% This file was mechanically generated % from the master list in TarskiTheorems.php. % Tarski-Szmielew's axiom system is used. % T is Tarski's B, non-strict betweenness. % E is equidistance. % Names for the axioms follow the book SST % by Schwabhäuser, Szmielew, and Tarski. % This file attempts to prove Satz10.6. set(hyper_res). set(para_into). set(para_from). set(binary_res). set(ur_res). set(order_history). assign(max_seconds,120). assign(max_mem,2000000). clear(print_kept). set(input_sos_first). set(back_sub). assign(bsub_hint_wt,-1). set(keep_hint_subsumers). assign(max_weight,20). assign(max_distinct_vars,4). assign(pick_given_ratio,4). assign(max_proofs,1). list(usable). % Following is axiom A1 E(x,y,y,x). % Following is axiom A2 -E(x,y,z,v) | -E(x,y,z2,v2) | E(z,v,z2,v2). % Following is axiom A3 -E(x,y,z,z) | x=y. % Following is axiom A4 T(x,y,ext(x,y,w,v)). E(y,ext(x,y,w,v),w,v). % Following is axiom A5 -E(x,y,x1,y1) | -E(y,z,y1,z1) | -E(x,v,x1,v1) | -E(y,v,y1,v1) | -T(x,y,z) | -T(x1,y1,z1) | x=y | E(z,v,z1,v1). % Following is axiom A6 -T(x,y,x) | x=y. % Following is axiom A7 -T(xa,xp,xc) | -T(xb,xq,xc) | T(xp,ip(xa,xp,xc,xb,xq),xb). -T(xa,xp,xc) | -T(xb,xq,xc) | T(xq,ip(xa,xp,xc,xb,xq),xa). % Following is axiom A8 -T(alpha,beta,gamma). -T(beta,gamma,alpha). -T(gamma,alpha,beta). % Following is Satz2.1 E(xa,xb,xa,xb). % Following is Satz2.2 -E(xa,xb,xc,xd) | E(xc,xd,xa,xb). % Following is Satz2.3 -E(xa,xb,xc,xd) | -E(xc,xd,xe,xf) | E(xa,xb,xe,xf). % Following is Satz2.4 -E(xa,xb,xc,xd) | E(xb,xa,xc,xd). % Following is Satz2.5 -E(xa,xb,xc,xd) | E(xa,xb,xd,xc). % Following is Satz2.8 E(xa,xa,xb,xb). % Following is Satz2.11 -T(xa,xb,xc) | -T(xa1,xb1,xc1) | -E(xa,xb,xa1,xb1) | -E(xb,xc,xb1,xc1) | E(xa,xc,xa1,xc1). % Following is Satz2.12 xq = xa | -T(xq,xa,xd) | -E(xa,xd,xb,xc) | xd = ext(xq,xa,xb,xc). % Following is Satz2.13 -E(xb,xc,xa,xa) | xb=xc. % Following is Satz2.14 -E(xa,xb,xc,xd) | E(xb,xa,xd,xc). % Following is Satz2.15 -T(xa,xb,xc) | -T(xA,xB,xC) | -E(xa,xb,xB,xC)| -E(xb,xc,xA,xB) | E(xa,xc,xA,xC). % Following is Satz3.1 T(xa,xb,xb). % Following is Satz3.2 -T(xa,xb,xc) | T(xc,xb,xa). % Following is Satz3.3 T(xa1,xa1,xb1). % Following is Satz3.4 -T(xa,xb,xc) | -T(xb,xa,xc) | xa = xb. % Following is Satz3.5a -T(xa,xb,xd) | -T(xb,xc,xd) | T(xa,xb,xc). % Following is Satz3.6a -T(xa,xb,xc) | -T(xa,xc,xd) | T(xb,xc,xd). % Following is Satz3.7a -T(xa,xb,xc) | -T(xb,xc,xd) | xb = xc | T(xa,xc,xd). % Following is Satz3.5b -T(xa,xb,xd) | -T(xb,xc,xd) | T(xa,xc,xd). % Following is Satz3.6b -T(xa,xb,xc) | -T(xa,xc,xd) | T(xa,xb,xd). % Following is Satz3.7b -T(xa,xb,xc) | -T(xb,xc,xd) | xb = xc | T(xa,xb,xd). % Following is Satz3.13a alpha != beta. % Following is Satz3.13b beta != gamma. % Following is Satz3.13a alpha != gamma. % Following is Satz3.14a T(xa,xb,ext(xa,xb,alpha,gamma)). % Following is Satz3.14b xb != ext(xa,xb,alpha,gamma). % Following is Satz3.17 -T(xa,xb,xc) | -T(xa1,xb1,xc) | -T(xa,xp,xa1) | T(xp,crossbar(xa,xb,xc,xa1,xb1,xp),xc). -T(xa,xb,xc) | -T(xa1,xb1,xc) | -T(xa,xp,xa1) | T(xb,crossbar(xa,xb,xc,xa1,xb1,xp),xb1). % Following is Satz4.2 -IFS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E(xb,xd,xb1,xd1). % Following is Satz4.3 -T(xa,xb,xc) | -T(xa1,xb1,xc1) | -E(xa,xc,xa1,xc1) | -E(xb,xc,xb1,xc1) | E(xa,xb,xa1,xb1). % Following is Satz4.5 -T(xa,xb,xc) | -E(xa,xc,xa1,xc1) | T(xa1,insert(xa,xb,xa1,xc1),xc1). -T(xa,xb,xc) | -E(xa,xc,xa1,xc1) | E3(xa,xb,xc,xa1,insert(xa,xb,xa1,xc1),xc1). % Following is Satz4.6 -T(xa,xb,xc) | -E3(xa,xb,xc,xa1,xb1,xc1) | T(xa1,xb1,xc1). % Following is Satz4.11a -Col(xa,xb,xc) | Col(xb,xc,xa). % Following is Satz4.11b -Col(xa,xb,xc) | Col(xc,xa,xb). % Following is Satz4.11c -Col(xa,xb,xc) | Col(xc,xb,xa). % Following is Satz4.11d -Col(xa,xb,xc) | Col(xb,xa,xc). % Following is Satz4.11e -Col(xa,xb,xc) | Col(xa,xc,xb). % Following is Satz4.12 Col(xa,xa,xb). % Following is Satz4.12b Col(xa,xb,xa). % Following is Satz4.13 -Col(xa,xb,xc) | - E3(xa,xb,xc,xa1,xb1,xc1) | Col(xa1,xb1,xc1). % Following is Satz4.14 -Col(xa,xb,xc) | -E(xa,xb,xa1,xb1) | E3(xa,xb,xc,xa1,xb1,insert5(xa,xb,xc,xa1,xb1)). % Following is Satz4.16 -FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | xa = xb | E(xc,xd,xc1,xd1). % Following is Satz4.17 xa = xb | -Col(xa,xb,xc) | -E(xa,xp,xa,xq) | -E(xb,xp,xb,xq) |E(xc,xp,xc,xq). % Following is Satz4.18 xa = xb | -Col(xa,xb,xc) | -E(xa,xc,xa,xc1) | -E(xb,xc,xb,xc1) | xc = xc1. % Following is Satz4.19 -T(xa,xc,xb) | -E(xa,xc,xa,xc1) | -E(xb,xc,xb,xc1) | xc = xc1. % Following is Satz5.1 xa = xb | -T(xa,xb,xc) | -T(xa,xb,xd) | T(xa,xc,xd) | T(xa,xd,xc). % Following is Satz5.2 xa = xb | -T(xa,xb,xc) | -T(xa,xb,xd)| T(xb,xc,xd) | T(xb,xd,xc). % Following is Satz5.3 -T(xa,xb,xd) | -T(xa,xc,xd) | T(xa,xb,xc) | T(xa,xc,xb). % Following is Satz5.5a -le(xa,xb,xc,xd) | T(xa,xb,ins(xc,xd,xa,xb)). -le(xa,xb,xc,xd) | E(xa,ins(xc,xd,xa,xb),xc,xd). -le(xa,xb,xc,xd) | ins(xc,xd,xa,xb) = ext(xa,xb,insert(xa,xb,xc,xd),xd). % Following is Satz5.5b le(xa,xb,xc,xd) | -T(xa,xb,xe) | -E(xa,xe,xc,xd). % Following is Satz5.6 -le(xa,xb,xc,xd) | -E(xa,xb,xa1,xb1) | - E(xc,xd,xc1,xd1) | le(xa1,xb1,xc1,xd1). % Following is Satz5.7 le(xa,xb,xa,xb). % Following is Satz5.8 -le(xa,xb,xc,xd) | - le(xc,xd,xe,xf) | le(xa,xb,xe,xf). % Following is Satz5.9 -le(xa,xb,xc,xd) | -le(xc,xd,xa,xb) | E(xa,xb,xc,xd). % Following is Satz5.10 le(xa,xb,xc,xd) | le(xc,xd,xa,xb). % Following is Satz5.11 le(xa,xa,xc,xd). % Following is Satz5.12a1 -Col(xa,xb,xc) | -T(xa,xb,xc) | le(xa,xb,xa,xc). % Following is Satz5.12a2 -Col(xa,xb,xc) | -T(xa,xb,xc) | le(xb,xc,xa,xc). % Following is NarbouxLemma1 -T(xa,xb,xc) | -E(xa,xc,xa,xb) | xc = xb. % Following is Satz5.12b -Col(xa,xb,xc) | T(xa,xb,xc) | -le(xa,xb,xa,xc) | -le(xb,xc,xa,xc). % Following is Satz6.2a xa = xp | xb = xp | xc = xp | -T(xa,xp,xc) | -T(xb,xp,xc) | sameside(xa,xp,xb). % Following is Satz6.2b xa = xp | xb = xp | xc = xp | -T(xa,xp,xc) | T(xb,xp,xc) | -sameside(xa,xp,xb). % Following is Satz6.3a -sameside(xa,xp,xb) | xa != xp. -sameside(xa,xp,xb) | xb != xp. -sameside(xa,xp,xb) | c63(xa,xp,xb) != xp. -sameside(xa,xp,xb) | T(xa,xp,c63(xa,xp,xb)). -sameside(xa,xp,xb) | T(xb,xp,c63(xa,xp,xb)). % Following is Satz6.3b sameside(xa,xp,xb) | xa=xp | xb = xp | xc = xp | -T(xa,xp,xc) | -T(xb,xp,xc). % Following is Satz6.4a -sameside(xa,xp,xb) | Col(xa,xp,xb). -sameside(xa,xp,xb) | -T(xa,xp,xb). % Following is Satz6.4b sameside(xa,xp,xb) | -Col(xa,xp,xb) | T(xa,xp,xb). % Following is Satz6.5 xa = xp | sameside(xa,xp,xa). % Following is Satz6.6 -sameside(xa,xp,xb) | sameside(xb,xp,xa). % Following is Satz6.7 -sameside(xa,xp,xb) | -sameside(xb,xp,xc) | sameside(xa,xp,xc). % Following is Satz6.11a xr = xa | xb = xc | sameside(insert(xb,xc,xa,xr),xa,xr). xr = xa | xb = xc | E(xa,insert(xb,xc,xa,xr),xb,xc). % Following is Satz6.11b xr = xa | xb = xc | -sameside(xp,xa,xr) | -E(xa,xp,xb,xc) | -sameside(xq,xa,xr) | -E(xa,xq,xb,xc) | xp=xq. % Following is Satz6.13a -sameside(xa,xp,xb) | -le(xp,xa,xp,xb) | T(xp,xa,xb). % Following is Satz6.13b -sameside(xa,xp,xb) | le(xp,xa,xp,xb) | -T(xp,xa,xb). % Following is Satz6.15a xp = xq | xp = xr | -T(xq,xp,xr) | -Col(xa,xp,xq) | xa = xp | sameside(xa,xp,xq) | sameside(xa,xp,xr). % Following is Satz6.15b xp = xq | xp = xr | -T(xq,xp,xr) | -sameside(xa,xp,xq) | Col(xa,xp,xq). % Following is Satz6.15c xp = xq | xp = xr | -T(xq,xp,xr) | -sameside(xa,xp,xr) | Col(xa,xp,xq). % Following is Satz6.15d xp = xq | xp = xr | -T(xq,xp,xr) | xa != xp | Col(xa,xp,xq). % Following is Satz6.16a xa=xb | -T(xc,xa,xb) | -T(xd,xa,xb) | T(xd,xc,xb) | T(xc,xd,xb). % Following is Satz6.16b xp = xq | xcs = xp | -Col(xp,xq,xcs) | -Col(xp,xq,xr) | Col(xp,xcs,xr). % Following is Satz6.17a xp = xq | Col(xp,xq,xp). % Following is Satz6.17b xp = xq | -Col(xp,xq,xr) | Col(xq,xp,xr). % Following is Satz6.18 xa = xb | xp = xq | -Col(xp,xq,xa) | -Col(xp,xq,xb) | -Col(xp,xq,xr) | Col(xa,xb,xr). % Following is Satz6.21 xa = xb | xp = xq | -Col(xa,xb,xc) | -Col(xp,xq,xc) | -Col(xa,xb,xd) | -Col(xp,xq,xd) | xc=xd | -Col(xa,xb,xe) | Col(xp,xq,xe). % Following is Satz6.25 xa = xb | -Col(xa,xb,pointOffLine(xa,xb)). % Following is Satz6.28 -sameside(xa,xb,xc)| -sameside(xa1,xb1,xc1) | -E(xb,xa,xb1,xa1) | -E(xb,xc,xb1,xc1) | E(xa,xc,xa1,xc1). % Following is Satz7.2 -M(xa,xm,xb) | M(xb,xm,xa). % Following is Satz7.3a -M(xa,xm,xa) | xm = xa. % Following is Satz7.3b M(xa,xm,xa) | xm != xa. % Following is Satz7.4a M(xp,xa,s(xa,xp)). % Following is Satz7.4b -M(xp,xa,xr) | -M(xp,xa,xq) | xr=xq. % Following is Satz7.6 -M(xp,xa,xq) | xq = s(xa,xp). % Following is Satz7.7 s(xa,s(xa,xp)) = xp. % Following is Satz7.8 s(xa,xp) != xr | s(xa,xq) != xr | xp = xq. % Following is Satz7.9 s(xa,xp) != s(xa,xq) | xp = xq. % Following is Satz7.10a s(xa,xp) != xp | xp = xa. % Following is Satz7.10b s(xa,xp)=xp | xp != xa. % Following is Satz7.13 E(xp,xq,s(xa,xp),s(xa,xq)). % Following is Satz7.15a -T(xp,xq,xr) | T(s(xa,xp),s(xa,xq),s(xa,xr)). % Following is Satz7.15b T(xp,xq,xr) | -T(s(xa,xp),s(xa,xq),s(xa,xr)). % Following is Satz7.16a -E(xp,xq,xr,xcs) | E(s(xa,xp),s(xa,xq),s(xa,xr),s(xa,xcs)). % Following is Satz7.16b E(xp,xq,xr,xcs) | -E(s(xa,xp),s(xa,xq),s(xa,xr),s(xa,xcs)). % Following is Satz7.17 -M(xp,xa,xq) | -M(xp,xb,xq) | xa = xb. % Following is Satz7.18 s(xa,xp) != s(xb,xp) | xa = xb. % Following is Satz7.19 s(xa,s(xb,xp)) != s(xb,s(xa,xp)) | xa = xb. % Following is Satz7.20 -Col(xa,xm,xb) | -E(xm,xa,xm,xb) | xa = xb | M(xa,xm,xb). % Following is Satz7.21 Col(xa,xb,xc) | xb = xd | -E(xa,xb,xc,xd) | -E(xb,xc,xd,xa) | -Col(xa,xp,xc) | -Col(xb,xp,xd) | M(xa,xp,xc). % Following is Satz7.22a -KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | T(xm1,xc,xm2) | -le(xc,xa1,xc,xa2) . % Following is Satz7.22b -KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | T(xm1,xc,xm2). % Following is Satz7.22 -T(xa1,xc,xa2) | -T(xb1,xc,xb2) | -E(xc,xa1,xc,xb1) | -E(xc,xa2,xc,xb2) | -M(xa1,xm1,xb1) | -M(xa2,xm2,xb2) | T(xm1,xc,xm2). % Following is Satz7.25 -E(xc,xa,xc,xb) | M(xa,isomidpoint(xa,xb,xc),xb). % Following is Satz8.2 -R(xa,xb,xc) | R(xc,xb,xa). % Following is Satz8.3 -R(xa,xb,xc) | xa = xb | -Col(xb,xa,xa1) | R(xa1,xb,xc). % Following is Satz8.4 -R(xa,xb,xc) | R(xa,xb,s(xb,xc)). % Following is Satz8.5 R(xa,xb,xb). % Following is Satz8.6 -R(xa,xb,xc) | -R(xa1,xb,xc) | -T(xa,xc,xa1) | xb = xc. % Following is Satz8.7 -R(xa,xb,xc) | -R(xa,xc,xb) | xb = xc. % Following is Satz8.8 -R(xa,xb,xa) | xa = xb. % Following is Satz8.9 -R(xa,xb,xc) | -Col(xa,xb,xc) | xa=xb | xc=xb. % Following is Satz8.10 -R(xa,xb,xc) | -E3(xa,xb,xc,xa1,xb1,xc1) | R(xa1,xb1,xc1). % Following is Satz8.12a -perpAt(xa,xb,xc,xp,xq) | perpAt(xp,xq,xc,xa,xb). % Following is Satz8.12b -perp(xa,xb,xp,xq) | perp(xp,xq,xa,xb). % Following is Satz8.13a -perpAt(xa,xb,xc,xp,xq) | xa != xb. -perpAt(xa,xb,xc,xp,xq) | xp != xq. -perpAt(xa,xb,xc,xp,xq) | Col(xp,xq,xc). -perpAt(xa,xb,xc,xp,xq) | Col(xa,xb,xc). -perpAt(xa,xb,xc,xp,xq) | Col(xa,xb,f813(xa,xb,xp,xq,xc)). -perpAt(xa,xb,xc,xp,xq) | Col(xp,xq,g813(xa,xb,xp,xq,xc)). -perpAt(xa,xb,xc,xp,xq) | xc != f813(xa,xb,xp,xq,xc). -perpAt(xa,xb,xc,xp,xq) | xc != g813(xa,xb,xp,xq,xc). -perpAt(xa,xb,xc,xp,xq) | R(f813(xa,xb,xp,xq,xc),xc,g813(xa,xb,xp,xq,xc)). % Following is Satz8.13b xa=xb | xp=xq | -Col(xp,xq,xcx) | -Col(xa,xb,xcx) | -Col(xa,xb,u) | -Col(xp,xq,v) | xcx = u | xcx=v | -R(u,xcx,v) | perpAt(xa,xb,xcx,xp,xq). % Following is Satz8.14a -perp(xa,xb,xp,xq) | -Col(xa,xb,xp) | -Col(xa,xb,xq). % Following is Satz8.14b -perp(xa,xb,xp,xq) | -Col(xa,xb,xc) | -Col(xp,xq,xc) | perpAt(xa,xb,xc,xp,xq). % Following is Satz8.14c -perpAt(xa,xb,xc,xp,xq) | xc = il(xa,xb,xp,xq). % Following is Satz8.15 xa=xb | -Col(xa,xb,xd) | -perp(xa,xb,xc,xd) | perpAt(xa,xb,xd,xc,xd). % Following is Satz8.16a xa = xb | -Col(xa,xb,xp) | -Col(xa,xb,xq) | xq = xp | -Col(xa,xb,xc) | -perp(xa,xb,xc,xp) . xa = xb | -Col(xa,xb,xp) | -Col(xa,xb,xq) | xq = xp | R(xc,xp,xq) | -perp(xa,xb,xc,xp). % Following is Satz8.16b xa = xb | -Col(xa,xb,xp) | -Col(xa,xb,xq) | xq = xp | perp(xa,xb,xc,xp) | Col(xa,xb,xc) | -R(xc,xp,xq). % Following is Satz8.18a Col(xa,xb,xc) | -Col(xa,xb,xp) | -Col(xa,xb,xq) | -perp(xa,xb,xc,xp) | -perp(xa,xb,xc,xq) | xp = xq. % Following is Satz8.18 Col(xa,xb,xc) | Col(xa,xb,foot(xa,xb,xc)). Col(xa,xb,xc) | perp(xa,xb,xc,foot(xa,xb,xc)). % Following is Satz8.20a -R(xa,xb,xc) | -M(s(xa,xc),xp,s(xb,xc)) | R(xb,xa,xp). % Following is Satz8.20b -R(xa,xb,xc) | -M(s(xa,xc),xp,s(xb,xc)) | xb = xc | xa!=xp. % Following is perp1 -perp(xa,xb,xp,xq) | perp(xb,xa,xp,xq). % Following is ExtCol2 xa = xb | xc = xd | -Col(xa,xb,xc) | -Col(xa,xb,xd) | -Col(xc,xd,xp) | Col(xa,xb,xp). % Following is Satz8.21a xa = xb | perp(xa,xb,erect21a(xa,xb,xc),xa) | Col(xa,xb,xc). xa = xb | Col(xa,xb,erectAux21a(xa,xb,xc)) | Col(xa,xb,xc). xa = xb | T(xc,erectAux21a(xa,xb,xc),erect21a(xa,xb,xc)) | Col(xa,xb,xc). % Following is Satz8.21 xa = xb | perp(xa,xb,erect(xa,xb,xc),xa). xa = xb | Col(xa,xb,erectAux(xa,xb,xc)). xa = xb | T(xc,erectAux(xa,xb,xc),erect(xa,xb,xc)). % Following is Satz8.22b -le(xa,xp,xb,xq) | -perp(xa,xb,xa,xp) | -perp(xa,xb,xb,xq) | -T(xp,xt,xq) | -Col(xa,xb,xt) | M(xa,midpointAux(xa,xb,xp,xq,xt),xb). % Following is Satz8.22 M(xa,midpoint(xa,xb),xb). % Following is Satz8.24a -perp(xp,xa,xa,xb) | -perp(xq,xb,xa,xb) | -Col(xa,xb,xt) | -T(xp,xt,xq) | -T(xb,xr,xq) | -E(xa,xp,xb,xr) | xcx != ip(xp,xt,xq,xb,xr) | M(xa,xcx,xb). % Following is Satz8.24b -perp(xp,xa,xa,xb) | -perp(xq,xb,xa,xb) | -Col(xa,xb,xt) | -T(xp,xt,xq) | -T(xb,xr,xq) | -E(xa,xp,xb,xr) | xcx != ip(xp,xt,xq,xb,xr) | M(xp,xcx,xr). % Following is Satz8.24 -perp(xp,xa,xa,xb) | -perp(xq,xb,xa,xb) | -Col(xa,xb,xt) | -T(xp,xt,xq) | -T(xb,xr,xq) | -E(xa,xp,xb,xr) | M(xp,midpoint(xa,xb),xr). % Following is ext1 -Col(xa,xb,xc) | -Col(xa,xb,xd) | xa =xb | Col(xa,xc,xd). % Following is ExtPerp -Col(xa,xb,xp) | -Col(xa,xb,xq) | xp=xq | xa = xb | -perpAt(xp,xq,xr,xc,xd) | perpAt(xa,xb,xr,xc,xd). % Following is ExtPerp2 -Col(xa,xb,xp) | -Col(xa,xb,xq) | xp=xq | xa = xb | -perp(xp,xq,xc,xd) | perp(xa,xb,xc,xd). % Following is ExtPerp3 xa = xb | xa = xc | xb = xc | xd = xc | xa = xd | -perp(xb,xa,xa,xc) | -Col(xa,xc,xd) | perp(xb,xa,xa,xd). % Following is ExtPerp4 -perp(xa,xb,xp,xq) | perp(xa,xb,xq,xp). % Following is ExtPerp5 -Col(xa,xb,xp) | -Col(xa,xb,xq) | xp=xq | xa = xb | perp(xp,xq,xc,xd) | -perp(xa,xb,xc,xd). % Following is ExtPerp6 -Col(xa,xb,xp) | -Col(xa,xb,xq) | xp=xq | xa=xb | perp(xc,xd,xp,xq) | -perp(xc,xd,xa,xb). % Following is ExtSameSide1 -Col(xa,xb,xc) | xa = xb | xa = xc | -samesideline(xp,xq,xa,xb) | samesideline(xp,xq,xa,xc). % Following is ExtSameSide2 xa = xb | -samesideline(xp,xq,xa,xb) | samesideline(xp,xq,xb,xa). % Following is Satz9.2 -opposite(xa,xp,xq,xb) | opposite(xb,xp,xq,xa). % Following is Satz9.3a -opposite(xa,xp,xq,xc) | -Col(xp,xq,xm) | -M(xa,xm,xc) | -Col(xp,xq,xr) | -sameside(xa,xr,xb) | opposite(xb,xp,xq,xc) | -T(xr,xb,xa). % Following is Satz9.3 -opposite(xa,xp,xq,xc) | -Col(xp,xq,xm) | -M(xa,xm,xc) | -Col(xp,xq,xr) | -sameside(xa,xr,xb) | opposite(xb,xp,xq,xc). % Following is SideReflect -sameside(xa,xb,xc) | sameside(s(xm,xa),s(xm,xb),s(xm,xc)). % Following is Satz9.4a -opposite(xa,xp,xq,xc) | xp = xq | -Col(xp,xq,xcs) | -Col(xp,xq,xr) | -perp(xp,xq,xa,xr) | -perp(xp,xq,xc,xcs) | -M(xr,xm,xcs) | -sameside(u,xr,xa) | -le(xcs,xc,xr,xa) | xr = xcs | sameside(s(xm,u),xcs,xc). % Following is Satz9.4a2 -opposite(xa,xp,xq,xc) | xp = xq | -Col(xp,xq,xcs) | -Col(xp,xq,xr) | -perp(xp,xq,xa,xr) | -perp(xp,xq,xc,xcs) | -M(xr,xm,xcs) | sameside(u,xr,xa) | -le(xcs,xc,xr,xa) | xr = xcs | -sameside(s(xm,u),xcs,xc). % Following is Satz9.4b -opposite(xa,xp,xq,xc) | xp = xq | -Col(xp,xq,xcs) | -Col(xp,xq,xr) | -perp(xp,xq,xa,xr) | -perp(xp,xq,xc,xcs) | -M(xr,xm,xcs) | -sameside(u,xr,xa) | xr != xcs | sameside(s(xm,u),xcs,xc). % Following is Satz9.4 -opposite(xa,xp,xq,xc) | xp = xq | -Col(xp,xq,xcs) | -Col(xp,xq,xr) | -perp(xp,xq,xa,xr) | -perp(xp,xq,xc,xcs) | -M(xr,xm,xcs) | -sameside(u,xr,xa) | sameside(s(xm,u),xcs,xc). % Following is Satz9.4c -opposite(xa,xp,xq,xc) | xp = xq | -Col(xp,xq,xcs) | -Col(xp,xq,xr) | -perp(xp,xq,xa,xr) | -perp(xp,xq,xc,xcs) | -M(xr,xm,xcs) | -sameside(u,xr,xa) | -sameside(v,xcs,xc) | opposite(u,xp,xq,v). % Following is Satz9.5 -opposite(xa,xp,xq,xc) | -Col(xp,xq,xr) | -sameside(xa,xr,xb) | opposite(xb,xp,xq,xc). % Following is Satz9.6 -T(xa,xc,xp) | -T(xb,xq,xc) | T(xa,op(xq,xb,xp,xc,xa),xb). -T(xa,xc,xp) | -T(xb,xq,xc) | T(xp,xq,op(xq,xb,xp,xc,xa)). % Following is Satz9.8 -opposite(xa,xp,xq,xc) | opposite(xb,xp,xq,xc) | -samesideline(xa,xb,xp,xq). % Following is Satz9.9 -opposite(xa,xp,xq,xb) | -samesideline(xa,xb,xp,xq). % Following is Satz9.13 xp=xq | -samesideline(xa,xb,xp,xq) | -samesideline(xb,xc,xp,xq) | samesideline(xa,xc,xp,xq). % Following is Lemma9.13a -samesideline(xp,xq,xa,xb) | samesideline(xp,xq,xb,xa). % Following is Lemma9.13b xa = xb | -M(u,v,w) | -Col(xa,xb,u) | -Col(xa,xb,w) | Col(xa,xb,v). % Following is Lemma9.13c xd = xe | -T(xe,xd,xd1) | -samesideline(xa,xb,xd1,xe) | samesideline(xa,xb,xd,xe). % Following is Lemma9.13d xa = xb | -samesideline(xp,xq,xa,xb) | samesideline(xq,xp,xa,xb). % Following is Lemma9.13e -opposite(xa,xp,xq,xb) | -samesideline(xb,xc,xp,xq) | opposite(xa,xp,xq,xc). % Following is Lemma9.13g xp=xq | -perpAt(xp,xq,xc,xa,xc) | -perpAt(xp,xq,xc,xb,xc) | xa = xc | Col(xc,xa,xb). % Following is Lemma9.13f-case1 xp = xq | Col(xp,xq,xr) | Col(xp,xq,xcs) | samesideline(xr,xcs,xp,xq) | opposite(xr,xp,xq,xcs)| xp != foot(xp,xq,xr). % Following is Lemma9.13f-case2 xp = xq | Col(xp,xq,xr) | Col(xp,xq,xcs) | samesideline(xr,xcs,xp,xq) | opposite(xr,xp,xq,xcs) | xp = foot(xp,xq,xr). % Following is Lemma9.13f xp = xq | Col(xp,xq,xr) | Col(xp,xq,xcs) | samesideline(xr,xcs,xp,xq) | opposite(xr,xp,xq,xcs). % Following is Satz9.16 -samesideline(xa,xb,xp,xq) | -sameside(xa,xq,xr) | samesideline(xr,xb,xp,xq). % Following is Satz9.19b xc = xd | -Col(xc,xd,xp) | -Col(xa,xb,xp) | -sameside(xa,xp,xb) | Col(xc,xd,xa) | samesideline(xa,xb,xc,xd). % Following is Satz10.2a xa = xb | Col(xa,xb,midpoint(xp,reflect(xa,xb,xp))). xa = xb | xp = reflect(xa,xb,xp) | perp(xa,xb,xp,reflect(xa,xb,xp)). % Following is Satz10.2b xa = xb | -Col(xa,xb,midpoint(xp,xp1)) | -perp(xa,xb,xp,xp1) | xp1 = reflect(xa,xb,xp). xa = xb | -Col(xa,xb,midpoint(xp,xp1)) | xp != xp1 | xp1 = reflect(xa,xb,xp). % Following is Satz10.4 xa = xb | reflect(xa,xb,xp) != xp1 | reflect(xa,xb,xp1) = xp. % Following is Satz10.5 xa = xb | reflect(xa,xb,reflect(xa,xb,xp)) = xp. % Following defines the function insert insert(xa,xb,xa1,xc1) = ext(ext(xc1,xa1,alpha,gamma),xa1,xa,xb). % Following is Defn2.10 -AFS(xa,xb,xc,xd,za,zb,zc,zd) | T(xa,xb,xc). -AFS(xa,xb,xc,xd,za,zb,zc,zd) | T(za,zb,zc). -AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xb,za,zb). -AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xb,xc,zb,zc). -AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xd,za,zd). -AFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xb,xd,zb,zd). -T(xa,xb,xc) | -T(za,zb,zc) | -E(xa,xb,za,zb) | -E(xb,xc,zb,zc) | -E(xa,xd,za,zd) | -E(xb,xd,zb,zd)| AFS(xa,xb,xc,xd,za,zb,zc,zd). % Following is Defn4.1 -IFS(xa,xb,xc,xd,za,zb,zc,zd) | T(xa,xb,xc). -IFS(xa,xb,xc,xd,za,zb,zc,zd) | T(za,zb,zc). -IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xc,za,zc). -IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xb,xc,zb,zc). -IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xa,xd,za,zd). -IFS(xa,xb,xc,xd,za,zb,zc,zd) | E(xc,xd,zc,zd). -T(xa,xb,xc) | -T(za,zb,zc) | -E(xa,xc,za,zc) | -E(xb,xc,zb,zc) | -E(xa,xd,za,zd) | -E(xc,xd,zc,zd)| IFS(xa,xb,xc,xd,za,zb,zc,zd). % Following is Defn4.4 -E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa1,xa2,xb1,xb2). -E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa1,xa3,xb1,xb3). -E3(xa1,xa2,xa3,xb1,xb2,xb3) | E(xa2,xa3,xb2,xb3). -E(xa1,xa2,xb1,xb2) | -E(xa1,xa3,xb1,xb3) | -E(xa2,xa3,xb2,xb3) | E3(xa1,xa2,xa3,xb1,xb2,xb3). % Following is Defn4.10 -Col(xa,xb,xc) | T(xa,xb,xc) | T(xb,xc,xa) | T(xc,xa,xb). Col(xa,xb,xc) | -T(xa,xb,xc). Col(xa,xb,xc) | -T(xb,xc,xa). Col(xa,xb,xc) | -T(xc,xa,xb). % Following is Defn4.15 -FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | Col(xa,xb,xc). -FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E3(xa,xb,xc,xa1,xb1,xc1). -FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E(xa,xd,xa1,xd1). -FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1) | E(xb,xd,xb1,xd1). -Col(xa,xb,xc) | -E3(xa,xb,xc,xa1,xb1,xc1) | -E(xa,xd,xa1,xd1) | -E(xb,xd,xb1,xd1) | FS(xa,xb,xc,xd,xa1,xb1,xc1,xd1). % Following is Defn5.4 -le(xa,xb,xc,xd) | T(xc,insert(xa,xb,xc,xd),xd). -le(xa,xb,xc,xd) | E(xa,xb,xc,insert(xa,xb,xc,xd)). -T(xc,y,xd) | -E(xa,xb,xc,y) | le(xa,xb,xc,xd). % Following is Defn6.1 -sameside(xa,xp,xb) | xa != xp. -sameside(xa,xp,xb) | xb != xp. -sameside(xa,xp,xb) | T(xp,xa,xb) | T(xp,xb,xa). -T(xp,xa,xb) | xa=xp |xb=xp | sameside(xa,xp,xb). -T(xp,xb,xa) | xa=xp | xb=xp | sameside(xa,xp,xb). % Following is Defn7.1 -M(xa,xm,xb) | T(xa,xm,xb). -M(xa,xm,xb) | E(xm,xa,xm,xb). -T(xa,xm,xb) | -E(xm,xa,xm,xb) | M(xa,xm,xb). % Following is Defn7.23 -KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | T(xa1,xc,xa2). -KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | T(xb1,xc,xb2). -KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | E(xc,xa1,xc,xb1). -KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | E(xc,xa2,xc,xb2). -KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | M(xa1,xm1,xb1). -KF(xa1,xm1,xb1,xc,xb2,xm2,xa2) | M(xa2,xm2,xb2). -T(xa1,xc,xa2) | -T(xb1,xc,xb2) | -E(xc,xa1,xc,xb1) | -E(xc,xa2,xc,xb2) | -M(xa1,xm1,xb1) | -M(xa2,xm2,xb2) | KF(xa1,xm1,xb1,xc,xb2,xm2,xa2). % Following is Defn8.1 -R(xa,xb,xc) | E(xa,xc,xa,s(xb,xc)). R(xa,xb,xc) | -E(xa,xc,xa,s(xb,xc)). % Following is Defn8.11a -perpAt(y,z,x,y1,z1) | Col(y,z,x). -perpAt(y,z,x,y1,z1) | Col(y1,z1,x). -perpAt(y,z,x,y1,z1) |y != z. -perpAt(y,z,x,y1,z1) |y1 != z1. -perpAt(y,z,x,y1,z1) | -Col(y,z,u) | -Col(y1,z1,v) | R(u,x,v). perpAt(y,z,x,y1,z1) | y = z | y1 = z1 | -Col(y,z,x) | -Col(y1,z1,x) | Col(y,z,f811(y,z,y1,z1,x)). perpAt(y,z,x,y1,z1) | y = z | y1 = z1 | -Col(y,z,x) | -Col(y1,z1,x) | Col(y1,z1,g811(y,z,y1,z1,x)). perpAt(y,z,x,y1,z1) | y = z | y1 = z1 | -Col(y,z,x) | -Col(y1,z1,x) | -R(f811(y,z,y1,z1,x),x,g811(y,z,y1,z1,x)). % Following is Defn8.11b -perp(xp,xq,xp1,xq1) | perpAt(xp,xq,il(xp,xq,xp1,xq1),xp1,xq1). perp(xp,xq,xp1,xq1) | -perpAt(xp,xq,x,xp1,xq1). % Following is Defn9.1 xp = xq | Col(xp,xq,xa) | Col(xp,xq,xb) | -T(xa,xt,xb) | -Col(xp,xq,xt) | opposite(xa,xp,xq,xb). -opposite(xa,xp,xq,xb) | -Col(xp,xq,xa). -opposite(xa,xp,xq,xb) | -Col(xp,xq,xb). -opposite(xa,xp,xq,xb) | T(xa,il(xa,xb,xp,xq),xb). -opposite(xa,xp,xq,xb) | Col(xp,xq,il(xa,xb,xp,xq)). % Following is Defn9.7 -samesideline(xa,xb,xp,xq) | Col(xp,xq,ss1(xa,xb,xp,xq)). -samesideline(xa,xb,xp,xq) | Col(xp,xq,ss2(xa,xb,xp,xq)). -samesideline(xa,xb,xp,xq) | T(xa,ss1(xa,xb,xp,xq),ss3(xa,xb,xp,xq)). -samesideline(xa,xb,xp,xq) | T(xb,ss2(xa,xb,xp,xq),ss3(xa,xb,xp,xq)). -samesideline(xa,xb,xp,xq) | xa != ss1(xa,xb,xp,xq). -samesideline(xa,xb,xp,xq) | xb != ss2(xa,xb,xp,xq). -samesideline(xa,xb,xp,xq) | ss3(xa,xb,xp,xq) != ss1(xa,xb,xp,xq). -samesideline(xa,xb,xp,xq) | ss3(xa,xb,xp,xq) != ss2(xa,xb,xp,xq). -samesideline(xa,xb,xp,xq) | xp != xq. -samesideline(xa,xb,xp,xq) | -Col(xp,xq,xa). -samesideline(xa,xb,xp,xq) | -Col(xp,xq,xb). -T(xa,xu,xc) | -T(xb,xv,xc) | -Col(xp,xq,xu) | -Col(xp,xq,xv) |xp=xq | xc = xu | xc = xv | xa = xu | xb = xv | Col(xp,xq,xa) | Col(xp,xq,xb) | samesideline(xa,xb,xp,xq). end_of_list. list(demodulators). % Following is Satz 7.7, the only theorem in SST that is an equality. s(xa,s(xa,xp)) = xp. end_of_list. list(sos). % Following is the negated form of Satz10.6 a != b. reflect(a,b,p) = p1. p != reflect(a,b,p1). end_of_list.