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We are concerned with the fundamental (smallest x for given
squarefree d) solution of

x2 − dy2 = 1.

A Pell maximum is a d for which x is larger than for any previous
value of d. The Pell maxima grow rapidly:

Table: The first few Pell maxima

d x
3 2
5 9
10 19
13 649
29 9801
46 24335
53 66249
61 1766319049

109 158070671986249
181 2469645423824185801
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Kelley (2014) and Silva (2013) independently (empirically)
observed that the Pell maxima have these properties:

◮ d is prime (except 10 and 46)

◮ d ≡ 1 mod 4, and with two exceptions, d ≡ 5 mod 8.

Silva also observed that

◮ Asymptotically, log x = c
√
d (log log d) for some constant c.

Kelley also observed that

◮ The negative Pell equation x2 − dy2 = −1 is solvable

◮ The fundamental unit u of Q(
√
d) does not have integer

coefficients, i.e., does not lie in Z[
√
d], except for d = 409 and

d = 24049.

◮ h = 1 (the class number of Q(
√
d)).

Because it was surprising that the Pell maxima are primes, Kelley
christened them the “Pell primes.”
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We can’t prove any of those things, but we can prove some
implications between them.

For example: The primality of d follows from h = 1 and negative
Pell solvable, whether or not d is a Pell maximum; so those two
properties are “more mysterious” than the primality.

But it’s a famous open problem whether there are infinitely many
real quadratic fields with h = 1, so we don’t expect to prove all the
Pell maxima have h = 1.
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Figure: log u compared to c
√
d log log d with c = 0.4255, d ≤ 1015. Red

dots are the Pell maxima. Vertical scale is 107.
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Figure: log x for all solutions (x, y) of the Pell equation for d ≡ 1 mod 4.
Red means negative norm, green means negative norm.

2000 4000 6000 8000 10000

100

200

300

400

500

Michael Beeson Large solutions of the Pell equation



The class number formula for the field Q(
√
d), with discriminant

D, is

h log u =
1

2

√
DL(1, χD)

where u is the fundamental unit, and L is the L-series of the
quadratic field. Under the assumptions that h = 1 and d ≡ 1 mod
4 (so D = d), the class number formula can be written

L(1, χd) = 2
log u√

d
.

Since those assumptions (empirically) hold for the Pell primes, the
conjectured asymptotic form of log x = c

√
d log log d is equivalent

to
L(1, χd) = 2c log log d.
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Figure: L(1, χd)/(log log d) seems close to 0.85 . . .
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Figure: The log of the n-th Pell prime, versus n.
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Figure: The ratio of the n-th Pell prime to the previous one
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Some textbook facts

(Apologies to the experts). The fundamental unit u of Q(
√
d) is

related to the fundamental solution Z = x+ y
√
d of Pell’s

equation as follows: Z = u or u2 or u3 or u6, where the exponent
gets a factor of 2 if negative Pell (x2 − dy2 = −1) is solvable, and
a factor of 3 if u 6∈ Z[

√
d].

The integers of Q(
√
d) have fractional coefficients when d ≡ 5

mod 8, but u can sometimes be in Z[
√
d] even then, and no simple

criterion is known for when u ∈ Z[
√
d].

Negative Pell is solvable if and only if the norm of the fundamental
unit is negative, if and only if the period of the continued fraction
of

√
d is odd. There is no way to tell that except by either

computing the continued fraction, or the L-series, e.g. by Dirichlet
(1837).
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h log u =
1

2

√
DL(1, χD).

Here D = d when d ≡ 1 mod 4, else D = 4d.

As d increases, the
√
D term will tend to give you a new Pell max,

if L doesn’t decrease too much; i.e., if it’s not too big to start
with, and doesn’t get too small. If h should fail to stay 1, that
makes it harder to get a new Pell max. If the starting Pell max is
u6, it will be harder to get the next Pell max if the next one is only
u or u2 or u3 instead of u6.
Therefore it’s important to study L(1, χD), and to study it relative
to the conditions that control whether the Pell solution is u, u2,
u3, or u6, namely whether negative Pell is solvable and whether
u ∈ Z[

√
d] or not.
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We study the asymptotic behavior of

L̂(d) :=
L(1, χd)

log log d
.

Littlewood (1928) assuming GRH, improved by a later analysis of
the error term,

L̂ ≤ 3.56 see Granville(2003)

Littlewood also proved that L̂ infinitely often exceeds half that
maximum value, or 1.78. We call those “large L-values.”

There is a lot of space between 1.78 and 3.56. What really
happens?
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Languasco (2020) computed L(1, χd) out to d = ten million. For
these d, he found that Littlewood’s bound can be improved by a
factor of 0.62:

L̂(d) < 0.62 · 3.56
= 2.21

But ten million (seven digits) is a very small number, compared to
the known Pell maxima that run to sixteen digits.

Question: What is the least c such that for d sufficiently large, we
have L̂(d) < c ?
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Odd and even d

I conjecture that

d even → L̂(d) < 1.24.

(or perhaps with a slightly larger constant). I have verified it for d
up to 32 million. This is dramatically lower that Languasca’s 2.21.
It is even less that half Littlewood’s bound, which is 1.78. Thus it
looks like the “large L-values” are never even.

Table: Some L̂ new maxima for even d

d L̂(d)

48 0.561743
52 0.723509
58 0.991081
. . .

8440006 1.232641
12317386 1.234604
29268814 1.237712
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Odd and even period

Let m be the period of the continued fraction of
√
d. Recall that

m is odd if and only if the negative Pell equation x2 − dy2 = −1 is
solvable. I computed, out to six-digit D, whether (and how much)
Languasca’s bound can be improved for d with odd period.

It is not the case that every new max of L̂ has odd period (for
example 503281 has period 1574), but most of them do, and so it
appears that Languasca’s bound cannot be improved under the
assumption that negative Pell is solvable.

Questions: What is the least c such that for d sufficiently large and
x2 − dy2 = −1 solvable, we have L̂(d) < c ? And is c the same
with and without the restriction about negative Pell?
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Whether u ∈ Z[
√
d] or not

I computed the new maxima of L̂(d) subject to the restriction that
u 6∈ Z[

√
d]. I computed these values out to d just shy of twenty

million. At that point the value of L̂(d) was 0.8126. Most of these
d have norm −1, but a few, such as 8942389, have norm 1.

I also computed it for the Pell maxima found by Al Kelley, out to
magnitude 1016; by then it increases to 0.85, as shown in an earlier
graph.
This value is dramatically less than Littlewood’s bound. I
conjecture that for some constant c not too different from 0.86,
and d sufficiently large,

u 6∈ Z[
√
d] → L̂(d) < c.

Possibly the same bound holds under the weaker assumption d ≡ 5
mod 8.
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The double-d conjecture

For d > 2: Let (x, y) be the least positive solution of
x2 − dy2 = 1. Then for some e ≤ 2d, the least positive solution of
X2 − eY 2 = 1 has X > x.

That is, to find a larger Pell solution, we at most have to double d.
This conjecture is supported by the experimental data that the
ratio of two successive Pell primes is (much) less than 2; for then,
doubling d brings us past the next Pell prime after d, and hence to
a larger Pell solution.

As far as I know, there is no known estimate at all on the size of a
larger Pell solution. Zapponi (2015) notwithstanding.

Michael Beeson Large solutions of the Pell equation



Things for the experts to prove

◮ The Pell solutions computationally are all of the form u6, i.e.
negative Pell solvable and u 6∈ Z(d).

◮ The Pell solutions lie on a nice graph: L̂(d) approaches a
constant for Pell maxima d.

◮ The large Pell primes do not correspond to large L̂ values,
presumably because their other properties (negative Pell,
u 6∈ Z(d)) prevent it.

◮ Computationally these properties do restrict the values of L̂,
and several conjectures above are based on those
computational results.

◮ An estimate on how much d must increase to get a larger Pell
solution, given one for d, is not known.

◮ And of course, the class number of the Pell maxima is always
1, so far.
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