3u3uy|

O(t(2m+1)(q+1)+2m) + O(t(2m+1)(p+1)+2m+k71)

uy—
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Proof. Consider

22 2,2

Wy — U Uy,
Adding and subtracting 2@?u, we find
2-2- 2 2 (2= 2 \2o | 2o 2 \2
Wly — “uuy, = (Tl —"uy) "0+ (C4 — “u) u,

Using the triangle inequality, we have

|27-‘27ij - 2u2uy| < |2ﬁy - 2uy||27-b| =+ |27-L - 2u||2uy|

By Lemma 7 we have
|2ﬁ2ﬁy _ 2u2uy| < O(t(2m+1)(q71)+4m)|2ﬁ| + |27l _ 2u||2uy|
By (15) we have |?a| = O(t2"+ 1@ +1) Hence
|2

2 2

i O(t(2m+1)(q71)+4m)0(t(2m+1)(q+1)) + |27jL _ 2u||2uy|

O(t2q(2m+1)+4m) + |27l _ 2u||2uy| (20)

iy, — 2uPuy|

<
<

Next we estimate |*& — 2u|. Let & be arc length along the real axis for %, and s
be arc length for . Then
2. 2 C

a=Fu = (3 =TT O 4 O(s7)

w —+1 m
O emine 2y w
t ( A“dw
qg+1 0 2m +1

+ O(t(2m+1)(q+2))

— O(t(2m+1)(q+1))
Putting this result into (20) we have
|27-L27-5y _ 2u2uy| < O(t2q(2m+1)+4m) + O(t(2m+1)(q+1))|2uy| (21)

The term 2uy can be explicitly computed from the Weierstrass representation.
We have

2 2
u, = —Im “u,

— —Im (%(f " f92)>

1
= —gRe(/ +1¢°)
= —%Re(AQ B?)
_ _%t2mA2+O(t2m+1)
= O(t*™)
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Putting this result into (21) we have

|2~2~ 2

@i, — u2uy| O(t2q(2m+1)+4m) +O(t(2m+1)(q+1))o(t2m)

<
< O(t2q(2m+1)+4m)+O(t(2m+1)(q+1)+2m)

The first term has a larger exponent than the second, so we can drop it, arriving
at

|271271y—2u2uy| _ O(t(2m+1)(q+1)+2m) (22)

We must now make a similar calculation for the third components % and 2u.
The first part of the calculation is exactly the same, except for changing the
coordinate index from 2 to 3 and changing ¢ to p. In this way we arrive at

|3ﬂ3ﬁy _ 3u3uy| < O(t2p(2m+1)+4m) + O(t2m+1)(p+1))|3uy| (23)
The term 3uy can be explicitly computed from the Weierstrass representation.

‘We have

3 3

u, = —Im “u,
= —Im(fg)
= —Im(cp,)2*™ Ttk 4 O(22m TR

_ O(t2m+k)

Putting this result into (23) we have

|3ﬁ3ﬁy _ 3u3uy| O(t2p(2m+1)+4m) + O(t2m+1)(p+1))o(t2m+k)

<
< O(t2p(2m+1)+4m)+O(t(2m+1)(p+1)+2m+k)

The exponent of the second term can be compared to the exponent of the first
term using the bound & < (2m + 1)p derived in Theorem 1. We have

@Em+Dp+1)+2m+k < @m+1)p+1)+2m+2m+1)p
< @m+1D)2p+1)+2m

< 2p(2m+1) +4m+1

which is one more than the exponent of the first term. Therefore, if we decrease
the exponent of the second term by one, we can drop the first term, arriving at

|3ﬁ3ﬁy _ 3u3uy| < O(t(2m+1)(p+1)+2m+k71) (24)
Combining equations (22) and (24), we have

2:2~ _ 22 3:3~ _ 33
Wly — “u Uy + 0 0y — “u’u, (25)

O(t(2m+ 1) (q+1)+2m) + O(t(2m+1) (p+1)+2m+k— 1) (26)

on |w| < (14 t)R. That completes the proof of the lemma.
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Lemma 9 fit%t Gty dr — fit%t uuy, dr = at¥™ 3 4+ O(tY™ ) where the sign of
¢ can be made positive or negalive by choosing the signs of the a;.

Proof.
- P P B
Ully — Uy = U uy Uy, (27)
+242 Ty, —2u2uy+ u? Uy —3u3uy
P P Bt
= Uy — U, (28)

+O(t(2m+1)(q+1)+2m) + O(t(2m+1)(p+1)+2m+k71) (29)

by Lemma 8. We now work on the terms from '@ and 'u. By (13), we have

v al d;(w — Re o)
R S [Z¥
0

=1

O(t4m+3w2m* 2N)

and by (11) we have
03t4m+1/+1w4m+1/+1 +C5t4m+2k+§+1w4m+2k+5+1

+ O(t4m+u+2) 4 O(t4m+2k+§+2)

uly, =

Subtracting the last two equations we have

114 1,1 ami2A42 [ A2 al a;(w—Re o)
Uiy — Uy = —tm+A/ A“dw 27
0

=1

+O(t4m+3w2m72N)
_ 03t4m+1/+1w4m+1/+1 _ C5t4m+2k+§+1w4m+2k+5+1

+ O(t4m+u+2) + O(t4m+2k+§+2)

+ O(t4m+3w2m72]\7) + O(t4m+u+1) 4 O(t4m+2k+§+1)

By Lemma 3, we have v > 1; and we also have 2k + 6 + 1 > 3. We arrive at

R
Lala, — lulu, = —t4m+2A2/0 AdeZ 4 ﬁi - Oée|20”) + O(ttm+3)
2

Substituting this into equation (29) we have

0 i=1
+O(t4m+3) + O(t(2m+1)(q+1)+2m) +O(t(2m+1)(p+1)+2m+k71)
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We want to absorb both the last two error terms into the O(t*"*3) term. To
do that we must show that (2m + 1)(¢+ 1) + 2m > 4m + 3 and that (2m +
Dp+1)+2m+k—12>4m+ 3. From g > 1 we have

6m + 2
4m + 4

@2m+1)(g+1)+2m >
>

and from p > 1 we have

Em+Dp+1)+2m+k—1 22m+1)+2m+k—1
bm+k+1
Im+k+3

4m+ 3

vV IV IV IV

Hence the two last error terms in question can indeed be absorbed into the
O(t*™+3) term. We thus have

Uity —uuy, = —tMT2ZA? / AdeZ @i(w = Re O‘Z) + Ot 3) (30)

Integrating along the z-axis from — Rt to Rt we find

Rt
/ Ully, — Uiy dT
—Rt

Rt w N Rt
a;(w — Re o m
_t4m+2/R 52/0 52(<)d<§ : (|w_a_|2 ))dx+/R O(t4 +3)dx
—Rt 7 —Rt

=1

Changing dx to t dw, we pick up an extra factor of t:

R
- _t4m+3/ A2/ A2(¢ dg§ G @_R‘f Gilw = Re o) ,, +/R0(t4m+4)dw
4m+3 2 2 az w— Re 0%) Am+4
= —t A A d(E —————dw+ Ot )

Re o
— _t4m+3 Ai A2/ A2 w ’L
Z V “ P

The summands are not zero, provided R was chosen large enough, since the
integrand is asymptotic to w*” for large |w|. Specifically, we have to choose R
so large that for at least one ¢ we have

/ A2/ A2(Q)d¢ Y= Rer;dw>o (31)

4 O(t4m+4)
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Now we define a; to be 1 or —1, with the sign chosen so that the contribution
of the i-th term in the sum is negative. That completes the proof of the lemma.
Remarks: (1) if we choose R so large that the terms mentioned above are all
positive, we can take all the @; to have the same sign. (2) We could just as
well make Dirichlet’s integral increase as decrease, by choosing @; to have the
opposite sign.

Lemma 10 @ takes the boundary monotonically.

Proof. Recall that 4 is the harmonic extension of I'(X (t,x)), where X (t,2) =

Re {gbl (x) /r A%(t,x) + B%(x) dx + ¢o(x) /r A%(0,z) + B%(x) da

0 0

It suffices to show X » = 0 on the real axis. We have
Xo = ¢1Re(A%(t,2) + B*(w)) + ¢2Re(A*(0,2) + B*())
+ &) /AQ(t, x) + B(x) dx + o) /AQ(O,I) + B*(zx)dx  (32)
Since u takes the boundary monotonically, we have
u, = Re(A?(0,z) + B%(0,2)) >0,

so the second term in (32) (which is the only nonzero term for « > (1+t)Rt) is
nonnegative. We next consider the first term, which is the only nonzero term
for 0 < z < Rt. We will prove

Re(A%(t,x) + B*(x)) > 0. (33)
By the definitions of A and N we have
A = H(w — ;)
i=1

N
_ wmszH w — a2
i=1
Squaring, we have
N
A2 _ w2m74N H |’LU _ Oéi|4
=1

We have B?(x) = O(z*m+2F) = O(1?"2w?™+2), By Lemma 5 we then have

RG(A2+B2) _ t2mA2+O(t2m+1w2m72N)
N
_ t2mw2mf4]\/' H |’LU _ Oéi|4 + O(t2m+1w2m74N)
=1
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N

> (1+00) " ™ N ] lw — aul* (34)
=1

> 0

for t sufficiently small. To treat m = 1, we only have to replace A2 by the special
function Ao used in the definition of @ for m = 1. The above proof remains
valid, appealing to Lemma 6 in place of Lemma 5 for the formula for Re(As).
That completes the proof of (33).

On the interval — Rt < w < 0 we shall need a somewhat sharper estimate,
as the positive contribution of this term is needed to outweigh a negative con-
tribution from another term. Since we have assumed Re(o;) > 0, it follows that
when w < 0 we have

lw — ;| > [ay].
(If this is not geometrically evident, one can quote the law of cosines in the
triangle formed by w, «;, and the origin to prove it.) It then follows from (34)
that for w in [—Rt, 0],

N
Re(A?+ B%) > (1+0@)*"w™™ *N I Jaul* (35)

i=1
Remark: If none of the ¢; are real, then X, is never zero on the boundary, so
% is in that case a path through harmonic surfaces taking the boundary strictly
monotonically. Otherwise, 1@ will vanish at the real ;. That is OK as far as the
present proof goes, but if we needed strict monotonicity, we could just choose

the nonzero «; not to be real.

Outside the intervals [—Rt,0] and [Rt, (1 + t)Rt], we have ¢ = ¢4 = 0,
and since both ¢, and ¢o are nonnegative, we have proved X, > 0 there. We
therefore can assume that x lies in one of these two intervals. First assume z is

in [Rt, (1 4 t)Rt]. Define

1 N
_ 2m—4N 4
c= iR ZI,I1|R_O%|

and recall that we have assumed R > 2|a;|, which makes |R — ;| > R/2 and
hence ¢ > R*™/24N+1 Then by (34) we have

Re(A%(t,x) + B%(x)) > ct*™

t2m R2m
> SN (36)
Similarly we have for the second term in X, that
1
Re(A%(0,z) + B%(x)) > §R2mt2m
t2mR2m
> ST (37)
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and hence, adding (36) (37), we have (for = in [Rt, (1 + t)Rt])

IRA(A2(1, ) + BA(2)) + 6aRe(A%(0,2) 1 B2 () > ot

S (38)

in view of ¢1 + ¢2 = 1.
We now estimate the two terms involving the derivatives of the ¢;, in case
m > 1. Note that ¢; + ¢2 = 1, so ¢} + ¢}, = 0. We have

o / A2(t,2) + B () da + &) / A2(0,2) + B(x) de
— qf/l/A?(t, x) + B*(x) dx+¢>’2/A2(0,x) + B*(x) dx
. ¢;/A2(t, 7) dx+gb’2/A2(0,:Jc) de + (¢ +¢>’2)/32(x) d
— qf/l/A?(t, ) dx+¢>’2/A2(0,x) dx
Adding and subtracting ¢} [ A2(0,z)dx we have
¢>’1/A2(t, ) dx—qf/l/A?(o,x) dx+¢’1/A2(0,x) dx+¢>’2/A2(0, x) de
= 0 [ [A¥(t) ~ A20.2)] do v (05 1 03) [ A

— / [A%(t,2) — A*(0,2)] dx (39)
_ t2m+1 [ 2m—4N H |’LU _ OéZ|4 — 2 + O( 2m+1)‘| dw
_ gb/lt2m+1 </ [w2m4N H |’LU _ Oéi|4 _ w2m dw + O(tw2m+2))
0 i—1 _
w N 1
_ gb/lt2m+1 </ w2m74N |;[[ |’LU _ Oéi|4 _ dw + O(tw2m+2))
0 i—1 _
w N 1
t2m+1¢/1 </ w2m— AN |J] |’LU _ Oéi|4 _ dw + O(tw2m+2))
0 i—1 i

The integrand is a polynomial of degree at most 2m — 1, so the integral is a
polynomial of degree at most 2m. Hence for small w it is O(w*™), and hence
large compared to the error term O(fw?™+2). Now the argument splits into
cases. Case 1: w lies in [R, (1 + 1)R], and Case 2: w lies in [—Rf,0]. These are
the only cases we need consider, since these are the only intervals where ¢/ is
nonzero.

29



Case 1: suppose w lies in [R, (14 £)R]. By Lemma 1, the integral is negative
for w > R. Since ¢} < 0 for positive w, the product of the two negative terms is
non-negative, as desired. We can therefore obtain a non-negative lower bound
on the expression in question valid for sufficiently small ¢, by deleting the error
term and putting in a factor of 1/2. The result is

gb’l/AQ(t, x) + B*(2) dx+gb’2/A2(0,x) + B%(x) dx

N
1 w
> §t2m+1¢/1/0 w2 AN Zl:[l o — |t — ™| dw
That completes the proof in case 1, for m > 1.
Case 2: Suppose w lies in [—Rt,0]. By (35) we have
N
Re(A2+ B?%) > (1+0()*™w*™ V[ Jaul*
i=1

and hence it suffices to show that the terms involving ¢} and ¢4 have magnitude
bounded above by this quantity. In symbols, we have

X, > Re [A*(t,z)+ B*(0,2)| + ¢} /r [A%(t,z) — A*(0,2)] dz
0

N
> (1 + O(t))t2mw2m74N H |Oéi|4
=1

N

w

+ t2m+1gb’1/ wm AN [H |w — o |* —w™ + O(t)| dw
0 =1

The indexed product is a polynomial in w, whose constant term is [] |a;|*. Since
we are concerned here with small w we write this polynomial as [] |a;|* + O(w).
Putting this expression into the integrand we have
N
X, = (1+0@) [ lea[ 4N

i=1

2 N
+ t2m“¢’1/ wm AN [H las|* + O(w) + O(t)
0

=1

dw

Now we integrate the polynomial; note that since the O(w) term represents a
polynomial, integrating it produces an error term of one higher degree.

N
Xo = (1L+0)™ [ loa|wm4Y

=1

+ @1

N
£2mt1y 2m—4N+1 | ) |0%‘|4 4 O(t2m+1w2mf4]\/'+2)
2m — 4N 41

30



Since we have assumed w is in [—Rt, 0], we have ¢} > 0, and it is multiplied
by an odd power of w, which will be negative on this interval. Therefore the
second term is negative. We can therefore replace it by the negative of an upper
bound for its magnitude. We have the estimate

1 1

/
< - -
1] = 2|z| 2t
from Lemma 2. Putting this in for ¢} we obtain

N
X, > (1 + O(t))t2m H |Oéi|4’w2m74N
=1

N
1 [t2m+1|w|2m4N+1 Hi:1|04i|4 JrO(tzmﬂwzm4N+2)]

2w o2m — AN + 1
N 1
> t2m i4 2m—4N 1— O(t O
= };[1|a|w sem N1 oW+ owW)

Since on the interval —Rt < w < 0 we have w = O(t), we can drop the O(w)
term:

1

N
2m 4, 2m—4N
I | e (R e et

=1

+mﬂ

Since 2m — 4N + 1 > 1, the expression in brackets is at least 1/2 for sufficiently
small £; in particular it is positive. That completes the proof for m > 1.

We now take up the case m = 1, and examine the terms involving ¢} and
¢h. First suppose Rt <w < (1 +¢)Rt. Then

gb’l/AQ(t, x) + B*(x)dx + gblg/AQ(O,x) + B%(x) dx
= ¢t {/w |w — af? — w? dw + O(tw4)}
0

= ot {/w —2Re(a)w + |af? dw + O(tw“)}
0

= ¢ ® [(—Re(a)w?® + |af*w) + O(tw")]

If we choose Re() > 0, then the leading term of the polynomial in w is negative,
and dominates the error term O(tw?), so for sufficiently small ¢, and positive w.
the entire expression is nonnegative, as desired. That takes care of the interval
R<w< (1+1)R.
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Now suppose w lies in [—Rt,0]. With A in place of A%, we have

X, > Re [As(t,2) + B*(0,z)| + ¢} /Or]Ag(t, x) — Az(0,2)] dx

We have
Ay = (z—at+O(t*))(x —at + O(t?))
= lw—al* + O3
> (14 01)Eal?

Since B%(0,2) = t*"T2*B2(w), it is O(#*), and we have

X, > (1+0®)2|af* + 0 + ¢ /r [A2(t, ) — A2(0, )] dx
0

> (10Ol + 64 [ - af ~w?du + O(F)
0

> (1+0m)af® + ¢1t® [~Re(a)w? + |of*w] + O(t?)

> (1+0®)al® + ¢1t® [|af*w + O(w?)]| + O(t?)

Now since w is negative, and ¢} is positive, we may replace ¢] by the upper
bound given in Lemma 2:

X, > (1+0(t))t2|a|2—t3ﬁ[|w|+0(w2)]+0(t3)

> *al? {1 — % + O(wQ)} +0(t?)

1
5t2|04|2 +O(%)

where we have dropped the O(#?w?) term since w = O(1) in this interval. For
sufficiently small ¢ we have

~ 1
X, > =taf?
3
This completes the proof of the monotonicity lemma.

Theorem 2 Let I be a real-analytic Jordan curve. Let u be a minimal surface
bounded by T', of the topological type of the disk, with a boundary branch point of
order 2m on I', and suppose n < m. Then we can construct a C™-smooth one-
parameter family @ of minimal surfaces bounded by T, containing the original
surface w, and converging to u in the C™ norm, such that the Dirichlet integral
Ea) is less than Elu]; indeed Elu] — E[i] > ct*™ 3 for some positive constant
c.
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Corollary 1 If u is a C! relative minimum of area (in particular if it is an
absolute minimum of area) among disk-type surfaces bounded by a real-analytic
Jordan curve ', then u has no boundary branch points.

Proof. The family % has been defined above as the harmonic extension of

D((X(t,x)), where X (t,x) =

Re {gbl(x) /r A%(t,x) + B%(x)dx + ¢o(x) /r A%(0,z) + B*(x)dx

0 0

‘We have computed

Rt
Fy = / Ully — ULy dT
0
_ _Ct4m+3 4 O(t4m+4)

for some constant ¢ > 0, and we must now show that integrals over the rest of
the real line can be controlled, so as not to swamp the contribution near the
origin. Specifically we have

E['a) — Elu] = By, + By + E3 (40)
where
0 (1+¢)Rt
Ey = /Rt2 171171y — 1u1uy dr + /Rt 171171y — 1u1uy dx
— Rt? oo
By = / Yata, — tutu, dr +/ Yata, — tutu, dr
— 00 (1+t)Rt

We will estimate Fa and Es3 to be O(1#"*4). The estimates we used

iﬁiﬁy — iuiuy
for i = 2 and i = 3 were valid for the entire boundary, since they were based
on the global estimate for the gradient of a harmonic function in terms of the
boundary values of the second derivative. Specifically we have as in (25),

711/_2u2uydy _ O(t(2m+1)(q+1)+2m)

Sﬂgﬁy _ 3u3uy _ O(t(2m+1)(p+1)+2m)

22

U

with these equations valid for all . The error terms are uniform in 8 after a
conformal mapping of the half-plane to the unit disk, so that we have

/ 2020, —unu, de = O(tFmHbla+l)+2m) (41)
/oo Sﬂgﬁy B 3u3uy dr — O(t(2m+1)(p+1)+2m) (42)
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We take up, for i = 2 and i = 3,
(I+t)Rt o
/ "'ty — "u'uy d.
Rt

Let us define v to be the harmonic extension of I' o X. This is the formula used
to define @ for 0 < z < Rt, so we have

W) = g1 (x)o(x) + do(r)u(z)

where ¢1 and ¢ are a partition of unity whose properties have been listed when
7t was defined. Then the various estimates we derived for % on 0 < w < R are
valid for v on |w| < (1 +t)R.

171171y — 1u1uy = ('v+ gbglu)(gbllvy + gbgluy) - 1u1uy
= (¢} v+ drdetu) v, + (05 — 1) 'y,
+ ¢1¢21v1uy (43)

We have by (11) that

1u1uy _ O(t4m+u+1)
O(t4m+3)

since ¥ > 1 by Lemma 3. We have
1’[) _ 1'Uy _ O(t4m+2)

by (30). We have

Ly = /f — fg?de = t2m+1/A2dw + O(t2m+2)

and hence
Ly = O™y,

‘We have
1vy _ O(t2m+1)

by (12). We have 'u = O(t*™+1), so
Yuly, = O@*™*2).

‘We have
1’[) _ O(t2m+1)
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and from (9) we have

T B ami Glm(ck)x2m+2k+§ b
2 2
B §t2m+”w2m+” n Glm(ck)t2m+2k+§w2m+2k+5 G
_ O(t2m+y) + O(t2m+2k+§)
O(t2m+2)

since v > 1.
Putting these estimates into equation (43) we have

1711713/ _ 1u1uy _ O(t4m+2) +O(t4m+u+1) +O(t2m+1)o(t2m+2)
O(t4m+2)

Now we integrate:

(1+¢)Rt
/ Yata, — 'wlu, de = REPO(E™?)
Rt

_ O(t4m+4)

and the same estimate is valid for the integral from —Rt? to 0, since that
interval is also of length Rf?. By (41) and (42), the terms arising from the
second and third components of @ and u add only O(t(2m+D(et)+2m) anq
Ot P+1+2m) We have

@m+ D(g+ 1) +2m>22m +1) +2>4m 14

and similarly with p instead of g, so these terms are O(t*™*+4). When integrated
over an interval of length Rt? they add only O(t*™"6). Therefore

(1) Rt
/ iy, —uu, dv = O(*™™)
Rt

This is smaller than the ™2 term we found for the integral from — Rt to R,
whose sign we can control. Again, the same estimate is valid for the integral
from —Rt? to 0.

Now we take up the integral E3. Let S be the union of the two intervals
(—o00, —Rt?) and (Rt(1 + t),00), so that F3 can be written as an integral over
S. Here we have & = u, so the integral in question is

By = /u(ﬁy—uy) dx
K]

= /Slu(lﬁy —tu,) dr
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+ /SQu(Qﬁy —2u,) dx
+ /S?’u(?’ﬁy —3u,) dx

To analyze the second and third terms, it will be convenient to make a conformal
mapping back to the disk, where we started at the beginning of the paper. Let
¢ be the mapping from the disk to the upper half-plane defined earlier. Let
U(z) = u(C(2)) and U(z) = @(¢(2)), so that U and U are defined in the disk.
Define

T:=¢49).

The integral in question becomes
Fy = / U(e) (U (%) — U, (")) db
T
— / WoEeyto, —1u,.) de
T

/ Us(e9) (20, — 2U,.) db +/ Us(e?®) (U, — 3U,.) do

T T

We have already discussed the contributions from the second and third compo-
nents, and found that the two integrands are O(t**4); this term is uniform in
6, i.e., the integrand is bounded by a constant times t** independently of 6.
Upon integrating over the unit circle we still have O(1**4). Getting this result
is the only reason for going back to the unit disk, so we now return to the upper
half plane:

J— / Yu(ta, — tu,) dr + O™
s
oo (1+8) Rt
= / Yu(ta, — tu,) de — / Yu(ta, — 'u,) dx
— 00 — Rt?

Integrating by parts, and noting that the terms at infinity cancel out since I' is
a Jordan curve, we have

oo (1) Rt
By = —/ Yu, (Y — tu) dr — / Yu(ta, — tuy,) dr
— 00 — Rt2
(1+t)Rt (1+t)Rt
= —/ Yu, (Yo —tu) dr — / Yu(ta, — tuy,) dr
—(1+t)Rt —R#?

since for z € 9, we have '4 = 'u. Combining the integrals and multiplying out
the integrands, we have

(1+t) Rt

_ 1, 1~ 1,1, 1.1~ 1.1

By = /R2 Uy U— Uy U— Wy + uu,dr
~Rt
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(1+t)Rt
_ 1, 1> _ 1,1~
= —/ Uy U — U Uy dr

Rt2
(1+t)Rt (1+t)Rt
_ 1, 1~ 1, 1~
= - Uy, udr — U Uy dx
—Rt2 —(1+t)Rt

Integrating the second term by parts one more time, it becomes identical to the
first term, and we have

(1+¢) Rt
Ey = —2/ Yu, M de (44)
,RtZ

Recall from equation (9) that

1uy _ §x2m+u 4 €x2m+2k+§ N
2 2
E

5t2m+1/w2m+1/ 4 %t2m+2k+§w2m+2k+§ NI

Since by Lemma 3 we have v > 1, we have
lu, = O@*™*?) (45)
Recall that
i = t2m“/A2dw+O(t2m+2)
— oy

Substituting this result and (45) into equation (44) we have

(14+t) Rt
Eg _ _2/ O(t2m+2)o(t2m+1) (46)
_ Re2
_ O(t4m+4) (47)

since the integrand is O(#*"*3) and the interval of integration is of length O(t).
‘We now have proved

E2 _ O(t4m+4)
Eg _ O(t4m+4)
B, = _Ct4m+3 4 O(t4m+4)

and it follows that
Eli] — Elu] = —ct*™ 3 4+ O™+,

We still have to study the smoothness of the family #. Of course the function
% is as smooth as the interpolation functions ¢ and ¢, but what has to be
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studied is how the higher derivatives of & — u with respect to x converge to
zero. In the region 0 < z < R, the function @ is analytic in z and £, so there is
no problem there. In the regions 2 > (1 + )Rl and 2z < —Rt?, we have @ — u
identically zero (on the boundary), so there is no problem there. The rest of
our discussion will focus on the regions Rt < z < (1 +t)Rt and —Ri? < 2<0.
We have from the Weierstrass representation,

2m-+1
4 O(t2m+2)

by -ty = thmH {/w A*(¢)d¢ —
2 0
_ O(t2m+1)

2m+1

since on the region in question, w stays bounded as t goes to zero. (This is
no better bound than we have individually on v and w in this region.) For the
other two components, we have from the geometry of I,

2y 2, — O(t(2m+1)(q+1))
3y 3y, — O(t(2m+1)(p+1))
Hence
o—u = O@*™
dv .

O(t2m+17n)

—— (@ —u)

dz™
Recall from (4) that we constructed ¢, to satisfy

d" ¢
dx™

= O(t™ ™).

The n-th derivative of 4@ — u is given by

n i) ~(n—14 i) ~(n—1i
<Z> M)u( ) @)

jn i
Sk
—_
1
|
R
Il
NgE

i=0

O(t72i)0(t2m+17(n7i))

O(t2m+17n7i)

14: 204

I
Q1
o

(t2m+17 2n)

Hence the @ converges to u in the C™ norm only for n < m, but for those values
of n it does converge. That completes the proof of the theorem.
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The case of smooth but not analytic boundary

In this section we investigate how far the assumption that I' is real-analytic can
be relaxed.

Definition 3 The Jordan curve I is called nowhere planar if at every point
each component of I' has a nonzero n-th derivative for some n.

If I" is nowhere planar, then if P is any point on I', after a rigid motion which
brings P to the origin and makes I' tangent to the X-axis at origin, we will have
the representation of I/ in terms of p and ¢ which is basic to our argument, for
some p and q.

We review the known facts about the behavior of a minimal surface at a
boundary branch point on a C'%# Jordan arc.
(i) the surface itself is C** up to the boundary (see [9], p. 33).
(il) With the branch point at origin, we have the following asymptotic represen-
tation (see [9], Theorem 2 on p. 121):

u, = A2M + o(|2|M)

for some integer M, the order of the branch point. If the boundary is taken on
monotonically near the branch point then M must be even, say M = 2m. The
complex vector A satisfies A% = 0.
(iii) the unit normal extends continuously to the branch point. Orienting the
surface so that the normal points up at the branch point, we then have g(z) =
o(1) and

Sus = f(2)g(2) = o(|2|*™).

In the analytic case we would have g(z) = zF 4+ O(2%*1) for some k, the index
of the branch point. In the C?*# case, we do not know that the ¢ has Taylor
coeflicients beyond the 2m-th. Therefore, we define the index k to be the least
integer such that we do not have |g(z)| = o(|2|¥). If such an integer & does not
exist then |g(2)| = o(|z|*) for every k; in such a case we say the branch point
has infinite index. Since g(z) = o(1) we have k& > 1.

We need the following more thorough analysis of the situation regarding the
definition of the index of a branch point and the behavior of the Gauss map
near a branch point on a C%* boundary.

Lemma 11 Let u be a minimal surface with a boundary branch point at origin,
bounded by a C** Jordan arc, and oriented so the normal points up at the
branch point. Then there exists an integer k such that

ng(z) _ Cz2m+2k +0(z2m+2k)
g(2) = o +o()
g. = ck2" P po(zFY)

In particular the branch point has finite index and g, is bounded.
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Proof. We have fg? = 2u, — 'u., so fg? is C** up to the boundary, by (i). By
(il) we have

f9°(2) = o(z"™)
when the normal at the branch point points up. Since the real and imaginary
parts of fg? are harmonic, and it is C'' at the boundary, it satisfies hypothesis
(2) on page 142 of [9], and hence hypothesis (A2) on the next page. If the
minimal surface does not lie in a plane, then fg? is not constant. We can
therefore apply Theorem 2 on page 143 of [9], with v in the theorem equal to
2m here, and X = fg?. The conclusion is that

liH(l) 2 (fg?). exists
zZ—

and there is a least nonnegative integer j such that we do not have fg¢?(z) =
o(|z}7), and for that j we have

liH(l) 2 I (fg?), exists and is not zero.
zZ—

We have j = 2m + 2k by the definition of k& above, and the asymptotic formula
f(2) = 22™ +0(2*™). More precisely, we have proved that k exists, i.e. the case
of infinite index is impossible. We have

ng(z) _ Cz2m+2k 4 0(Z2m+2k)

and hence
g(z) = c2F + o(2F).

We have asymptotic expansions of f, fg°, and fg, since these are defined by

f o= tu, - ilu,
fg2 - 1uz + Z.27~’Jz
fg - 3uz

and as above, these functions are C'' up to the boundary by (i) and then the
theorem on page 143 of [9] yields the desired asymptotic expansions. Now we
compute g,. We have

(f9°)- f:9° +2fgg.
g (f9?). — [.9°
: 2fg
(f*).  [I.4°
2fg 2fg

(2m 4 2k)c2z2m+2k71 4 0(Z2m+2k71)
2ez2mtk 4 o(zmth)
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(2mz2m71 +0(Z2m71))(c2z2k +0(Z2k))
2cz2m Ttk oz TR)
= (m k)t po(ZFY) = (me oz 1)) (e + o(2F)
ke~ o(2F71)

Hence g, also has the desired asymptotic behavior. That completes the proof
of the lemma.
Remark: We could not apply the theorem from [9] directly to g, since we do
not know a priori that g extends in C! fashion to the boundary.

The integers v and 6 cannot be defined as in the analytic-boundary case,
since the requisite power series may not exist. Instead we make the following
definition.

Definition 4 v is the least integer such that for small real x we do not have

Im(|f(z)]) = o(f«]")-

6 is the least integer such that we do not have

Re(|g(x)]) = o(lz|").

Theorem 3 Let I' be a CNo* Jordan curve, where N > 3 and p > 0. Suppose
I is nowhere planar (as defined above). Let u be a minimal surface of the
topological type of the disk, bounded by I, with a boundary branch point of order
2m on I', and suppose n < m and n < N. Then we can construct a C™-
smooth one-parameter family @ of minimal surfaces bounded by T, containing
the original tsurface u, and converging to w in the C™ norm, such thatl the
Dirichlet integral E[@] is less than Elu); indeed Eu] — E[@] > ct*™3 for some
positive constant c.

Corollary 2 Let I' be a CN* Jordan curve, where N > 2 and > 0. Suppose
" is nowhere planar (as defined above). If u is a C! relative minimum of area
(in particular if it is an absolute minimum of area) amonyg disk-type surfaces
bounded by 1", then u has no boundary branch points.

Proof. By the known boundary regularity results ([9], p. 33), u is of class C™V:#
at the boundary, in particular of class C'V. This is needed only at the end, when
we prove the convergence in C™ norm of % to u. In the rest of the proof we
never took more than two derivatives of u. Define (%) to mean a term which
is o(t7) for every j < i. Such a term might be o(#*) or even zero. To imply that
the term is definitely not o(f!) we write Q4 (#*). We now list the changes that
need to be made to the proof given above for the analytic case:

(i) Replace every term involving Et¥ 77 for some j can be by Q (1 77).
(ii) Replace every term involving G1°%7 for some j by O (1°+7).

41



(iii) Replace every term involving t*+7 by Qo (t#17).

(iv) Replace every term with an anonymous constant C; and an exponent of
t involving 6, v, or k by an {Jy term with the same exponent of t.

(v) Replace every error term O(#/71) with o(#7).

After these replacements, the proof is still valid. This has to be verified by
a detailed reading of the proof, but is routine except for the following point.
When computing $.,; we must differentiate B? = fg? and get 0(2?"). By the
lemma above, (fg?). has an asymptotic expansion at the branch point, so fg?
can be differentiated as in the analytic case. Similarly for f and fg.
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