
Lecture 4: The Primitive Recursive Functions

Michael Beeson

Primitive recursive functions

f is primitive recursive if and only if it is primitive recursive by
one of the following schemata, in which x denotes a list of one or
more variables, x denotes a single variable, and all functions have
number of arguments implicitly indicated. On this slide are four
not-so-important parts of the definition:

(i) The constant functions (of any number of arguments) are
primitive recursive.

(ii) The successor function f(x) = x′, the next integer after x, is
primitive recursive.

(iii) The projection function In,i(x1, . . . , xn) = xi is primitive
recursive.

(iv) (Generalized composition). If g and h1, . . . hn are primitive
recursive, and

f(x) = g(h1(x), . . . , hn(x))

then f is also primitive recursive.

The important part

(v) (Primitive recursion) If g and h are primitive recursive, and

f(x, 0) = h(x)

f(x, y′) = g(x, y, f(x, y))

then f is also primitive recursive. The case when x does not occur
is also allowed, and since we said x represents “one or more
variables”, it has to be listed separately:

f(0) = c

f(y′) = g(y, f(y))

Rephrasing the definition

The class of primitive recursive functions is the least class of
functions (of one or several natural-number arguments) containing
the constant, successor, and projection functions, closed under
generalized composition, and closed under primitive recursion.
Compare this definition to the one in Kleene, p. 220, where the

“least class” part is made more explicit.

History

The definition goes back at least to Skolem (1908). Scholars argue
about the history, primarily because the method of definition by
primitive recursion predates the actual definition of the class of
primitive recursive functions.

Hilbert definitely understood the class of primitive recursive
functions in the 1920s, as it occurs explicitly in his paper about
“the infinite.”

Examples of primitive recursive functions

One can easily show that the following functions are primitive
recursive:

f(x, y) = x+ y

f(x, y) = x · y

f(x, y) = xy

f(x, y) = x!

At this point we introduce the notation 1 = 0′ and 2 = 1′ = 0′′,
and so on. We can then use the primitive recursion equations to
calculate that 2 + 2 = 4. This familiar equation does have some
computational content!

Predecessor, min, and max
One introduces the predecessor function by

pd(0) = 0

pd(x+ 1) = x

and “cut-off subtraction” by

x−̇0 = x

x−̇(y + 1) = pd(x− y)

Then one has
min(a, b) = b−̇(b−̇a)

min(a, b, c) = min(min(a, b), c)

and so on for the minimum of more arguments;

max(a, b) = (a+ b)−min(a, b)

max(a, b, c) = max(max(a, b), c)

and so on for more arguments.

Sign and distance

|a− b| = (a−̇b) + (b−̇a).

The following functions can also easily be shown to be primitive
recursive:
The “sign of a” is 1 if a is positive and 0 when a = 0. This is
written sg(a). The function that is instead 0 when a is positive
and 1 when a is negative is written sg(a).

Division and mod

These are primitive recursive:

◮ The remainder of a on division by b, written by Kleene as
rm(a, b), by mathematicians as a mod b, and in 2014 by
programmers as a%b,

◮ cutoff division
⌊a/b⌋

Bounded sum and product

The following two equations lead from a primitive recursive g to a
primitive recursive f :

f(x, y) =
∑

z<y

g(x, z)

f(x, y) =
∏

z<y

g(x, z)

The n-th prime number

f(n) = pn, the n-th prime number

This requires a bound for “the next prime number”. Hint: use the
factorial function.

Bits and left-shift

The following functions are useful in connection with representing
strings in terms of ascii codes:

size(n) = the number of bits in (the binary representation of) n

Bit(i, n) = the power of 2i in the binary representation of n

x << n = x left-shifted by n

x >> n = x right-shifted by n

Primitive Recursive Predicates

The characteristic function of a predicate P (x) is the function
whose value is 1 if P (x) and 0 otherwise. The representing
function of P is similar, but has value 0 if P (x) and 1 otherwise.
A predicate is primitive recursive by definition, if and only if its
representing function is primitive recursive. The primitive recursive
predicates are closed under the logical connectives and under
bounded quantification, by which we mean

P (y,x) ↔ ∀z < y Q(z, y,x)

and similarly with ∃ instead of ∀.

Divisibility

The predicates n | m (“n divides m”) is primitive recursive.

Sequence numbers

Finite sequences of integers were coded by Gödel using unique
factorization. We define 〈a, b, c〉 to be 2a+13b+15c+1. For longer
sequences we use more primes than the first three. A sequence can
then be decoded by extracting the powers of primes in its
factorization. The function ℓh(x) (“length of x”) is the largest n
such that pn divides x. (x)y is defined to be one less than the
exponent of py in the factorization of x, if py divides x, else 0. All
these functions are primitive recursive.

Fibonacci numbers

These are given by
F (0) = F (1) = 1

F (n+ 1) = F (n) + F (n− 1)

This recursion is not a primitive recursion, yet the function F (n)
can be defined more elaborately in a primitive recursive way, for
example by defining

G(n) = 〈F (n), F (n + 1)〉

by primitive recursion and then defining F (n) = (G(n))0.

It’s the 21st century now

In these lectures, we shall sometimes use a different method of
coding finite sequences of integers, one more in accordance with
the times, and one that does not involve exponential increases in
length due to the use of powers of primes. Namely, to code the
sequence a, b, c, we write out the binary representations of a, b,
and c, as ordinary strings of digits, separated by commas, and
interpret that string as an integer. For example, the sequence
4, 5, 6 is represented as follow: 4 is 100 in binary, 5 is 101, and 6 is
110. But we use 8 bytes for each digit, padding on the left. So
(4, 5, 6) is computed from the string
"00000100,00000101,00000110". The length of this string is 26
characters. Note that this string contains three different symbols,
’0’, ’1’, and ’,’. As ascii codes, those are 48, 49, and 44
respectively. This string of 26 characters is now regarded as the
binary representation of an integer. That integer is, by definition,
(4, 5, 6). It has 8 · 26 = 208 bits.

Decoding a sequence
A consequence of this definition is that the number (a, b, c) can be
uniquely decoded; no two tuples will yield the same number under
this encoding. To decode a sequence number N , we first find the
string whose characters are the 8-bit pieces of N (padding N to a
multiple of 8 bits by zeroes on the left if necessary). Then we
identify the occurrences of 44 (ascii code of comma) in this string;
that determines the elements of the sequence. These must be
composed of the digits 0 and 1 only, or N does not code a
sequence. Then the strings between commas can be decoded into
integers. Note that if we used the bits of a, b, and c directly,
instead of the ascii codes of their digits, we might get confused by
“accidental” occurrences of the ascii code of comma among the
bits of a, b, and c; but using ascii codes of digits prevents that
confusion. This would have been more confusing than powers of
primes in 1936, but today it is straightforward and offers some
technical advantages. It also offers one technical disadvantage: it
is harder to formalize its basic properties in Peano arithmetic. We
will therefore make use of both methods of coding sequences.
To avoid confusion with the traditional sequence coding 〈a, b, c〉

Indices of primitive recursive functions

We can assign an index to each primitive recursive function as
follows. Each index of a primitive recursive function f will have the
form 〈i, n, . . .〉, where i tells which of the schemata (i)-(v) defines
f , and n gives the number of arguments of f . The part of the
index indicated by . . . depends on i, as follows. If i = 3, so f is the
projection function In,i, then the index of f is 〈3, n, i〉. If i = 4, so

f(x) = g(h1(x, . . . , hn(x))

then the index of f is 〈4, n, a, b1, . . . , bn〉 where a is the index of g
and bj is the index of hj . Finally, if i = 5 so f is defined by
primitive recursion from h and g, then the index of f is 〈5, n, a, b〉,
where a and b are the indices of h and g.

A non-primitive-recursive function
We can use these indices together with the diagonal method to
construct a computable but not primitive recursive function. (Here
we take computable in the sense of computable by a computer
program.) First we observe that it is computable whether e is an
index of a primitive recursive function, or not, and if so, we can
computably extract the parts of e and hence the definition of the
primitive recursive function f of which f is an index. Say that
e = 〈i, n, . . .〉. Then given e and x we can compute

F (e, x) = f(x)

provided e is the index of a primitive recursive function of 1
argument, and F (e, x) = 0 otherwise. Then F is total, i.e. defined
for all e and x. Now define

g(x) = F (x, x) + 1

Then g is not primitive recursive, by the diagonal method: for if g
has index e = 〈i, 1, . . .〉, then g(e) = F (e, e) = g(e) + 1,
contradiction.

Rosza Péter

Rosza Péter (1936, although that date of publication of her book
is much later than the actual work) analyzed the assignment of
indices more carefully and showed that it can be done by a “double
recursion”; in this way she explicitly gave a class of recursively
defined functions that went beyond the primitive recursive
functions. There are also “triple recursions” and “k-ary
recursions”, each allowing more functions to be defined, according
to Péter. Then there are functions defined by transfinite recursions
on certain orderings of the integers, and theorems relating these
different kinds of recursions. It seemed that no matter how many
kinds of recursion you defined, there was always a more
complicated kind that allowed more functions to be defined. After
all, the diagonal method guaranteed it!

Bounded arithmetic formulas and primitive recursion

Theorem
Every bounded arithmetic formula (formula of PA with only
bounded quantifiers) defines a primitive recursive predicate.

Remark. The converse, due to Gödel, is also true, but is more
difficult. We will prove it later (not today).

Proof. We already proved above that the primitive recursive
predicates are closed under the propositional connectives and
bounded quantification. It only remains to check the base case,
when the formula is atomic. The only predicate in PA is equality,
so the atomic formulae have the form t = s for terms t and s.
These terms are built up from successor, +, and ·. Hence they are
equivalent (equi-satisfied) to polynomial equations
p(x1, . . . , xn) = q(x1, . . . , xn), where p and q are polynomials with
coefficients in N. The representing function of such a relation is
given by f(x) = sg(p(x)−̇q(x)). Since every polynomial is
primitive recursive, and cutoff subtraction is primitive recursive, f
is also primitive recursive. That completes the proof.

Course of values recursion

See § 46 of Kleene. A corollary of the theorem about
course-of-values recursion is the following lemma, which helps us
considerably to understand the nature of recursion. If we have a
recursion in which the values of the argument at the recursive call
decrease, then it turns out to be a primitive recursion. (And of
course, the decrease in the arguments guarantees termination, so
the function is total.) You will see in the exercises that there are
examples of functions defined by more complicated functions, in
which the arguments do not necessarily decrease at recursive calls,
which turn out not to be primitive recursive even though they do
always terminate.

Lemma
Suppose f(n,x) is defined recursively as a function of values of
f(m,x) for m < n. Then f is primitive recursive.

For example, the Fibonacci function is primitive recursive for this
reason.

