
BOUGUER FAILS TO WEIGH THE EARTH, 1739

Newton’s theory of the motion of the planets was very successful. The law of universal
gravitation that he used said that any two bodies attract each other: not just moons,
planets, and the sun, but any bodies.

F =
GMm

r2

where M and m are the two masses, r the distance between them, and G the “gravitational
constant.”

Well then, how about taking the two objects to be a mountain and a small lead weight?
A “plumb bob” is just a weight on a thin flexible wire. We could hang a plumb bob next
to a mountain, and the mountain should pull it a little sideways, so that it would not point
to the center of the earth as it would when not near a mountain. If we just measure that
deflection, we could check Newton’s law.

Figure 1. Chimborazo, the mountain in Ecuador whose gravitational at-
traction Bouguer tried to measure.
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We could do more than just check the law. By measuring the deflection, we could
calculate the sideways force acting on the plumb bob. We could then compare that force
with the weight of the plumb bob, which is the force of gravity between the Earth and the
plumb bob. We know the radius of Earth, and we can estimate the mass of the mountain.
We have two equations (Newton’s law for the mountain and the bob, and Newton’s law for
the Earth and the bob). There are two unknown quantities: G and the mass of the Earth.
With two equations, we can find them both! (Check the math yourself, below.) Therefore,
in a sense, this experiment would weigh the Earth!

That must have been somewhat tantalizing. The man to do it was, in his own opinion,
Jean Bouguer. The mountain he chose was Chimborazo (see photograph above).

At that time, Chimborazo was thought to be the highest mountain on Earth, measured
from sea level–Mt. Everest hadn’t been discovered yet. Actually, the summit of Chimbo-
razo is the farthest point on Earth from the center of Earth. That is because it rests on
the “equatorial bulge”.

How did a French scientist happen to be in Ecuador (then part of the Territory of Quito,
claimed by Spain)? Ah, that also has to do with Newton’s law. One of the things Newton’s
law explains is why the Earth is spherical: Once it must have been liquid, or made of many
small solid pieces, and all the parts of it attracted all the other parts according to Newton’s
law. The result is that the parts packed themselves together as closely as possible: in a
sphere. But since the Earth is spinning–or perhaps we should say, if the Earth is spinning,
as that wasn’t quite proved yet, but it was by then widely believed–there should be an
“equatorial bulge”, as matter at the Equator should be subject not only to a gravitational
acceleration but to a centrifugal acceleration due to the rotation of the Earth. The Equator
should bulge to the height where the decrease in gravity due to the height just balances
the centrifugal acceleration. Below you can check for yourself how this calculation goes.

One can measure the equatorial bulge this way: By sighting the North Star at night,
one determines latitude. By sighting it in two places separated by one degree (of elevation
of the North Star), we find two places where latitude differs by one degree. Then, by
surveying the land in between those places carefully (in the daytime!) we measure the
distance between them. If the Earth were a perfect sphere, that would be 1/360 of the
circumference. But if the Earth has a bulge, then near the equator it should be more than
1/360 of the circumference, and near the poles it should be less.

Moreover, there is a third way to check Newton’s law: gravity should less on the top
of a mountain than at the base, because the top is farther from the center of the Earth.
Say a mountain is 4 miles high; that is 1/1000 of the radius of Earth, so gravity should
be less by a factor of 1.0012 = 1.002, i.e. less by two-tenths of a percent. That should be
measurable!

So there were three possible ways to check Newton’s law near an equatorial mountain
like Chimborazo. Was gravity smaller at the summit? Would it deflect a plumb line? And
was the Equator bulging? If so, then a degree of latitude should be longer on the surface.

For these reasons, the French Academy of Sciences sent a large and well-equipped ex-
pedition to Peru in 1735; and for good measure, they sent another expedition to Lapland,
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near the North Pole, to measure a degree of latitude there. Would it be smaller? The La-
pland expedition was under the direction of Swedish physicist Celsius (whose name is now
used for a temperature scale) and French mathematician Maupertais. They determined,
before the equatorial expedition finished its measurements, that the Earth was flattened
at the North Pole.

The Equatorial Expedition was quite an adventure. Its members left France in May
1735. They landed on the Caribbean coast of Columbia, then sailed to Panama, traveled
overland to the Pacific, and continued by sail to Ecuador. There they split into two groups,
traveling overland through rain forests, arriving in Quito in June 1736. Bouguer and his
colleagues successfully measured arcs of the Earths curvature on the Equator from the
plains near Quito to the southern city of Cuenca. That would have involved sighting the
stars at night with astronomical instruments, and surveying overland distances during the
day.

These measurements were completed by 1739. It is no coincidence that half a century
later, the French Revolution defined the meter as a certain fraction of the distance from
the North Pole to the Equator. But the Expedition stayed in Ecuador more than fourteen
years! They tried (unsuccessfully) more than once to climb Mount Chimborazo, probably
to measure gravity at the top. They discovered rubber, and witnessed two eruptions of
the volcano Cotopaxi in 1743 and 1744. (Chimborazo is also a volcano; it erupts about
every thousand years.) One of Bouguer’s co-directors, Godin, stayed in South America
until 1751, serving in Peru as a professor.

Now what about the experiment of “weighing the Earth” by measuring the deflection of
a pendulum? First of all, how could we do that? We need some way to measure “straight
up” other than the usual way of using a plumb bob, since our aim is to find out that the
plumb bob is not vertical. The key is to make two measurements on opposite sides of the
mountain, at points A and B say, and let O be the center of the Earth.1 Now you find a
star S in plane AOB and use your astronomical instruments to sight S both from A and
from B. At least AS and BS are parallel, and we can measure the deflection of the plumb
lines from AS and BS. If one plumb line is deflected more than the other that doesn’t
matter. Just add the deflections. Since we know the radius of the Earth, we can calculate
the slightly different directions of OA and AB. Then we have two very small angles (less
than one minute of arc, 1/60 of a degree) to subtract; the difference may be several seconds
of arc. (A second of arc is 1/3600 of a degree.)

Evidently it was necessary to build a small house around the apparatus to control wind
and temperature. Here is a picture of the appartus, from Bouguer’s book:

1The story of this experiment is told on pages 223–227 of [?]
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We don’t know the exact day of this Great Moment, but at some point Bouguer tried
this experiment. The result was completely unexpected: The plumb bobs were deflected
slightly away from the mountain. This was the opposite of the expected result!

Bouguer was a true scientist: he reported what he found, and did not fudge the re-
sults. His book, La Figure de la Terre, was published in 1849. Confusion ensued. Maske-
lyne (Royal Astronomer of England) repeated the experiment in 1774, at Schiehallion, in
Perthshire. He got a positive result, giving however a rather low density to the Earth. The
experiment was repeated by Petit in 1849, in the Pyrenees, and he, like Bouguer, got a
negative result, i.e. the mountain appeared to slightly repel the plumb bob. It was not
until 1855 that the modern explanation was put forth by Airy. By this time it was un-
derstood that under a crust, the Earth was molten. Airy calculated that mountains were
heavy enough to break the crust; therefore, they are essentially floating on whatever is
beneath the crust, like icebergs in the ocean. That means that some of whatever is under
there is displaced, in equal weight to the mountain. Thus the total mass that is attracting
the plumb bob from the mountain side is about the same as the total mass on the side
away from the mountain. That is why there isn’t much deflection.

A negative result in attempting to verify Newton’s law resulted in an advance in our
understanding of the internal structure of the Earth. Science doesn’t always advance as
we think it is going to.

By the way, Bouguer’s book, La Figure de la Terre, is now a collector’s item. The price
for a first edition as of October, 2013 is $2932.13. Yet, such are the wonders of twenty-first
century technology, that you can order a print-on-demand copy for about sixteen dollars.
These photos are of the first edition:
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Check the math yourself for weighing the Earth

We will write down Newton’s law for the mountain and the plumb bob, and then New-
ton’s law for the Earth and the plumb bob. The letters used in the equations have the
following meanings:

• m is the mass of the plumb bob
• M is the mass of the mountain
• r is the distance from the plumb bob to the center of mass of the mountain
• E is the mass of the Earth
• R is the radius of the Earth
• G is the gravitational constant
• mg is the weight of the plumb bob, where g = 9.8 m/sec2 = 32 ft/sec2 is the

acceleration of gravity at the Earth’s surface.
• F is the force between the mountain and the plumb bob
• θ is the angle of deflection of the plumb bob towards the mountain.

In addition to Newton’s law, we need the equation for θ. The plumb bob should hang
at a small angle θ to the vertical, such that the force F of its attraction to the mountain
is balanced by the weight of the plumb bob. Now, the weight of the plumb bob is pulling
straight down, but if the plumb bob is not hanging vertically, we can break that down-
ward pull into a component mg cos θ along the wire supporting the bob, and a tangential
component mg sin θ. Since θ is going to be a very small angle, we may neglect the even
tinier difference between “horizontal” and “tangential”, and equate mg sin θ to F . Then
our three equations are

Here are the equations:

mg =
GEm

R2

F =
GMm

r2

F = mg sin θ

The first thing is to eliminate F . Then the second two equations become

GMm

r2
= mg sin θ

Next we replace sin θ by θ; for θ as small as we need here (measured in seconds of arc) this
is an approximation much better than our accuracy of measurement. We get

GMm

r2
= mgθ

Now replace mg on the right by its equivalent from the first equation:

GMm

r2
=
GEm

R2
θ.
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Dividing both sides by MG we have

M

r2
=

E

R2

Now we can solve for E, the mass of the Earth:

E =
(
R

r

)2M

θ

Working at a desk in France in advance of the expedition, what value of θ might we expect?
We should calculate that to see if it’s even possible to measure such a small angle. Dividing
the equation by M we get

E

M
=

1
θ

(
R

r

)2

For lack of a better assumption, let’s assume that the Earth has the same density as a
mountain; and let’s think of a mountain as a sphere of radius r; so then we expect E/M
to be equal to R3/r3. Putting that in we get(

R

r

)3

=
1
θ

(
R

r

)2

Solving for θ we have

θ =
r

R
Perhaps r is something like 2 miles, so r/R is 2/4000 = 0.0005. This is θ in radians.
One radian is something like 60◦ so we get θ = 0.03 degrees, or about half a minute of
arc. In practice, the Earth might be denser than your average mountain, and your average
mountain might be smaller than a two-mile-sphere, so θ will probably come out small than
this number. But it shouldn’t be ten times smaller, so we should expect something on the
order of ten seconds of arc. Bouguer thought he could measure it!

If he could measure it, he could work the same math backwards to find the density (or
the weight) or the Earth, to whatever accuracy he could get for the mass of the mountain
and the distance to its center of mass, both a bit difficult to measure accurately, but surely
possible to at least one digit. But the true story turned out to be rather more complicated,
as described above.

Check the math yourself about the equatorial bulge

Newton’s law predicted that the Earth should be flattened at the poles and should bulge
at the equator. Our aim here is to calculate the magnitude of the bulge that Newton’s law
predicts.

Let R be the radius that Earth would have if there were no bulge. Now suppose there
is a bulge of height h (above R). Then the force of gravity at the equator on a mass m is

F =
GMm

(R+ h)2
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The difference between this force and the force if there were no bulge must be equal to
the centrifugal force. The formula for the centrifugal force is mv2/(R+ h), where v is the
velocity of a point on the Earth’s equator due to the daily rotation of the Earth. Hence
the equation to be solved for h is

mv2

R+ h
=

GMm

R2
− GMm

(R+ h)2

We can divide both sides by m and multiply by (R+ h)2, obtaining

v2(R+ h) = GM

(
R+ h

R

)2

−GM

= GM
(R+ h)2 −R2)

R2

= GM
R2 + 2Rh+ h2 −R2)

R2

= GM
2Rh+ h2

R2

Now the h2 term can be neglected, because it is much smaller than 2Rh. So we have

v2 = GM
2Rh
R2

= 2GM
h

R

We can get rid of GM/R2 because that is the acceleration of gravity at the Earth’s surface,
which is g = 9.8 m/sec2 = 32 ft/sec2. So we have

v2 = 2gh

At least the units are right here: we have meters per second2 on both sides. Then

h =
v2

2g
To get a numerical value for h, we have to find v in meters per second. In one day, a point
on the equator moves 40,000 km, which is the circumference of the Earth. So v = 4× 104

km/day, which is 4 × 107 meters/day. But we need that in seconds, so we have to divide
by 3600× 24. Thus

h =
v2

2g

=
1

2 · 9.8

(
4× 107

3600× 24

)2

= 10935 meters
= 10.9 km
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Now to measure this, we will need to survey the overland distance corresponding to one
degree of latitude. If there were no bulge, that distance would be R(2π/360). But at the
equator it will instead be (R+ h)(2π/360). Taking 2R as 12713.5 km, the former 110.946
km and the latter is 111.136 km. That should be measurable–but it would be a challenge
in mountainous jungle. The art of surveying in Europe in the eighteenth century was up
to it, though! Bouguer’s famous 1849 book reported on it in detail.

Did we get the right answer? According to Wikipedia’s article on the equatorial bulge,
the right answer is that the diameter measured across the equatorial plane is 42.72 km
more than measured between the poles. That is more like 4h than 2h, but that is because
the Earth is not only bulging at the equator, but flattened at the poles. We assumed R
to be the value that the radius would have if the Earth were not rotating (and never had
been); so that value is intermediate between the polar radius and the equatorial radius.
Therefore our rough calculation did come out right.

Today, these numbers can be checked by observations from satellites. Changes in average
sea level can be measured to the fraction of a millimeter! The details of how that is done
are also interesting, but that is another story.
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