
Lambda Unification

Michael Beeson∗

August 8, 2006

Abstract

We give a formal description of an algorithm for lambda unification.
The input to the algorithm consists of two terms t and s of lambda logic.
The purpose of the algorithm is to find (sometimes) a substitution σ such
that tσ = sσ is provable in lambda logic. In general such unifiers are
not unique. Lambda logic itself is defined in [2]. We prove some basic
metatheorems about lambda unification, and compare it to the previ-
ously known notion of “higher order unification.” Examples of the use
of lambda unification to find proofs by mathematical induction, using its
implementation in the theorem prover Otter-lambda, are given in [4].

Introduction

Lambda logic is the logical system one obtains by adding lambda calculus to first
order logic. This system was formulated, and some fundamental metatheorems
were proved, in an earlier publication [3]. The appropriate generalization of uni-
fication to lambda logic is this notion: two terms are said to be lambda unified by
substitution σ if tσ = sσ is provable in lambda logic. More generally, a multiset
S of equations is lambda unified by σ if each of its member equations is lambda
unified by σ. Lambda unification is an algorithm for producing lambda unifying
substitutions. In Otter-λ, lambda unification is used, instead of only first-order
unification, in the inference rules of resolution, factoring, paramodulation, and
demodulation.

In computer files meant for use with implementations, we write lambda(x, t)
for λx. t, and we write Ap(t, s) for t applied to s, which is often abbreviated
in technical papers to t(s) or even ts. In this paper, Ap will always be written
explicitly, to avoid confusion between Ap(f, x) and f(x), which are different
in lambda logic. In [4], we also wrote out lambda to make it easy to compare
computer-produced proofs and algorithm definitions. Since this is primarily a
theoretical paper, we use the notation λx. t instead of writing lambda out explic-
itly, except when quoting from the algorithmic definition of lambda unification
given in [4].

∗Research supported by NSF grant number CCR-0204362.

1



As we define it here, lambda unification is a non-deterministic algorithm: it
can return, in general, many different unifying substitutions for two given input
terms. The input to the lambda-unification algorithm, like the input to ordinary
unification, is two terms t and s (this time terms of lambda logic). The output,
if the algorithm succeeds, is a substitution σ such that tσ = sσ is provable in
lambda logic.

Although the lambda unification algorithm has been described in [3], [2], and
[4], this paper is intended to supply a more formal definition of the algorithm, in
the style used by researchers in unification theory [1], [7], and to prove some basic
theorems about the algorithm. For examples of the use of lambda unification,
see [4] and the Otter-lambda website [6].

1 Definition of a lambda unification algorithm

This section repeats the definition of the algorithm as given in [4]. We first give
the relatively simple clauses in the definition. These have to do with first-order
unification, alpha-conversion, and beta-reduction. The rule related to first-
order unification just says that we try that first; for example Ap(x, y) unifies
with Ap(a, b) directly in a first-order way. However, the usual recursive calls
in first-order unification now become recursive calls to lambda unification. In
other words: to unify f(t1, . . . , tn) with g(s1, . . . , sm) (according to this rule)
we must have f = g and n = m; in that case we do the following:

σ =identity substitution;
for i = 1 to n {

τ = unify(ti, si);
if (τ = failure)

return failure;
σ = σ ◦ τ; }

return σ;

Here the call to unify is a recursive call to the algorithm being defined. Since the
algorithm is non-deterministic, there are choices to be made for each argument.
For example, if there are two substitutions σi that unify a and c, and two ways
to unify bσi and dσi, then there will be four ways to unify f(a, b) with f(c, d).

To unify a variable x with a term t, return the substitution x := t if t is
identical to x or x is not bound and x does not occur in t.

The rule related to alpha-conversion says that, if we want to unify lambda(z, t)
with lambda(x, s), first rename bound variables if necessary to ensure that x
does not occur in t and z does not occur in s. Then let τ be the substitution
z := x and unify tτ with s, rejecting any substitution that assigns a value de-
pending on x or a value to x.1 If this unification succeeds with substitution σ,
return σ.

1Care is called for in this clause, as illustrated by the following example: Unify lambda(x, y)
with lambda(x, f(x)). The “solution” y = f(x) is wrong, since substituting y = f(x) in
lambda(x, y) gives lambda(z, f(x)), because the bound variable is renamed to avoid capture.

2



The rule related to beta-reduction says that, to unify Ap(lambda(z, s), q)
with t, we first beta-reduce and then unify. That is, we unify s[z := q] with t
and return the result.

Lambda unification’s most interesting instructions tell how to unify Ap(x, w)
with a term t, where t may contain the variable x, and t does not have main
symbol Ap. Note that the occurs check of first-order unification does not apply
in this case. The term w, however, is not allowed to contain x. In this case
lambda unification is given by the following non-deterministic algorithm:
1. Pick a masking subterm q of t. That means a subterm q such that every
occurrence of x in t is contained in some occurrence of q in t. (So q “masks”
the occurrences of x; if there are no occurrences of x in t, then q can be any
subterm of t, but see the next step.)
2. Call lambda unification to unify w with q. Let σ be the resulting substitution.
If this unification fails, or assigns any value other than a variable to x, return
failure. If it assigns a variable to x, say x := y reverse the assignment to y := x
so that x remains unassigned.
3. If qσ occurs more than once in tσ, then pick a set S of its occurrences. If q
contains x then S must be the set of all occurrences of qσ in t. Let z be a fresh
variable and let r be the result of substituting z in tσ for each occurrence of qσ
in the set S.
4. Append the substitution x := λz. r to σ and return the result.

There are two sources of non-determinism in the above, namely in steps 1 and
3. Otter-λ has a parameter max unifiers, that can be set in the input file by a
command like assign(max unifiers,9). In that case, lambda unification will
backtrack over different selections of a masking subterm and set S, up to the
maximum number of unifiers specified (per lambda unification). The default
value of this parameter is one, in which case there is no backtracking, i.e. a
deterministic selection is made. Even if backtracking is allowed, Otter-λ still
attempts to pick “good” masking subterms according to some heuristics. Here
are some of the heuristics used: in step 1, if x occurs in t, we prefer the smallest
masking subterm q that occurs as a second argument of Ap.2 If x occurs in
t, but no masking subterm occurs as a second argument of Ap, we prefer the
smallest masking subterm3 If x does not occur in t, we pick a constant that
occurs in t, or more generally a constant subterm of t; if there is none, we fail.
Which constant subterm we pick is determined by some heuristics that seem to
work well in the examples we have tried. In step 3, if q does not contain x, then
an important application of this choice is to proofs by mathematical induction,
where the choice of q corresponds to choosing a constant n, replacing some of the
occurrences of n by a variable, and deciding to prove the theorem by induction
on that variable. Therefore the choice of S is determined by heuristics that prove

2The point of this choice is that, if we want the proof to be implicitly typable, then q
should be chosen to have the same type as w, and w is a second argument of Ap.

3This will not be done if the input file contains set(types), because it might result in
mis-typings; unless, of course, the input file also provides a list(types) that can be used to
check the type of the masking subterm.

3



useful in this case. In particular, when proving equations by induction, we pick
a constant that occurs on both sides of the equation, but not necessarily when
proving non-equations. If there is a constant term of weight 1 that occurs on
both sides of the equation, that term is used instead of a constant—this allows
Otter-λ to “generalize” a goal, and since weight templates can be specified in
the input file, it also gives the user some control over what terms can be selected
as masking subterms. Our present heuristics call for never choosing a term of
weight greater than 1; but weights can be set by the user in the input file, if it
should be necessary.

Finally, lambda unification needs some rules for unifying Ap(r, w) with t,
when r is not a variable. The rule is this: create a fresh variable X, unify
Ap(X, w) with t generating substitution σ, then unify Xσ with rσ, generat-
ing substitution τ ; if this succeeds return στ , or rather, the substitution that
agrees with στ but is not defined on X, since X does not occur in the original
unification problem.

Example. Unify Ap(Ap(x, y), z) with 3. Choose fresh X, unify Ap(X, z)
with 3, getting z := 3 and X := lambda(u, u). Now unify lambda(u, u) with
Ap(x, y), getting y := lambda(u, u) and x := lambda(v, v). So the final answer
is x := lambda(v, v), y := lambda(u, u), z := 3. We can check that this really is
a correct lambda unifier as follows:

Ap(Ap(x, y), z) = Ap(Ap(lambda(u, u), lambda(v, v)), 3)
= Ap(lambda(v, v), 3)
= 3.

Note that failure of the occurs check in first order unification does not cause
failure of lambda unification. For example, we can unify x = f(x) by taking
xσto be Ap(ω, ω) where ω = λx. f(Ap(x, x)). On this example, the occurs check
fails, but lambda unification does not fail, because after the occurs check fails,
we go on to try the other rules.

An inference system for lambda unification

The standard way of proving theorems about unification algorithms begins with
replacing an algorithmic definition of unification by a system of inference rules.
Experts have urged me to present lambda unification in that style, and I hereby
oblige.

There are two standard references for inference systems for unification: [1]
for first order unification and [7] for higher-order unification. These two ref-
erences differ in their setup, both notationally and in substance. In addition,
an inference system for lambda unification needs one more feature not included
in either cited reference. We therefore carefully discuss the general character-
istics of these inference systems before giving the specific system for lambda
unification.

The premises and conclusions of the rules in both cited references are either
the special sign ⊥ (read fail), or multisets of equations t = s, where t and s are

4



terms of lambda logic. In case t is a variable that does not occur free in s then
the equation t = s is said to be solved.

The differences between the two cited references are as follows. First there
is the trivial difference that [1] uses ⇒ while [7] uses a horizontal line (as we
shall do). Second, [1] uses two multisets of equations instead of just one, distin-
guishing the “solved” equations from the rest. We shall use just one multiset,
defining an equation to be solved if it has the form x = t, where x is a variable
and x does not occur free in t. Instead, [7] applies substitution implicitly, so
solved equations become identities, which he calls “trivial”. Thus, the goal in
the system of [7] is to derive a trivial system, while [1] tries to derive a solved
system. It is in that sense that we follow [1] more closely than [7], though su-
perficially our notation looks more like [7]. The reason why [7] does it this way
is that his system is only meant to establish unifiability rather than actually
return a substitution in every case.

The additional feature that we will need is some way to express the concept
“x is forbidden to y”, which means that variable y cannot be assigned a value
depending on x. In the implementation, each variable is associated with a
(dynamic) list of variables forbidden to it. In an inference system, we will
represent this by making the premises and conclusions of the rules pairs. One
member is a multiset S of equations, as in the cited references. The other
member is an “environment”, which specifies which variables are forbidden to
which other variables. The relation “x is forbidden to y in E” is transitive: if x
is forbidden to y and y is forbidden to z then x is forbidden to z. Whether this
transitivity is explicitly represented in E or not is an implementation issue. Since
this is a theoretical paper, for definiteness we may suppose that an environment
E is (represented by) a matrix with a boolean entry for each pair of variables
occurring free in S; each non-false entry represents the “restriction” F [x, y],
meaning “x is forbidden to y”. Since what we want to indicate in the rules is a
change in the relevant environment, we use the notation F [x, y], E to indicate
the new environment resulting from E by adding the restriction F [x, y] to the
environment E and then forming the transitive closure. We use a colon to
separate a multiset of equations from the relevant environment, so the premises
and conclusions of our rules will have the form S : E.

We have defined an equation x = t to be “solved” if x does not occur
free in t, and as already explained, the goal should be to derive a multiset of
solved equations; but now that our conclusions also include an environment,
the goal should be to derive a multiset of solved equations compatible with
the (restrictions in the) environment. We say that a solved equation x = t is
compatible with E” (where E is an environment) if E does not forbid x to y for
any variable y occurring free in t.

Since only one rule changes the environment, most of the rules will have
the same E above and below the inference line. In that case there is no point
in writing it, so we omit it, but it is officially there. In the following system,
we follow the notation of [7] (a horizontal “inference line”) but we follow [7]
more closely in substance, retaining solved equations so that the goal is to
derive a multiset consisting only of solved equations, which thus determines a

5



substitution. When writing multisets in these rules, we omit the set brackets
and the union symbol, so that for example {t = s} ∪ Γ becomes t = s, Γ. In
these rules, x and z stand for variables, and t, s, and q stand for any terms. To
say that a variable occurring in the conclusion of a rule is “fresh” means that
it does not occur in the premises of the rule.

First we give the inference rules corresponding to first order unification. We
give these rules the same names as in [1].

⊥, Γ
Failure

⊥
t = t, Γ

Trivial
Γ

f(t1, . . . , tn) = f(s1, . . . , sn), Γ
Decomposition

t1 = s1, . . . , s1 = sn, Γ

Technically, in lamba logic constants are not regarded as just 0-ary function
symbols, so the previous two rules do not apply to constants. We therefore need
two rules for constants:
f(t1, . . . , tn) = g(s1, . . . , sn), Γ

Symbol Clash if f 6= g and f 6= Ap and g 6= Ap
⊥

a = b, Γ
Different Constants if a and b are distinct constants

⊥
a = a, Γ

Constant if a is a constant
Γ

t = x, Γ
Orient, if t is not a variable

x = t, Γ

The conditions for the following rule are
(i) x is not free in t
(ii) x occurs free in Γ
(iii) E does not contain F [x, y] for any variable y occurring free in t. (When
doing only first-order unification, E is always empty, but when these rules are
used as part of lambda unification, this condition prevents useless derivations.)

x = t, Γ : E
Variable Elimination

x = t, Γ[x := t] : E

That completes the inference rules for first order unification. Note that
the occurs check has been omitted as a inference rule, since if it is included
in an inference system it causes failure, while (as discussed above)in lambda
unification, we go on to try other rules. Instead, the occurs check appears as a
condition in the substitution rule.

Now we come to the rules for lambda unification.

6



λx. t = s, Γ
Alpha if z is not free in t

λz. t[x := z] = s, Γ

s = λx. t, Γ
Alpha if z is not free in t

s = λz. t[x := z], Γ

The following rule is the one that changes the environment. Therefore, the
environment is explicitly shown. See the discusssion above. The conditions for
the following rule are

(i) x does not occur free in Γ
(ii) y1, . . . , yn is a complete list of all variables free in t, s, or Γ.

λx. t = λx. s, Γ : E
Lambda

Ap(t, x) = Ap(s, x), Γ : F [x, y1], . . . , F [x, yn], E

Under the same conditions we could also consider the following rule, which
we do not, however, include in this inference system:

λx. t = λx. s, Γ : E
Weak Lambda

t = s, Γ : F [x, y1], . . . , F [x, yn], E

It is correct to call this “Weak Lambda” rather than “Strong Lambda”,
because the conclusion of this rule implies the conclusion of the Lambda rule,
and the hypotheses are the same.

The environment is used to block certain unifications. That is expressed in
the following rule:

x = t : E
Forbidden if for some variable y free in t, E contains F [x, y]

⊥
Ap(λx. t, q) = s, Γ

Beta
t[x := q] = s, Γ

The conditions for the following rule are:
(i) q contains every free occurrence of x in t; more precisely, t[q := z] does not
contain x free. (There could be more than one occurrence of q, and all of them
together contain every free occurrence of x.)
(ii) t has at least one free occurrence of x
(iii) None of the occurrences of the free variables of q is bound in t.
(iv) z is fresh, i.e. does not occur in the premises.

Ap(x, r) = t, Γ
Masking Term

r = q, Ap(x, z) = t[q := z], z = q, Γ

The conditions for the following rule are
(i) x occurs on the left of a solved equation in Γ.
(ii) y does not occur on the left of any solved equation in Γ.

Ap(x, q) = t, x = y, Γ
Switch

Ap(y, q) = t, x = y, Γ

7



The conditions for the following rule are:
(i) x does not occur free in t
(ii) x does not occur on the left of any equation in Γ
(iii) z does not occur in t or Γ
(iv) q is any subterm of t, none of whose free variables is bound in t.4

(v) t′ is the result of substituting z for some (but not necessarily all) occurrences
of q as a subterm of t.

Ap(x, r) = t, Γ
Substitution

r = q, Ap(x, z) = t′, z = q, Γ

In case r is the variable z then one of the two identical equations r = q and
z = q can be omitted in the conclusion. In case r, q, and z are identical, then
both of them can be omitted.
Ap(x, z) = t, Γ

Function Definition
x = λz. t, Γ

The following rule gets its name from the example given at the end of the
last section–it permits unification to deal with “Curried” functions of several
variables.

Ap(r, s) = t, Γ
Curry if r is not a variable and z is fresh

z = r, Ap(z, s) = t, Γ

2 Relation of the algorithm and inference sys-

tem

The inference system given above permits the arbitrary renaming of bound
variables. The algorithm renames bound variables only as required. If we use
the inference system to define a (non-deterministic) algorithm in the style of
[1] and [7], it will permit non-deterministic renamings of bound variables; so it
can be thought of as an algorithm on terms modulo alpha-equivalence. We say
that an inference rule applies modulo (α) if it applies after a renaming of bound
variables.

The algorithm can be recovered from the inference system as follows: Begin
with multiset S containing just one equation, representing the input to the
algorithm. Repeat the following step as long as possible: find the leftmost
element of S such that some inference rule (other than an Alpha rule) applies
with that element of S as the principal premise (the one explicitly shown in
the list of inference rules). Apply the first such rule (if necessary first applying

4We could require only the slightly weaker condition that none of the occurrences of the
free variables of q be within the scope of a λ-binding in t. The condition as stated also rules
out the harmless case that elsewhere in t there occurs a bound occurrence of a variable that
occurs free in q, but q isn’t in the scope of that binding. It is harmless to rule that case out too
since the bound variable could be renamed and then the stated condition would be satisfied;
and the condition as stated simplifies the proofs below.

8



Alpha rules until the rule is literally applicable), using the rest of S as Γ, and
replace S with the resulting conclusion of the rule. This iteration continues until
no rule (other than an Alpha rule) applies. The algorithm is nondeterministic,
because of the selection of the masking term q in rules Masking Term and
Substitution and the selection of the subset of occurrences of q in condition
(v) of rule Substitution.

Remark. As implemented in the prover Otter-λ, the algorithm does not ac-
tually backtrack over the selection of term q in rule Masking Term; it makes
only one selection, preferring a term q occurring as a second argument of Ap.
However, provided the input file contains suitable commands, it will backtrack
over the selection of term q in rule Substitution and the selection of the subset
of occurrences of q in condition (v) of rule Substitution. It is this backtracking
(over different subsets of occurrences) that is needed to try different possible
choices of the induction variable in proofs by mathematical induction. Back-
tracking over different choices of q is needed to allow the prover to generalize the
theorem before attacking it by induction. We purposely limited the selection
to terms q of weight 1 or 2 only in the Substitution rule, since that works
for examples of interest and cuts down on the number of unifiers. In this note,
however, we are discussing the full (theoretical, non-deterministic) algorithm
without these limitations.

Remark. To recover the algorithm published in [4] and implemented in Otter-
lambda, we need only the Weak Lambda rule. The algorithm defined using
the Lambda Rule may find more unifications; evidently those unifications
were never needed in the examples in [4]. Of course as explained in the previous
remark, there are other respects as well in which the implemented algorithm
purposely does not search all the possibilities allowed by the inference system.

3 Correctness of Lambda Unification

The main lemma about the inference system for first order unification is that
the rules do not change the set of unifiers ([1], p. 457). We first investigate
whether the same is true for the inference system given above for lambda unifi-
cation. Some adjustments to the statement are necessary because we now have
environments to account for in the inference system.

Definition 1 If E is an environment, we say that substitution σ is compatible
with E if and only if, for each variable x in the domain of σ, it is not the case
that E contains F (x, y) for any variable y occurring free in xσ.

Our first lemma shows that one direction works, in the following sense.

Lemma 1 For any rule in the inference system for lambda unification, a substi-
tution θ that unifies the equations in the conclusion, compatible with the conclu-
sion’s environment, also unifies the equations in the premise, and is consistent
with the premise’s environment, provided no variables in the domain of θ are
bound in the premises.

9



Proof. We go through the rules one by one. In the proof we will use the
completeness and soundness of lambda logic [2]. We will show that for each
rule, and any substitution σ, and any model M of lambda logic, if M satisfies
Cσ, where C is the multiset of equations in the conclusion of the rule, and σ is
consistent with the environment E of the conclusion, then M satisfies Pσ, where
P is the multiset of equations in the premise of the rule, and σ is consistent with
the environment of the premise. This implies the lemma as follows: Suppose
Cσ is provable in lambda logic, but Pσ is not. Then by completeness, there is
a model M where Pσ is not satisfied. Hence Cσ is not satisfied; but this is a
contradiction, since Cσ is provable and M is a model of lambda logic.

For the Symbol Clash rule, the conclusion cannot be unified, so we have to
show that lambda logic cannot prove f(t1, . . . , tn)σ = g(t1, . . . , tn)σ unless f and
g are the same function symbol. Take a model in which f and g are interpreted
as constant functions with different values. For the Different Constants rule,
take a model in which a and b have different interpretations. The Constant,
Orient, and Variable Elimination rules have the property that instances
of their premises and conclusions by the same substitution σ are satisfied in
the same models. The same is true for the two Alpha rules, since models
of lambda logic satisfy the (α) axiom of lambda logic, and for the Beta rule,
because models of lambda logic satisfy the (β) axiom, and for the Switch and
Curry rules, because models of lambda logic satisfy the equality axioms.

Consider the Lambda rule, subject to the condition that the variables in
the domain of σ must not be bound in the premises. That means that σ does
not assign a value to x. Also, σ is assumed consistent with the environment of
the conclusion; that environment forbids x to all the free variables of t and s.
Since σ is consistent with this environment, x does not occur free in tσ or sσ.

Hence if M satisfies Ap(t, x)σ = Ap(s, x)σ, then it satisfies Ap(tσ), x) =
Ap(sσ, x). Hence by the weak extensionality axiom (ξ) of lambda logic, M
satisfies λx. tσ = λx. sσ. That completes the treatment of the Lambda rule.

However, the rules Substitutionand Function Definition apparently only
satisfy one implication: if an instance Cσ of the conclusion is satisfied in a model
M of lambda logic, so is the corresponding instance Pσ of the premise. We first
take up the Substitution rule. Suppose that an instance of the conclusion is
satisfied in a model M . Say the instance is obtained by applying some sub-
stitution σ to r = q, Ap(x, z) = t′, z = q, Γ. Because of condition (iv) on this
rule, we can assume that σ does not assign values to an variable that is bound
in t. We have to show that M satisfies Ap(xσ, rσ) = tσ, Γσ. Since M satisfies
rσ = qσ and zσ = qσ, it follows that M satisfies rσ = qσ. Therefore M satisfies
Ap(xσ, rσ) = t′σ. Therefore it suffices to show that M satisfies tσ = t′σ. Now
t′ = t[q := z] (where possibly only some occurrences of q are replaced by z).
Since qσ = zσ, it follows that M satisfies t′σ = tσ. This uses the fact that σ
does not assign values to any bound variable of t. That completes the treatment
of the Substitution rule.

Now we treat the Function Definition rule. Suppose that for some sub-
stitution σ, M satisfies xσ = (λz. t)σ, Γσ. Since (λz. t)σ = λz., tσ, M satisfies

10



xσ = λz. tσ. Then in M we have

Ap(xσ, zσ) = Ap(λz. tσ, zσ)
= tσ

But that shows that M satisfies the instance of the hypothesis of the rule by σ,
which was what we had to show. That completes the proof of the lemma.

Theorem 1 (Correctness) Suppose there is a chain of inferences in the above
inference system starting from S : E, where S is a multiset of equations con-
sistent with environment E, and ending in a S′ : E′, where S is a set of solved
equations consistent with E′. Let σ be the substitution defined by this set of
solved equations. Then σ is a lambda unifier for S and σ is consistent with E.
In particular each of the equations in S is provable in lambda logic.

Remark. Normally the initial environment E would be empty.
Proof. By definition of σ, the subsitution σ unifies the last multiset in the chain
of inferences. Repeatedly applying the lemma, σ unifies each multiset in the
chain, and is consistent with its environment. But this assertion, specialized to
the first member in the chain of inferences, is the theorem. That completes the
proof.

4 Incompleteness

The inference system (and algorithm) for lambda unification given above is
incomplete. Consider the fixed-point example:

x = f(x).

This has a unifier, namely the substitution σ that assigns

x := Ap(λy. f(Ap(y, y)), λy. f(Ap(y, y))).

One β-reduction converts xσ to f(xσ), as in the usual proof of the fixed point
theorem. Yet consider: none of the rules in the inference system apply to
x = f(x). The Variable Elimination rule does not apply because of the
failure of the occurs check: x occurs on both sides of the equation. No other
rule has a correct syntactic form to be applicable.

This leaves open the possibility of extending the lambda unification algo-
rithm and inference system given above.

Note that if we set ω = λy. f(Ap(y, y)) then we can indeed lambda-unify
Ap(ω, ω) with f(Ap(ω, ω)). Thus lambda unification can verify fixed points,
but not find them.

11



5 Undecidability

Like higher-order unification, the existence of lambda unifiers is undecidable.
An easy proof of this result for higher-order unification in finite type theory is
given in [7], p. 1025 (along with references to the original proofs given in 1972).
That proof depends on the undecidability of Hilbert’s tenth problem and the
fact that polynomials (on the Church numerals) are representable by lambda
terms. To complete the proof (for type theory or for lambda logic) we only need
to show that the Church numerals themselves are equationally definable. The
following is an untyped version of Proposition 3.4 on page 1025 of [7].

Lemma 2 Suppose lambda logic proves

λz. Ap(Ap(t, z), λy. y)) = λz. z.

Then t has a normal form and that normal form is a Church numeral.

Remark. Every Church numeral t satisfies the equation of the lemma.
Proof. We remind the reader that the Church numerals are the terms

n̄ = λx λf. Ap(f, Ap(. . .Ap(f, x) . . .))

where there are n occurrences of f . The lemma in [7] is for normal terms in
finite type theory; here we start with an untyped term and conclude that it is
normalizable, so there is (on the face of it) more to prove. Actually, there isn’t
much more to prove, but the one-line proof in [7] (“by induction on the structure
of t”) is here made more explicit. In view of the (ξ) axiom the equation of the
lemma may as well be written without the initial λ’s:

Ap(Ap(t, z), λy. y) = z. (1)

Suppose this equation is provable in lambda logic. Then the left and right
side have a common reduct (using the term model constructed in [2]), and that
reduct must be z. Hence the left side reduces to z. In particular it has a normal
form; we may then assume without loss of generality that t is already in normal
form. Since the left side reduces, t must be a term beginning with λ, so for
some term A we have

t = λz. A.

Since t is in normal form, A must also be in normal form. We have

Ap(Ap(t, z), λy. y) = Ap(Ap(λz. A, z), λy. y)
= Ap(A, λy. y)

Since A is in normal form, but this term reduces (to z), A must begin with λ,
say A = λf. B, with B normal. We have

z = Ap(A, λy. y)
= Ap(λf. B, λy. y)
= B[f := λy. y]

12



If this term is normal then it must be z. Otherwise, it must reduce. For this term
to reduce, B must contain f in the context Ap(f, r) for some term r. Let r be
the maximal such term in B. Then B[f := λy. y] will reduce to B[Ap(f, r) := r].
This term, call it s, has has fewer symbols than B, so λzλf. s has fewer symbols
than t. Yet it satisfies the same equation as t:

Ap(Ap(λzλf. s), z), λy. y) = Ap(λf. s, λy. y)
= Ap(λf. B[Ap(f, r) := r], λy. y)
= Ap(λf. B[f : λy. y], λy. y)
= Ap(λf. z, λy., y) since B[f := λy. y] = z

= z

Hence, proceeding by induction on the number of symbols in t, the induction
hypothesis tells us that λzλf. s is a Church numeral. That is, s has the form
Ap(f (n), z) for some natural number n, where the superscript means n times
iteration. Since B[Ap(f, r) := r] is s, it follows that B has the form s[r :=
Ap(f, r)] for some subterm r of s. Indeed when defining s we chose r to be the
maximal such term, so r is Ap(f (n), z), that is, r = s, and B is then s[r :=
Ap(r, f)] = Ap(f, s) = Ap(f (n+1), z). Hence t = λzλf. B is λzλf. Ap(f (n+1), z),
the Church numeral for n + 1. That completes the proof of the lemma.

Theorem 2 There is no algorithm to decide if two terms of lambda logic are
unifiable or not.

Proof. As sketched above. The details are the same as given on p. 1025 of [7]
for type theory; only the lemma supplied above is slightly different.

6 Lambda unification compared to higher-order
unification

If t is a term in simple type theory then we can simply “erase the types” to
produce a term t′ in lambda logic. Similarly, we can erase the types in a sub-
stitution σ to get σ′. If t and s are typed terms unifiable in type theory by a
substitution σ then t′ and s′ are unifiable in lambda logic by σ′.5

The “inverse” of the type-erase operation is called typing. A type assignment
assigns types to variables and constants, and to each function symbol f (of a
given arity) it assigns a prototype, that is, it specifies what the types of the
arguments must be and the type of the value of a term with main symbol f
must be. A type assignment π extends to be defined on more terms than just
variables and constants, as follows:

5We note that this works just as well if more than one atomic type is allowed, as in [7]; in
this way we can simultaneously treat the case of multi-sorted first-order logic, which can be
embedded in type theory by regarding the sorts as atomic types, and the function symbols as
constant symbols of the appropriate type.

13



(i) If π assigns types ρ1, . . .ρn to t1, . . . , tn, and those are compatible with the
prototype π assigns to f , then π assigns f(t1, . . . , tn) the type that π assigns as
the value type of f .
(ii) π assigns the term λx., t the type A → B if π assigns x the type A and t
the type B.
(iii) If π assigns t the type A → B and s the type A, then π assigns the term
Ap(t, s) the type B.

The type assignment π is defined on a term t only if these conditions require
it to be defined, i.e. it is the least solution of these inductive conditions. Since
“π assigns type A to term t” is mentioned only positively in these conditions,
this is a legitimate inductive definition of π.

A set of terms E of lambda logic is typeable with respect to a type assignment
π if π is defined on all the terms in E. A set of terms is simultaneously typeable
if it is typeable with respect to some type assignment π. The following lemma
is an immediate consequence of these definitions:

Lemma 3 If E is a set of terms in type theory, and E′ the set of terms in
lambda logic obtained by erasing types, then E′ is simultaneously typeable.

Namely, the type assignment π just assigns each term the type it originally
had before the types were erased. Now, you might think that if π is a type
assignment and t and s are in its domain and σ is a lambda unifier of t and s
then π could be extended to a type assignment defined on tσ and sσ. But this
is false:

Example: Take t to be Ap(X, u) and s to be Ap(c, u), and let σ be

[X : λz. Ap(z, c); u : c ].

Then tσ = Ap(λz. Ap(z, c), c) = Ap(c, c) and sσ = Ap(c, c), so σ is indeed a
lambda unifier, but there is no way to type Ap(c, c) in simple type theory. Thus
it is not the case that every lambda unifier of simultaneously typeable terms
“lifts” to a typed unifier. However, lambda unification problems in general have
many solutions; in this example, there is also the lambda unifier [X : c ] which
does lift, i.e. is the type erasure of a substitution in the language of type theory.

The inference system given for lambda unification can also be used, if all the
variables are typed, and function symbols omitted, and different Ap symbols
used for different types, to define a notion of typed lambda unification. In the
Masking Term and Substitution rules, the term q must have the same type as
the second argument of Ap on the left, in order that the conclusion be properly
typed.

To recap: we now have three kinds of unification to consider. There is
“higher-order unification”, there is “typed lambda unification”, and there is
(untyped) “lambda unification”. We have an inference system for each; incom-
plete for untyped lambda unification, complete for higher-order unification, and
up to now we have not made a claim about the completeness or incompleteness
of the inference system for typed lambda unification.

14



It will be instructive to compare higher-order unification with typed lambda
unification using an example. Consider, for example, the problem of unifying
λx. Ap(X, x) with λx. Ap(f, Ap(g, x)). Here f and g are distinct constants. We
shall first work this problem using higher-order unification, then again using
lambda unification.

Here is the solution by higher-order unification: This is what is called a
“flexible-rigid” equation, so the rule Generate ([7], p. 1031) will be applied.
With higher-order unification we introduce a new variable H (choosing any
of infinitely many possible types for H) and we get two templates of possible
unifiers:

X = λy. Ap(f, Ap(H, y))
and

X = λy. Ap(y, Ap(H, y))
and in addition we get the rest of the conclusion of the inference rule, the result
of substituting that value of X into the premise and β-reducing, respectively

λx. Ap(f, Ap(H, x)) = λx. Ap(f, Ap(g, x))

and
λx. Ap(x, Ap(H, x)) = λx. Ap(f, Ap(g, x)).

The first of these alternatives succeeds with H = g, yielding the final unifier

X = λy. Ap(f, Ap(g, y)).

The second alternative fails since it is a rigid-rigid equation, since x is bound
and f is constant.

Now consider how lambda-unification handles the same example. To unify
λx. Ap(X, x) with λx. Ap(f, Ap(g, x)), we “freeze” x, and then unify Ap(X, x)
with Ap(f, Ap(g, x)). Since X doesn’t occur on the right, we will use the Substi-
tution rule rather than the Masking Term rule. The (finitely many) choices
are:

x = f, X = λz. Ap(z, Ap(g, x))
x = g, X = λz. Ap(f, Ap(z, x))

X = λz. Ap(f, Ap(g, z))
x = Ap(g, x), X = λz. Ap(g, z))

But only the third alternative is legal, since it is the only one of the four that
produces a substitution that does not assign a value to x, so it is the only one
to which the Lambda rule can be applied (in reverse). The final answer is

X = λz. Ap(f, Ap(g, z))

just as for higher-order unification. (We did not, in this example, need to reject
any substitutions because they produced values depending on x.)

No extra variable H of infinitely many possible types was introduced, as in
higher-order unification. What happened to that new variable H introduced in
higher-order unification? Eventually it got instantiated, essentially to the term
used in the Substitution rule in lambda unification.

15



References

[1] Baader, F., and Snyder, W., Unification Theory, in Robinson, A., and
Voronkov, A. (eds.) Handbook of Automated Deduction, Vol. 1, pp. 445–
530. Elsevier, Amsterdam (2001).

[2] Beeson, M., Lambda Logic, revised and expanded version of [3], available
at www.michaelbeeson.com/research/papers/LambdaLogic.pdf.

[3] Beeson, M., Lambda Logic, in Basin, David; Rusinowitch, Michael (eds.)
Automated Reasoning: Second International Joint Conference, IJCAR
2004, Cork, Ireland, July 4-8, 2004, Proceedings. Lecture Notes in Arti-
ficial Intelligence 3097, pp. 460–474, Springer (2004).

[4] Beeson, M., Mathematical induction in Otter-lambda, accepted for publica-
tion in the Journal of Automated Reasoning (to appear in late 2006). Mean-
time, available at www.michaelbeeson.com/research/papers/induction.pdf.

[5] Beeson, M., Implicit Typing in Lambda Logic, available at
www.michaelbeeson.com/research/papers/ImplicitAndExplicitTyping.pdf.

[6] Beeson, M. The Otter-λ website:

www.MichaelBeeson.com/research/Otter-lambda/index.php

[7] Dowek, G., Higher-order unification and matching, in Robinson, A., and
Voronkov, A. (eds.) Handbook of Automated Deduction, Vol. 2, pp. 1009–
1060. Elsevier, Amsterdam (2001).

16


