% This file was mechanically generated % from the master list in TarskiTheorems.php. % Tarski-Szmielew's axiom system is used. % T is Tarski's B, non-strict betweenness. % E is equidistance. % Names for the axioms follow the book SST % by Schwabhäuser, Szmielew, and Tarski. % This file attempts to prove Satz5.1. set(hyper_res). set(para_into). set(para_from). set(binary_res). set(ur_res). set(order_history). assign(max_seconds,20). assign(max_mem,2000000). clear(print_kept). set(input_sos_first). set(back_sub). assign(bsub_hint_wt,-1). set(keep_hint_subsumers). assign(max_weight,8). assign(max_distinct_vars,3). assign(pick_given_ratio,4). assign(max_proofs,1). list(usable). % Following is axiom A1 E(x,y,y,x). % Following is axiom A2 -E(x,y,z,v) | -E(x,y,z2,v2) | E(z,v,z2,v2). % Following is axiom A3 -E(x,y,z,z) | x=y. % Following is axiom A4 T(x,y,ext(x,y,w,v)). E(y,ext(x,y,w,v),w,v). % Following is axiom A5 -E(x,y,x1,y1) | -E(y,z,y1,z1) | -E(x,v,x1,v1) | -E(y,v,y1,v1) | -T(x,y,z) | -T(x1,y1,z1) | x=y | E(z,v,z1,v1). % Following is axiom A6 -T(x,y,x) | x=y. % Following is axiom A7 -T(xa,xp,xc) | -T(xb,xq,xc) | T(xp,ip(xa,xp,xc,xb,xq),xb). -T(xa,xp,xc) | -T(xb,xq,xc) | T(xq,ip(xa,xp,xc,xb,xq),xa). % Following is axiom A8 -T(alpha,beta,gamma). -T(beta,gamma,alpha). -T(gamma,alpha,beta). % Following is Satz2.1 E(xa,xb,xa,xb). % Following is Satz2.2 -E(xa,xb,xc,xd) | E(xc,xd,xa,xb). % Following is Satz2.3 -E(xa,xb,xc,xd) | -E(xc,xd,xe,xf) | E(xa,xb,xe,xf). % Following is Satz2.4 -E(xa,xb,xc,xd) | E(xb,xa,xc,xd). % Following is Satz2.5 -E(xa,xb,xc,xd) | E(xa,xb,xd,xc). % Following is Satz2.8 E(xa,xa,xb,xb). % Following is Satz2.11 -T(xa,xb,xc) | -T(xa1,xb1,xc1) | -E(xa,xb,xa1,xb1) | -E(xb,xc,xb1,xc1) | E(xa,xc,xa1,xc1). % Following is Satz2.12 xq = xa | -T(xq,xa,xd) | -E(xa,xd,xb,xc) | xd = ext(xq,xa,xb,xc). % Following is Satz2.13 -E(xb,xc,xa,xa) | xb=xc. % Following is Satz2.14 -E(xa,xb,xc,xd) | E(xb,xa,xd,xc). % Following is Satz2.15 -T(xa,xb,xc) | -T(xA,xB,xC) | -E(xa,xb,xB,xC)| -E(xb,xc,xA,xB) | E(xa,xc,xA,xC). % Following is Satz3.1 T(xa,xb,xb). % Following is Satz3.2 -T(xa,xb,xc) | T(xc,xb,xa). % Following is Satz3.3 T(xa1,xa1,xb1). % Following is Satz3.4 -T(xa,xb,xc) | -T(xb,xa,xc) | xa = xb. % Following is Satz3.5a -T(xa,xb,xd) | -T(xb,xc,xd) | T(xa,xb,xc). % Following is Satz3.6a -T(xa,xb,xc) | -T(xa,xc,xd) | T(xb,xc,xd). % Following is Satz3.7a -T(xa,xb,xc) | -T(xb,xc,xd) | xb = xc | T(xa,xc,xd). % Following is Satz3.5b -T(xa,xb,xd) | -T(xb,xc,xd) | T(xa,xc,xd). % Following is Satz3.6b -T(xa,xb,xc) | -T(xa,xc,xd) | T(xa,xb,xd). % Following is Satz3.7b -T(xa,xb,xc) | -T(xb,xc,xd) | xb = xc | T(xa,xb,xd). % Following is Satz3.13a alpha != beta. % Following is Satz3.13b beta != gamma. % Following is Satz3.13a alpha != gamma. % Following is Satz3.14a T(xa,xb,ext(xa,xb,alpha,gamma)). % Following is Satz3.14b xb != ext(xa,xb,alpha,gamma). % Following is Satz3.17 -T(xa,xb,xc) | -T(xa1,xb1,xc) | -T(xa,xp,xa1) | T(xp,crossbar(xa,xb,xc,xa1,xb1,xp),xc). -T(xa,xb,xc) | -T(xa1,xb1,xc) | -T(xa,xp,xa1) | T(xb,crossbar(xa,xb,xc,xa1,xb1,xp),xb1). % Following is Satz4.2 -IFS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E(xb,xd,xb1,xd1). % Following is Satz4.3 -T(xa,xb,xc) | -T(xa1,xb1,xc1) | -E(xa,xc,xa1,xc1) | -E(xb,xc,xb1,xc1) | E(xa,xb,xa1,xb1). % Following is Satz4.5 -T(xa,xb,xc) | -E(xa,xc,xa1,xc1) | T(xa1,insert(xa,xb,xa1,xc1),xc1). -T(xa,xb,xc) | -E(xa,xc,xa1,xc1) | E3(xa,xb,xc,xa1,insert(xa,xb,xa1,xc1),xc1). % Following is Satz4.6 -T(xa,xb,xc) | -E3(xa,xb,xc,xa1,xb1,xc1) | T(xa1,xb1,xc1). % Following is Satz4.11a -Col(xa,xb,xc) | Col(xb,xc,xa). % Following is Satz4.11b -Col(xa,xb,xc) | Col(xc,xa,xb). % Following is Satz4.11c -Col(xa,xb,xc) | Col(xc,xb,xa). % Following is Satz4.11d -Col(xa,xb,xc) | Col(xb,xa,xc). % Following is Satz4.11e -Col(xa,xb,xc) | Col(xa,xc,xb). % Following is Satz4.12 Col(xa,xa,xb). % Following is Satz4.12b Col(xa,xb,xa). % Following is Satz4.13 -Col(xa,xb,xc) | - E3(xa,xb,xc,xa1,xb1,xc1) | Col(xa1,xb1,xc1). % Following is Satz4.14 -Col(xa,xb,xc) | -E(xa,xb,xa1,xb1) | E3(xa,xb,xc,xa1,xb1,insert5(xa,xb,xc,xa1,xb1)). % Following is Satz4.16 -FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | xa = xb | E(xc,xd,xc1,xd1). % Following is Satz4.17 xa = xb | -Col(xa,xb,xc) | -E(xa,xp,xa,xq) | -E(xb,xp,xb,xq) |E(xc,xp,xc,xq). % Following is Satz4.18 xa = xb | -Col(xa,xb,xc) | -E(xa,xc,xa,xc1) | -E(xb,xc,xb,xc1) | xc = xc1. % Following is Satz4.19 -T(xa,xc,xb) | -E(xa,xc,xa,xc1) | -E(xb,xc,xb,xc1) | xc = xc1. % Following defines the function insert insert(xa,xb,xa1,xc1) = ext(ext(xc1,xa1,alpha,gamma),xa1,xa,xb). % Following is Defn2.10 -AFS(xa,xb,xc,xd,za,zb,zc,zd) | T(xa,xb,xc). -AFS(xa,xb,xc,xd,za,zb,zc,zd) | T(za,zb,zc). -AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xb,za,zb). -AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xb,xc,zb,zc). -AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xd,za,zd). -AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xb,xd,zb,zd). -T(xa,xb,xc) | -T(za,zb,zc) | -E(xa,xb,za,zb) | -E(xb,xc,zb,zc) | -E(xa,xd,za,zd) | -E(xb,xd,zb,zd)| AFS(xa,xb,xc,xd,za,zb,zc,zd). % Following is Defn4.1 -IFS(xa,xb,xc,xd,za,zb,zc,zd) | T(xa,xb,xc). -IFS(xa,xb,xc,xd,za,zb,zc,zd) | T(za,zb,zc). -IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xc,za,zc). -IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xb,xc,zb,zc). -IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xd,za,zd). -IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xc,xd,zc,zd). -T(xa,xb,xc) | -T(za,zb,zc) | -E(xa,xc,za,zc) | -E(xb,xc,zb,zc) | -E(xa,xd,za,zd) | -E(xc,xd,zc,zd)| IFS(xa,xb,xc,xd,za,zb,zc,zd). % Following is Defn4.4 -E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa1,xa2,xb1,xb2). -E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa1,xa3,xb1,xb3). -E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa2,xa3,xb2,xb3). -E(xa1,xa2,xb1,xb2) | -E(xa1,xa3,xb1,xb3) | -E(xa2,xa3,xb2,xb3) | E3(xa1,xa2,xa3,xb1,xb2,xb3). % Following is Defn4.10 -Col(xa,xb,xc) | T(xa,xb,xc) | T(xb,xc,xa) | T(xc,xa,xb). Col(xa,xb,xc) | -T(xa,xb,xc). Col(xa,xb,xc) | -T(xb,xc,xa). Col(xa,xb,xc) | -T(xc,xa,xb). % Following is Defn4.15 -FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | Col(xa,xb,xc). -FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E3(xa,xb,xc,xa1,xb1,xc1). -FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E(xa,xd,xa1,xd1). -FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E(xb,xd,xb1,xd1). -Col(xa,xb,xc) | -E3(xa,xb,xc,xa1,xb1,xc1) | -E(xa,xd,xa1,xd1) | -E(xb,xd,xb1,xd1) | FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1). % Following is Defn5.4 -le(xa,xb,xc,xd) | T(xc,insert(xa,xb,xc,xd),xd). -le(xa,xb,xc,xd) | E(xa,xb,xc,insert(xa,xb,xc,xd)). -T(xc,y,xd) | -E(xa,xb,xc,y) | le(xa,xb,xc,xd). end_of_list. list(sos). % Following is the negated form of Satz5.1 a != b. T(a,b,c). T(a,b,d). -T(a,c,d). -T(a,d,c). % Following is the diagram: c1=ext(a,d,c,d). d1=ext(a,c,c,d). p=ext(c1,c,c,d). r=ext(d1,c,c,e). q=ext(p,r,r,p). b1 = ext(a,c1,c,b). b2 = ext(a,d1,d,b). e = ip(c1,d,b,d1,c). % Following are tautologies: d1=e | d1!=e. c = c1 | c != c1. end_of_list. list(demodulators). ext(a,d,c,d) = c1. ext(a,c,c,d) = d1. ext(c1,c,c,d) = p. ext(d1,c,c,e) = r. ext(p,r,r,p) = q. ext(a,c1,c,b) = b1. ext(a,d1,d,b) = b2. ip(c1,d,b,d1,c) = e. end_of_list. list(hints2). T(b,c,ext(a,c,x,y)). T(d,b,a). T(b,d,ext(a,d,x,y)). E(d,c1,c,d). T(a,d,c1). E(c,d1,c,d). T(a,c,d1). E(c,p,c,d). T(c1,c,p). E(c,r,c,e). T(d1,c,r). E(r,q,r,p). T(p,r,q). E(c1,b1,c,b). T(a,c1,b1). E(d1,b2,d,b). T(a,d1,b2). -T(c1,d,b)| -T(d1,c,b)|T(c,e,c1). T(b,c,d1). T(ext(a,d,x,y),d,b). T(b,d,c1). -E(d,x,c,y)| -E(x,c1,y,d)|E3(d,x,c1,c,y,d). E(d,c1,d,c). E(c,d,c1,d). T(c1,d,a). T(a,b,c1). c!=c1. E(d1,c,c,d). E(c,d,c,d1). E(c,d,d1,c). Col(c,d1,a). T(a,b,d1). -T(c,d,d1). -E(c,d,x,y)|E(c,p,x,y). E(c,d,p,c). Col(c1,c,p). E(r,c,e,c). E(c,e,c,r). Col(c,r,d1). T(r,c,d1). E(r,p,r,q). E(b1,c1,b,c). T(b1,c1,a). E(b2,d1,b,d). T(a,c,b2). T(c,d1,b2). -T(d1,c,b)|T(c,e,c1). Col(c,d1,b). T(d1,c,b). T(c1,d,b). E(d,c,d,c1). E(c,d1,c1,d). T(c1,b,a). Col(a,b,c1). T(a,b,b1). E3(c,d1,d,c,d,d1). E(c,p,c,d1). E(d,c1,c,d1). E(c1,d,c,d1). T(a,b,b2). E(d1,c,p,c). Col(c,c1,p). E(e,c,r,c). E(b,c,b1,c1). T(b1,c1,d). E(b,d,b2,d1). T(b,c,b2). T(c,e,c1). T(c1,e,c). T(d,e,d1). E(c,b2,c1,b). T(b1,c1,b). -T(c,d1,d). E(b1,d,b,d1). Col(c,c1,e). T(e,c,p). T(d1,e,d). E(b,b2,b1,b). -E3(x,y,y,c,d1,d). T(p,c,e). E(b,b2,b,b1). -E(c1,c1,d1,d). d1=c|E(r,p,e,d1). E(b2,x,b1,x). -E(x,x,d1,d). E(r,p,e,d1). E(x,b2,x,b1). E(b2,d,b,d1). E(p,r,d1,e). E(r,q,e,d1). E(e,d1,r,q). b1=b2. E(d1,e,p,r). T(b2,c1,b). IFS(b,c,b2,d,b2,c1,b,d1). E(c,d,c1,d1). E(c1,d1,d1,c). E(c1,d1,c1,d). E(d1,c,d1,c1). E(e,d1,e,d). -Col(c,c1,d1). IFS(d,e,d1,c,d,e,d1,c1). -E(r,c,r,c1). E(r,q,e,d). E(e,d,r,q). -Col(c,d1,c1). d1!=e. E(e,c,e,c1). -E(c,r,c1,r). E(p,q,d1,d). E(d,c,q,c). -T(c,d1,c1). E(r,c,e,c1). -E(c1,r,c,r). -E(x,x,p,q). E(c,d,c,q). -E(c1,r,c,e). E(c,p,c,q). -T(c1,r,c). c=r|E(d1,p,d1,q). -E(c1,p,c1,q). E(d1,p,d1,q). c=d1|E(b,p,b,q). c=d1|E(a,p,a,q). E(b,p,b,q). E(a,p,a,q). -E(a,p,a,q). end_of_list.