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Abstract

Nonstandard analysis has been put to use in a theorem-prover, where it
assists in the analysis of formulae involving limits. The theorem-prover in
question is used in the computer program Mathpert to ensure the correct-
ness of calculations in calculus. Although non-standard analysis is widely
viewed as non-constructive, it can alternately be viewed as a method of
reducing logical manipulation (of formulae with quantifiers) to computa-
tion (with rewrite rules). We give a logical theory of nonstandard analysis
which is implemented in Mathpert. We describe a procedure for “elim-
ination of infinitesimals” (also implemented in Mathpert) and prove its
correctness.

1 Introduction

The general context of this research is the use of logic to ensure the correctness
of computational steps. Many computational steps have side conditions that
must be satisfied when they are applied. Current computational systems gen-
erally ignore these side conditions, with the consequence that their answers are
unreliable. For example, in Macsyma one can enter ¢ = 0, then divide both
sides of the equation by @ with the command %/a. Macsyma will reply 1 = 0,
because it has mindlessly applied the rules a/a = 1 and 0/¢ = 0. More exam-
ples can be found in Beeson[5], Harrison and Théry[17], and a larger number
of examples can be found in Stoutemeyer.[26] Contrary to the first impressions
of some observers, these problems cannot be corrected by simply adding some
simple checks to algebraic computation systems.

A computation which appears to be a sequence of mathematical formulae,
one per line, each one obtained by transforming the previous one according



to a computation rule, really has a more intricate logical structure. Fach line
depends on a list of assumptions, which are usually not written. Some of the
computation rules generate more assumptions, and some use the assumptions
to verify their side conditions. As the computation proceeds, more assumptions
are generated; but also the assumptions themselves may simplify and even dis-
appear if they simplify to true. It can also happen that the simplification of
assumptions reveals a contradiction among the assumptions, so that what has
been derived is a non sequitur.

The side conditions of computational rules are sometimes simple, such as
denominators being nongero, or things inside square roots being nonnegative.
This soon leads to questions of the domain of expressions: it is clear that an
adequate computational system must be able to calculate the domain of every
expression.

The specific impetus for this work arose in the development of Mathpert,
which is a computerized environment for learning algebra, trigonometry, and
calculus. For an introductory description of this system, see [6]. Mathpert was
designed to support a logical apparatus sufficient to ensure correctness of the
answers it delivers. Algebra and trigonometry, if we omit indexed sums, can
be supported more or less on the basis so far described. Specifically, Mathpert
uses an infer-refute-assume algorithm[5, 7]. When a rule of computation re-
quires a side condition, Mathpert first attempts to infer that condition (from
the current assumptions and known, simple, axioms); if that fails it attempts to
refute the condition. If the refutation succeeds it refuses to apply the operation.
(This stops the MACSYMA example above.) If neither inference nor refutation
succeeds, it assumes the condition. In this way the list of assumptions can grow.

Calculus introduces an additional logical problem, not required in elementary
algebra and trigonometry, whose solution with the aid of nonstandard analysis
is the subject of this paper. The additional problem is the treatment of bound
variables. Normally in logic we think of variables bound by quantifiers. In
calculus, however, variables are bound by the limit operator, the definite integral
operator, and indexed sums.! Consider, for example, the problem of determining

the domain of .
e
k=1

This domain must come out to be true—the function is defined for all . We
must first of all inform the system that index variables are always integers. That
being done, the main problem stands out: x* is defined only for z £ 0V k >
0. Mathpert handles this problem as follows: When doing computation, the
expression tree is traversed depth-first. Some computation rules are applied

1In general, bound variables can be reduced to functional operations and lambda abstrac-
tion, as is well-understood by experts. The additional problem is not merely the existence of
additional binding operators, but the rules for mixing these operators with symbolic compu-
tation correctly.



on the way down (that is, before their arguments are simplified) and some
on the way up (after their arguments are simplified). When it passes into
an indexed sum, Mathpert generates the temporary assumption that the index
variable is between the lower and upper limits. In the example, that would be
the assumption 1 < k Ak < n. The assumption 1 < n would also be generated
(if it could not be inferred or refuted), but that is not a temporary assumption
and not the point of interest here. The temporary assumption is available for
use while computation is proceeding inside the indexed sum. In particular, it
is available during the analysis of the domain of z*, which therefore comes out
everywhere defined. When computation exits the indexed sum after traversal
of the entire expression tree, the temporary assumption is “discharged”.

Logically speaking: each line of computation can be viewed as a “sequent”
I' = A, where A is the visible line and I' is the list of current assumptions. The
list I' can grow from line to line as computation rules generate assumptions; it
can also shrink if assumptions simplify. But during computation, while we are
fixed at a single line, it can also grow and shrink as computation goes deeper
into and then out of variable-binding functors on the right side. This dynamic
quality is essential for the proper handling of bound variables.

2 The Problem, its Solution, and Examples
2.1 The Problem

The scheme described above seems adequate for the treatment of definite in-
tegrals and indexed sums. But calculus requires the treatment of limit terms
as well, and it is far from obvious what temporary assumptions must be made
when entering a limit term. Consider Example I

. (sin x2 1 >
lim +
x—0 x X — 1

In order to work correctly with the “limitand” (the formula inside the limit),
we must be able to infer that x # 0 and that = # 1. Of course, we cannot
generate any assumption involving x that will appear outside the scope of the
limit operator.

Here is Example 2. In calculating the derivative of /x from the limit defi-
nition of derivative, we reach a step in which we want to rewrite (v/2 + h)? as
&+ h. (Here h is the bound variable.) The rule (,/7)? = y is only valid when
0 < y, and we cannot generate the assumption 0 < x 4 h, because it involves
the bound variable. The correct assumption to generate is 0 < x. How can this
desired result be reached, by a general-purpose algorithm?

The problem is this: we must ensure that when computation is performed
inside a limit term, the logical inferences performed in verifying side conditions




are correct, and any assumptions generated by operations performed inside the
limit term do not involve the bound limit variable.

2.2 A solution using nonstandard analysis

A workable solution to this problem was described six years ago.[5] It amounts
to introducing second-order logic into the computation system, for example
a second-order functor true_in_nbhd, which takes a proposition and point as
argument and is true if the proposition is true in a neighborhood of the point.
Although this solution worked, it was complicated.

This paper describes another, more elegant solution, using nonstandard anl-
ysis. In essence, it is a way to replace second-order inferences by first-order
computation: calls to the limit-calculator. This saved several thousand lines of
complicated code in Mathpert.?

The idea is to treat limit terms in exactly the same way as definite integrals
and indexed sums are treated: to make a temporary (first-order) assumption
when entering the term and discharge it on exit, and let computation and infer-
ence both proceed normally while inside the term. The assumption is obvious
once nonstandard analysis is considered: when entering lim,_., f(x), make the
temporary assumption that z — a is infinitesimal, and = # «. For one-sided
limits from the right, assume ¢ < z instead of x # a, and for limits from the
left, assume x < a.

When computation completes its traversal of the limitand, any assumptions
which have been generated involving the limit variable, and not already elimi-
nated by simplification, must be eliminated: we cannot generate an assumption
involving a bound variable outside its scope. If this can be done by making ad-
ditional assumptions, it is done. If it can’t, then the computation or inference
we were attempting has failed.

We supply the system with both axioms and computational rules for dealing
with infinitesimals and infinite nonstandard numbers. The fundamental con-
cepts in our theory are x 2y, which means that = — y is infinitesimal (or zero),
and [[x], the standard part of x. Since we work in the logic of partial terms,
LPT, there is no problem about [z] being undefined for infinite numbers. The
axioms are stated using the predicate =2 and the function symbol [-]. The com-
putation rules are directed towards the goal of being able to compute [t] for
as many terms ¢ as possible. Here “compute” means to eliminate nonstandard
variables.

For example, reconsider the computation of the derivative of \/x, where we

2The effect of this change (made in June, 1992) was invisible to the user. Logic is in the
background in Mathpert. Students of calculus are not taught to worry about logical niceties.
But since Mathpert, unlike its answer-only cousins, produces only correct results, it must tend
to logical matters behind the scenes. The change to nonstandard analysis was thus doubly
invisible: logic is visible only if you explicitly choose View Assumptions, and besides,
nonstandard analysis produces the same results as second-order inference.



had to rewrite (v/x + h)? as x + h. This now takes place under the assumption
that A is infinitesimal (and not zero). When Mathpert tries to verify 0 <z + h,
it will compute the standard part of x4+ h to be x, and then simplify 0 < z+ h
to0 <z V(0 <z A0 <h). The system then simplifies this to 0 < z. If we had
been inside a one-sided limit from the right, it would have simplified to 0 < z.

2.3 Examples

One referee asked for more examples correctly worked by Mathpert. The point
to be emphasized here is that Mathpert will correctly work every example of a
limit problem found in calculus textbooks. At least, it has worked hundreds of
such examples correctly. The relevant point is not that it arrives at the correct
answer for the limit (which it does), but that it (1) analyzes the domain of the
expression involving the limit correctly, (2) makes no unnecessary assumptions
while calculating the limit, (3) makes all necessary assumptions to ensure cor-
rectness, and (4) makes no incorrect assumptions, such as assumptions involving
the limit variable made outside the scope of the variable. These claims can be
verified by choosing Assumptions from the View menu of Mathpert in order
to inspect the assumption list as a limit computation progresses. Here are some
specific examples.

lim 1/x Ezample 3

rz—1
Mathpert correctly shows an empty assumption list after analyzing the domain
of this expression.

lim tan Example 4

rz—1
Again Mathpert shows an empty assumption list, even though the expression
for the domain of tanz is = # (2n + 1)7/2, which involves a new existentially
quantified variable n of type int, generated by the domain analyzer.

i x? —1
im ——

z—2 /pr — 1
First, no assumption is generated by the requirement that things inside square
roots be nonnegative. Second, when the expression v/x — 1y/x — 1 is simplified
to x — 1, the side condition = — 1 > 0 is properly inferred, because this takes

place inside a limit as x approaches 2. The side condition reduces to o > 1,
where « is a nonstandard variable whose distance to 2 is infinitesimal.

FExample 5

FExample 6

Now the limit point is at the zero of the denominator, but because it is a one-
sided limit, everything goes as with the previous example.

Example 7



This is the same as the previous example except it is a two-sided limit. The
domain analyzer can determine the expression is undefined, since the domain
of vVa —1 for a nonstandard « whose distance to 1 is infinitesimal will reduce
to the proposition @ > 1, which will reduce to to false using the algorithm of
this paper.

Mathpert includes many mathematical operations with side conditions, and
one can give arbitrarily complicated examples, but these mathematically simple
examples should suffice to illustrate the logical points involved.

2.4 Correctness of the Algorithm

The above examples illustrate the use of nonstandard analysis in assisting with
inferences and reductions made inside the scope of a limit. The paper will give
an algorithm making this method systematic. In particular, the algorithm must
eliminate a nonstandard variable introduced in this way. Certain steps of the
algorithm replace a formula such as o < 1 by a formula (for example false)
which is not logically equivalent. Therefore a correctness proof is called for.
Theorem 3 of this paper provides such a correctness proof. The proof is based
on “interval semantics”: a formula ¢(a) involving the nonstandard variable
is interpreted to mean that ¢(x) is true for all x in a suitable (punctured)
neighborhood of the limit point. (The neighborhood will be one-sided for a
one-sided limit.)

3 Logic with types and partial terms

The main purpose of this paper is to describe an algorithm for “infinitesimal
elimination” and prove its correctness. However, it is not so easy even to state
the correctness theorem, as that necessarily involves a formal logical theory for
calculus. Since the algorithm involves nonstandard analysis, we also need a
formal theory for nonstandard analysis. In this section we formulate a suitable
first-order theory of standard calculus. This requires some reformulations of
traditional first-order logic, to deal with partial terms such as 1/z, and to deal
with the type-embedding problem. Readers who do not wish to check the details
of the correctness proof may be able to skip this section.

To formulate a theory of real numbers with square root in ordinary predicate
logic, we would have to allow \/Z — 1) as a term. It is unnatural to work with
v/ when z is negative (when we do not have complex numbers in mind). Tt
is better to use a Logic of Partial Terms (LPT) which takes “f is defined” as
a primitive concept. A suitable logic LPT has been formulated[3]. One of its
rules for formula formation is that if ¢ is a term, then ¢ | is a formula, which
means t is defined.

The type-embedding problem already arises when we want to discuss both
integers and real numbers, and have 3 be both an integer and a real number.



To understand the problem clearly, consider that we will want two types, int
(for integers) and real (for real numbers). In a notation to be fully explained
below, we write Vx.int to quantify over integers, and x : real for a formula
expressing that = is a real number. We can then state the commutativity of
adding integers and reals, and the commutativity of adding reals and reals, and
we should be able to derive the former from the latter.

Specifically, we should be able to derive Vn.int Vax.real (n+x = x+ n)
from Vr.real Vy.real (z+y = y+x), making use of the type-embedding axiom
Vn:int (n:real).

There are two traditional methods to solve the type-embedding problem:
The first is to use two unary predicates N(z) and R(x), with the type-embedding
axioms N(x) — R(x). This has the disadvantage that all quantifiers must be
explicitly relativized to these unary predicates. The second method is to use
a two-sorted predicate calculus, with one sort for integers and one for reals.
This has the disadvantage that there must be an explicit type-embedding func-
tion that converts the integer 3 to the real number 3. When writing papers,
as opposed to computer programs, one can make some conventions that slur
the distinctions between these two approaches, but to be precise one needs an
apparatus that combines the best of these two approaches. In this approach
a variable is labelled with its type (as in two-sorted predicate calculus), but
predicate and function symbols are not required to take exactly one type as
argument. Thus the formula < y is well-formed regardless of whether x and y
have type real or integer. I do not know of any mention of such a version of
predicate calculus in the literature, but it is a straightforward matter to reduce
it to known versions, and we will use it. To illustrate the legal syntax: if we
have a type int, then Vz.int Vy.int(z + y = y + x) would be a legal formula.
We use the notation x.int to indicate type information attached to a variable.
On the other hand x : int will be written for a formula. Officially this should
be x.int : int , but we will never write it out like this. In an implementation,
some bits of (or accessible from) the object representing = will be set aside for
type information, and the notation x.int is meant to denote that those bits
contain the code for the type int . The use of two different symbols x.int
(which is a variable) and = : int (which is a formula) helps in writing a precise
grammar below.

This shows the type information explicitly. When writing on paper, we show
the type labels on variables only when they are bound, as in Vn.int Vz.real(x+
n = n+ x), but the type labels are neverthless officially present with each
occurrence of the variable. We also allow ‘typings’ to be used as atomic formulae.
Thus Vn.int(n : real) is a legal formula, which can be used to express a type-
embedding.

We set out here the syntax and rules of first-order logic with partial terms
and typed variables. This version of first-order logic gives a good solution of
the type-embedding problem and of the undefined-terms problem.



variable::= identifier.type

term::= variable | constant | functor(termlist)
termlist::= term | term,termlist
atomic_formula::=  term | |

true | false |
term : type |
term = term |
term infix relation term
pfunctor (termlist)
formula::= atomic_formula |
formula A formula |
formula V formula |
formula — formula |
— formula |
VY variable (formula)
d variable (formula)
formula_ list::= formula | formula,formulalist | <empty>
sequent::= formulalist = formula
classical_sequent::= formulalist = formulalist

Note that these rules make x.A a variable, not x standing alone. However,
in writing on paper, we suppress the typing information and just write x, except
where quantifiers bind variables. We formulate the logic using Gentzen sequents.
The rules for propositional calculus are the usual Gentzen rules (see e.g. system
G1 in Kleene[19]).

To specify any particular system in this logic, we must add grammar rules
for functor, pfunctor, constant, and type. This is the same as in the usual
presentations of first-order logic, where a particular first-order theory must be
specified by its function symbols and constants. Here we must also give types
and pfunctors, that is, symbols used for atomic propositions. We also adopt
the usual convention regarding arities of functors: each functor comes with a
specified arity, so that not just any termlist can be put into just any functor.
The grammar above does not enforce such a restriction, but all readers will
know how to make it do so, at some cost in readability. To fix the ideas, one
may take the rules

type ::- real | int
infix_relation ::- < | < | #£ | =
functor ::- 1ln, sqrt,

and have no rule at all for pfunctor.

The Gentzen rules for variables and quantifiers require modification, both
because of the use of LPT and because of the use of typed variables. In these
rules, I and A are lists of formulae, A is a type, and t is a term. Substitution
of a term for a variable is indicated by a slash. Here are the rules:



T,b: A= ob.Alz]
' = Va.A(9)

T,b: A, ¢b.Ajx] = b
T, 3z.A(¢) = v

U, t: A olt)z. Al = v
T,Vz.A(d) =

= ¢[t/x. Al A=1:A
A = 3z . A(9)

The first two of these rules are subject to the usual restriction on variables,
that b is not free in the conclusion of the rule, that is, the part below the line.
These rules are the intuitionistic rules; the classical rules are obtained just by
allowing more formulae on the right of =. All theories used in this paper will
be classical.

The use of constant propositions true and false requires the axioms

I' = true
false,I'= ¢
and a reformulation of the rule for introducing negation:

I',¢ = false
I'=—¢

With this rule, we can make sure the succedent (right hand side of =) is never
empty.
The equality axioms in LPT take the form

r=xAN(rx=y—y==1)

(tLVsl=t=s)Ao(t) = ¢(s)

The relationship between the two symbols we have used for typing is given
in the following “typing axioms”:

Ve Az : A)

z.B:A— 3z A(x =2)

To illustrate the need for the second typing axiom, consider trying to prove
Vo A(x : int — x : real), when given only the axiom Vz.int (x : real). We
have to argue as follows: Let x.4 be given. Suppose x : int . Then by the



second typing axiom, x is equal to some integer 2z, and by the type-embedding
of integers into reals, z is also a real; hence by equality axioms x : real.

There are some rules required by the logic of partial terms. The first one
says that there are no undefined objects. Undefinedness is a property that terms
can possess, not a property that objects being spoken about can possess. All
objects exist.

I'=xA]|

The version of LPT already in the literature[3] requires strictness: for each
n-ary function symbol f and each sequence of terms £;, and each i < n, we have

f(tlv"'vt’ﬂ) l«_>t’bl

We shall keep this condition in the present formulation, though one would like
to weaken it, because it was essential to the completeness proof for LPT. In
particular, it implies that the meaning of ¢ : A is “f is defined and of type A”.
Strictness also applies to relation symbols and equality:

r=y—x| Ayl

and
R(z,y) —x | Ay |

for each atomic relation symbol R (infix or not).

Note that in the typed version of LPT presented here, the definedness sym-
bol does not enter into the quantifier rules.> The untyped version[3] has the
rule

I = ¢[t/x] A=t
LA = 3x(¢)

in place of the rule used here:

= ¢[t/x: A] A=1t:A
LA = 3x: A(o)

You might wonder how the definedness symbol will ever enter into proofs then.
There are at least two ways: from the existence axiom, and from non-logical
axioms. For example, you might have the nonlogical axiom

v |= (Vo) =z

3Since we did not specify the grammar rules for type, there may really be several “typed
versions” of our theory. If we further require that there are only constant types, as is the case
in Mathpert, then the consistency of the typed version follows from that of the untyped version
in the same way as for ordinary logic, by interpreting the types as predicates. A completeness
theorem would require additional work, but completeness is not used in this paper.
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with the aid of which you could deduce
r:real Ax<0= x|

(Of course the proof will have to use some other non-logical axioms enabling us
to prove that squares are never negative.)

As an example to clarify the rules, and demonstrate how type embedding is
handled, consider the commutativity of addition in the form

Vr.real Vy.int(x+y=y+x)

This is derivable from the type embedding Vr.int(z : real) and the commuta-
tivity law for reals:

Vrx.real Vyreal(r+y=1y+x)

by a straightforward formalization of the informal argument: Let x.real and
y.int be given; then by the type embedding we have x : real and ¥y : real,
hence x 4+ y = y + x. Note that the second typing axiom was not used.
Remark: One referee asked about the semantics of this system, for example,
what is the truth value of v/—1 # 0?7 The answer is, that this formula has no
truth value because of the undefined constituent formula. A definition of the
semantics would be superfluous, because of the reduction of LPT to ordinary
logic in [4]. For a discussion of interpretations of LPT and a completeness
theorem for this logic see the exercises on page 99 of Beeson[3], or see Beeson|[4].

4 An axiomatization of standard analysis

In this section we first give a “standard” theory adequate for formalizing calcu-
lus. We will keep things simple by using just two basic types: integer (abbrevi-
ated int) and real. Here integer means negative or nonnegative integer. The
basic relation symbols are =, <, <, and #. The basic functions are x + vy, x - y,
¥, x/y, —x. We also fix once and for all a set F' of unary functions to be rep-
resented, for example, square root and natural log. Mathpert actually includes
many more functions. It is important, however, that the functions defined by
terms in this language form a set closed under differentiation.*

4Hence in Mathpert, when we wanted to include the gamma function, we also had to
include the polygamma function, which is needed for the derivatives of the gamma function.
The derivative of |z| is |z|/x; we don’t mean to imply that all the functions are differentiable
everywhere. Specifically, we assume that for each unary function symbol f in the theory there
is a term which can be proved to denote the derivative of f except at isolated points of the
domain of f.

11



4.1 Nonlogical axioms

The nonlogical axioms of the theory of standard calculus are as follows:

(1) The schema of mathematical induction
(2) The axioms of ordered exponential fields
(3) Dedekind’s schema

(4) Axioms about the specific functions in F’

Dedekind’s schema expresses, for each term #(x) of the theory, that if #(x) is
defined and uniformly continuous on the interval ¢ <z < b and if @« < bAt(a) <
0AL(b) >0, then 3z : real(t(x) =0A e < x Ax <b). The usual €6 definition
of uniform continuity is to be used. The use of uniform instead of pointwise
continuity is of no significance.

Under (2) we have included not only the ordered field axioms, but also
axioms about exponentiation, including both the usual algebraic axioms and
axioms relating exponentiation and order.

Under (4) we include the following axioms for square roots and logarithms

>0 (VI =)
r<0——/x|

Inz

r>0—e ==

r<0—-lnzx|

4.2 Puiseux series

A Puiseux series is like a power series, except the exponents are multiples of
some fixed fraction, rather than integers. Also, the series is allowed to begin with
a finite number of terms with negative exponents. Puiseux series are defined
and discussed, for example, on page 98 of Siegel[25], but the preceding brief
description should be adequate to understand this paper. It is necessary that
the elementary properties of Puiseux series be provable in T'; for example, that
the limit as x approaches zero of a Puiseux series in x is equal to the limit of its
leading term. For this it suffices that T prove the fundamental properties about
which rational powers of x dominate which other rational powers for small x.
These results can be derived from the axioms of exponential ordered fields. The
nonlogical axioms for each function included in the theory should be sufficient
to justify the calculation of Puiseux series for that function where such a series
exists.

4.3 Some extensions of the basic theory

This section describes three interesting extensions of the theory, which for sim-
plicity have been omitted from the basic syntax, but to which the results of the
paper can be extended.

12



Traditional first-order logic does not allow the formation of terms with bound
variables, such as lim,_.. f(x) or definite integrals. It is not difficult to formu-
late the syntax required for allowing such terms, and even, using the logic of
partial terms, to allow such terms to be undefined sometimes. (Since freshmen
are routinely required to use this syntax, it had better not be too difficult to
formulate.)

The system implemented in Mathpert has, in addition to the types int, real,
and complex, the type notnumber, whose members are denoted by constants oo,
—00, complexinfinity, bounded_oscillations, and unbounded oscillations,
which can be used as values of limit terms. These terms are not treated as un-
defined, but as defined values which are not real (or complex) numbers. They
are vital for the proper treatment of limits at infinity and infinite limits. The
additional type notnumber will not be dealt with in this paper, but it presents
no difficulties; the treatment of nonstandard analysis below extends to a theory
with this type.

The simple type theory given here is adequate for freshman calculus. How-
ever, the logical framework used extends easily to the type theories promulgated
in a series of papers over the last couple of decades by S. Feferman. A recent
formulation can be found in Feferman[16]. The results given in this paper will
extend to this setting; and the algorithms discussed below may have even more
interesting applications at higher types. In particular Feferman’s theories allow
an interesting mixture of typed and untyped variables.

5 An axiomatization of nonstandard analysis

Given a typed language such as has been described, we add a new type corre-
sponding to each old type. In our case, we add the types of extended integer and
extended real, which we abbreviate as eint and ereal. Intuitively, the nonnega-
tive extended integers are a nonstandard model of (at least) Peano Arithmetic,
and the extended reals are (at least) a non-Archimedean real-closed field in-
cluding the nonstandard integers. We refer to int and real as the “standard”
types and eint and ereal as the “extended” types.

The two pieces of syntax that enable us specifically to deal with nonstandard
concepts are as follows: a binary relation x 22 y, whose intended meaning is “r—y
is infinitesimal (or zero)”, and a unary function symbol [[z] for the standard part
of x.

The standard fragment of our theory consists of the formulae and terms
built up without mentioning the extended types ereal and eint, and without
mentioning =2 and [-]. In particular, a standard formula is one containing no
variables (bound or free) of type eint or ereal, and not containing = or [-].

We shall list the nonlogical axioms of our theory precisely. The first group
of nonlogical axioms are the type-embedding axioms. They say that an int is
both a real and an eint, and everything is an ereal.

13



xr:int — x:real
x:int — x:eint
x :ereal

The next axioms concern the congruence relation:

r=y—y=x
rEyANyZz—ax =z
r=x

The next axioms concern the standard part. They say that the standard
part is a partial function mapping extended reals to reals, extended integers to
integers, which is the identity on the standard reals and integers, and respects
the congruence relation. Moreover, two numbers are congruent if they have the
same standard part. (Intuitively, the standard part is a partial function because
it is not required to be defined on “infinite” extended reals, but only on those
reals which are infinitesimally close to a standard real.)

z=yAz] 1= [z = [v]
[zl =ly] ===y
x:ereal Afzx] |— [x] : real
x:eint Afzx] |— [x] : int
[z] | = == [z]
r:int —[z]==x
r:real —[x] ==

These axioms do not prevent congruence from being “too small”. The fol-
lowing axiom says that the positive numbers congruent to zero are exactly those
less then the reciprocals of all the standard integers. This is called the axiom
of infinitesimals.

r>¥y—Vnint (n>0— |z —y| < 1/n)

Note that the version of the logic of partial terms we use requires all pred-
icates to be “strict”. In particular x = y — 2« |, so the previous axioms imply
[«] is defined whenever the type of x is a standard type.

The last axiom is needed to make sure the extended types really are different
from the standard types:

Jz.eint Vn.int (x > n)

Ezercise: Prove |z +y| = [z] + [v].
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5.1 Transference

The transfer of a standard formula A is another formula A*, obtained by chang-
ing the type of bound variables from int to eint and from real to ereal. (If
there were more types in our theory, they would come in pairs, standard and
extended, and the transfer would replace each standard type by its extended
counterpart.)

Given a theory T in the standard fragment of our language, we form the
nonstandard version of T, which we call T, by adding to T all the formulae
A* — A for A a standard formula of 7. Any free variables in A just play the
role of fixed (standard) parameters.

5.2 Nonstandard Treatment of Limits

Let T' be an ordinary mathematical theory formulated in the standard fragment
of the language discussed above. We suppose that 7' contains the schema of
mathematical induction, and at least the axioms of the theory of ordered fields
(in which every positive element has a square root). This is enough to define
absolute values, and hence to state the usual &6 definition of limit, and prove
the basic theorems about that concept.

If T is formulated so as to explicitly include limit terms, we suppose that T'
also includes a defining axiom schema making the value of limit terms equal to
what you get from the e-6 definition. Specifically, for each term t of T', we have

lim t = y <> Vereal Fb.real Vaereal 0<|z—c¢| <6 —|t—y| <€)

r—cC

In this formula the variable y has type real , not ereal . Since we have not
formulated 7" with explicit limit terms, the meaning of this formula is that the
left-hand side is an abbreviation (at the meta-level) for the right-hand side.

We will now give the nonstandard characterization of limits implemented in
Mathpert its precise logical statement. This is, of course, not new: it is just the
usual nonstandard characterization of limits.[23] The new points about it made
here are (1) this characterization can be formalized in the theory T*, and (2)
T* can be, and has been, computationally implemented.

Remark: It should be noted that our theory is much weaker than the usual
theories of nonstandard analysis, in that there are no variables for real-valued
functions, or even sequences of reals. All functions are given by explicit terms of
the theory. This is not important to the methods illustrated here, which would
apply to any natural mathematical theory. It does mean that there is something
to be checked, as the usual proof involves using the transference principle in the
form that says sequences defined on the standard integers extend to sequences
defined on the extended integers.

Theorem. If T contains the axioms of ordered fields and the schema of math-
ematical induction, then lim, .. f(x) = y is equivalent in T* to Va.ereal(a =

chac— fla)=y).
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Proof: Suppose lim,_.. f(x) = y. Then let a = ¢, but @ # ¢. We must show
f(a) 2 y. We have by the definition of limit

Ve.real Jb.real Vrereal (0 < |z —c| <6 — |f(x)—y| <€)

Let n be a standard integer, and take ¢ = 1/n. We thus have a standard real §
such that
Vereal (0 <|r—c¢l <b6—|f(x)—y| < 1/n).

Note that transference is applicable since y is standard. By transference, we
have
Vr.ereal (0 < |z —c|<b6—|f(x)—y| <€)

Take x = o. We have 0 < |a — ¢|. Hence
la—¢| <6 —|fla) —y| < 1/n.

But since a 22 ¢, we have |o — ¢| < 6 by the axiom of infinitesimals. Therefore
|f(a) —y| < 1/n. Hence, by the axiom of infinitesimals, f(a) = y.

Now for the other direction. We proceed by contradiction.® Suppose z =
¢ — f(x) 2y, and suppose that f(x) does not approach y as x — ¢. Then

Jereal (e > 0AVk.int Jrreal (0 <|x—c| <1/EA|f(z)—y| >¢€)
Fix such a (standard) e. Then applying transference,
Vk.eint Jr.ereal (|Jz—c¢| < 1/EA|f(x)—y| > €)

Choose an infinite integer k, and let = be such that |z —c| < 1/kA|f(x) —y| >

€. Then by the axiom of infinitesimals, x = ¢, so we have f(x) = y, which
contradicts |f(z) —y| > €.

5.3 Converting nonstandard proofs to standard proofs

What we need to know is that if a standard theorem is proved using nonstandard
methods it is true. In order to quote the well-known fact that every theorem
with a nonstandard proof also has a standard proof, we need to connect our
theory T with some theory in the literature, for which that conservation result
has been proved.® There are several axiomatizations of nonstandard analysis in
the literature. Robinson himself began with a type-theoretic version and later
gave a set-theoretic version[24]. Kreisel[20] gave one as a preliminary to his
theorem. More recently, E. Nelson developed his theory IST.[21, 22] The most

5(Classical logic seems necessary here, because the congruence formulation of limits does
not contain the computational information about how to compute § as a function of €.

6Such a theorem was first proved by Kreisel.[20] The original proof is highly model-theoretic
in nature, and gives no hint of how to transform a nonstandard proof explicitly into a “corre-
sponding” standard proof.
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beautiful proof of such a conservation result is found in Nelson’s axiomatization,
so we will refer to that version.

Nelson’s theory is formed from a theory of standard analysis by adding a
new unary predicate standard (and three axioms, which we do not discuss here).
The main difference between T* and IST is not in the nonstandard part at all,
but in the fact that IST is based on set theory, while T is a typed theory. It is
well known, however, how to interpret types in set theory, so that each formula
A of T has an interpretation in Zermelo set theory Z. Our first task is to extend
that interpretation to an interpretation of 7 in IST.

First, I will show how to define the fundamental concepts x = y and y = [z]
of T* in terms of IST. Nelson defines “infinitesimal” to mean positive but less
than all standard reals, and then he defines = =~y if x — y is infinitesimal. One
can then define the standard part of z as that (necessarily unique) standard
number y such that x =y, if such a y exists. The fundamental types erealand
real, eint and int, also have natural interpretations in IST, enabling us to
translate atomic formulae of the form ¢ : A. Types are simply interpreted as sets.
The easiest way to handle the definedness symbol is to choose some otherwise
irrelevant set junk and make it the value of all undefined terms. Of course, junk
cannot be a (standard or nonstandard) real number. Then the interpretation
of x | is just & # junk. These rules determine a natural translation of T™* into
IST.

Nelson proved the conservation result that if A is an internal formula prov-
able in IST, then A has a proof in the standard set theory on which IST is
based.” Applying Nelson’s theorem, we obtain the desired result:

Theorem. Let A be a standard theorem of T*. Then the translation of A into
IST has a standard proof in classical Zermelo set theory.

Proof: Let A be a standard theorem of T*. Then the translation of A into
IST has a proof in IST. By Nelson’s theorem, it has a proof in Zermelo set
theory.

6 An infinitesimal-elimination algorithm

This section contains a precise definition of the infinitesimal-elimination algo-
rithm used by Mathpert. The purpose of the algorithm is to eliminate a nonstan-
dard variable which was introduced when computation entered a limit term, so
to each nonstandard variable ac.ereal there corresponds an assumption o =2 ,
where x is a standard variable. If the limit is one-sided, there is also an as-
sumption & < « (for limits from the right) or o« < x (for limits from the left);
otherwise there is an assumption x # «. Thus each nonstandard variable has

"Moreover, the proof is fully constructive, unlike the original proof of Kreisel’s theorem.
Nelson gives an algorithm for converting nonstandard proofs into standard proofs. The algo-
rithm is reminiscent of the Godel Dicalectica interpretation.
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a “domain inequality” associated to it. As a matter of notation, we will use «
for a (the) nonstandard variable associated to a limit as = approaches ¢, and
we will use h for the corresponding infinitesimal quantity o — c¢. Strictly speak-
ing “infinitesimal elimination” is only accurate when ¢ = 0; generally we are
eliminating a nonstandard variable a.

The algorithm to be defined here eliminates only one infinitesimal. Formulas
involving nested (iterated) limits can therefore not be treated by this method.
Whether this limitation can be removed by more careful bookkeeping, we do
not know. The usefulness of the algorithm depends on computational code for
computing limits, which in turn relies on Puiseux series computations, and the
computation of nested limits is notoriously more difficult than simple limits.
Probably the difficulty of computation is the main obstacle to extending the
method, rather than any inherent logical difficulties.

6.1 Introduction to the Algorithm

The method can be partly described as a small collection of rewrite rules, for
reducing logical formulae to simpler logical formulae. One hopes that variables
of type ereal will be eliminated by the rewriting, so that a logical formula
generated inside the scope of a bound limit variable (and hence involving an
infinitesimal) will be reduced to a standard formula not involving the bound
variable. The rules involve the decomposition of an extended real into its “stan-
dard part” and its “nonstandard part”, analogous to the decomposition of a
complex number into real and imaginary part. We have already introduced the
notation [z] for the standard part; let us define NS(x) = xz — [z]. Here are
the two most important rules. (These are logical equivalences, but they will be
used as rewrite rules from left to right.)

r <y— [zl <yl v (lz] = [y] ANS(x) < NS(y)
<y — [zl <lylv(lz] = [y] ANS(z) < NS(y)

These rules do not yet constitute the definition of an algorithm. For one thing,
we haven’t said how to apply the rules, or how to compute the standard and
nonstandard parts involved. But more importantly, these rules alone won’t do
the job. Consider the example of computing the derivative of /2. Under the
limit, we have to simplify /& + h |. This comes to 0 < x+h. The standard part
of  + h is x and the nonstandard part is h, so the rules above simplify this to
0 < xV(0=2xA0 < h). What Mathpert does when simplifying 0 < h is to search
for the domain inequality in the list of assumptions (that is, in the antecedent
of the current sequent). If this inequality is A # 0, showing that the limit it
came from was a two-sided limit, then Mathpert simplifies 0 < h to false. This
procedure cannot be described as a rewrite rule, even a rewrite rule with side
condition. It does have the desired result, at least in this example, because then
0 <aV(r=0A0<h) simplifies to 0 < z. The nonstandard variable i has
been eliminated correctly. Note that if we had been calculating the one-sided
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limit from the right, 0 < A would have simplified to true by the ordinary rules
used by Mathpert, using the domain inequality 0 < h, so we would have come
out with 0 < = vV 0 = z, which simplifies to 0 < z.

The third rule used in the infinitesimal elimination algorithm is this: If the
domain inequality for the nonstandard variable o is o« #£ ¢, then a < ¢, a < ¢,
a > ¢, and o > c all rewrite to false. This rule may appear problematic,
since it certainly shows that the “rewrite” in question does not preserve a direct
logical equivalence. However, in the informal “interval semantics” motivating
the algorithm, the formula ¢(«) means that ¢ is true in a neighborhood of the
limit point ¢, and interpreted this way, it makes sense to rewrite o > ¢ as false,
etc.

The standard part of x, denoted [x] above, is abstractly defined, so the al-
gorithm for infinitesimal elimination can’t be considered defined by the above
three rules until we give methods for computing the standard and nonstandard
part. A computational procedure stdpart (implemented in Mathpert) attempts
to compute [t] for an explicitly given term t. This function computes the stan-
dard part of a variable x of type ereal or eint by looking in the list of current
assumptions for an assumption x 2 f, and returning stdpart(#). The standard
part of an expression not involving any variables of type ereal or eint is just
the input expression. On compound expressions containing nonstandard vari-
ables, stdpart uses leading terms of Puiseux series in a way described in more
detail at the end of this section. In applying the two rewrite rules listed above,
the function stdpart(z) is used to implement [z].

We assume that stdpart has been correctly programmed, in the sense that
it satisfies the following properties:

(1) If stdpart returns successfully an answer ¢ on input f then ¢ is a standard
term and T proves I', I = ¢ 22 , where I is the list of assumptions current
when stdpart is called and I is the list of assumptions about the nonstandard
variable(s) involved in t.

(2) stdpart will always terminate, either in success or failure. We emphasize
that stdpart will no doubt fail to compute a correct answer on a sufficiently
complicated input, but it will not go into infinite regress. It will succeed or give
up.

(3) If stdpart terminates successfully on input £, then T proves

lim t[z/a] = stdpart(t)

r—cC

Similarly, there is a computational procedure nonstdpart which attempts to
compute (an approximation to) the non-standard part of a term. Like stdpart,
it will always terminate, but may fail to compute the answer. When it does
terminate successfully, we have nonstdpart(t) = NS(t), provably in T*. Of
course this property would be satisfied by taking nonstdpart(t) = 0, but such
a weak algorithm for nonstdpart(t) would not be interesting. The essential
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property of nonstdpart(t) is that, when it terminates successfully, it correctly
determines the sign of { — stdpart(t) in a neighborhood of the limit point.

The algorithm employed also makes use of simplification. Simplification is
applied both to mathematical expressions and to logical formulae. You may
think of simplification as something like normalizing a term using rewrite rules,
but some of the rules used are more general than rewrite rules. infer operates
by simplifying its argument, hopefully to true, while refute tries to simplify to
false.

The exact nature of infer and refute are not germane: we need just a few
properties of them. Namely,

(1) We assume that infer and refute always terminate (whether successful
or not), and that if infer(¢) succeeds, then ¢ is provable. More precisely, T*
proves I', A = ¢, where I is the list of assumptions current when infer is called,
and A is the list (often empty, but not always) of new assumptions generated
during the execution of infer. As a matter of notation, we will always use A
for a list of assumptions generated during computation.

(2) We also assume that if ¢ simplifies to g (for terms ¢ and ¢) then T* proves
I' = ¢ = ¢. Similarly, if ¢ and 1 are propositions, and ¢ simplifies to ¥, then T
proves I' = ¢ < . In practice this hypothesis is satisfied, because the rules of
simplification come directly from the mathematical axioms of T, together with
simple rules of propositional calculus.

(3) We assume that infer is able to prove true inequalities of the form
ah® > 0 under assumptions of one of the forms h > 0, h #£ 0, h < 0, where u is
a rational number.

We thus have, apparently, several algorithms to consider: the infinitesimal-
elimination algorithm val; the simplification algorithm; infer, and refute. In
reality these algorithms are not all separate: the infinitesimal-elimination algo-
rithm and the ordinary mathematical and logical simplifications (which satisfy
(1) above) are both incorporated into a single algorithm val, and infer and
refute both work by calling val. infer(¢) succeeds if val(¢) = true, and
refute(¢) succeeds if val(¢) = false. In addition there are the algorithms
stdpart and nonstdpart, which involve a mutual recursion with val.

To avoid confusion: “simplification” is not defined by a mutual recursion
with val. The word “simplification” in this paper refers to logical and math-
ematical steps which have nothing to do with infinitesimal elimination, and
which preserve ordinary mathematical and logical equivalence. All these steps
are mathematically simple and represent equivalences that can be stated and
proved in T*. However, it is allowed that there be simplification steps involving
the nonstandard variable. For example, if ¢ = 0 so that the nonstandard vari-
able « represents an infinitesimal, we might allow simplifying sina to a. No

8This does not imply that only functions which do not oscillate near a limit point can be
correctly handled. Some such functions can be handled correctly, but not by the part of the
algorithm calling nonstdpart.
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assumption about such simplifications is made for purposes of our correctness
proof except the assumption of correctness, property (2) above. In particular
the correctness proof does not require a commitment to whether such simpli-
fications are actually used or not. It should be noted that the simplification
methods may use the current assumptions I', for example by simplifying ¢ to
true if ¢ occurs in the list I'. For complete precision we should say “t simplifies
to g with current assumptions I'” instead of just “f simplifies to ¢”, but I' will
always be clear from the context.

The correctness proof for our infinitesimal-elimination algorithm does re-
quire more detailed information about how val works on inequalities ah™ > 0.
Specifically, (3) is fine when a and w are specific numbers, but in general it
should be strengthened to the following;:

(4) val will terminate on ah™ > 0 when one of the assumptions h < 0,
0 < h, or h# 0is in (or immediate from® ) ', with the (correct) result true or
false, possibly generating additional assumptions in the process, if additional
assumptions are required to decide the signs of ¢ and v and whether « is odd
or not (see below). Here @ and u are arbitrary standard expressions.'?

Although (4) is listed as an assumption here, T will explain how the actual
algorithms employed by Mathpert are constructed to satisfy this assumption.
These details are irrelevant to the infinitesimal elimination algorithm except
that they justify (4), which is required for the correctness proof.

The details in question concern the situation in which the exponent v and/or
the coefficient @ are not specific rational numbers, but expressions containing
other variables. Observe that two things are relevant to determining the sign of
ah® under one of the assumptions h > 0, h < 0, or h £ 0. Namely: Is v an odd
fractional exponent (that is, an odd integer or a quotient with even denominator
and odd numerator)? What is the sign of a? Observe further that if v is odd
and the assumption is h # 0, then the sign of a is irrelevant, because ah® will
take both signs, while if u is even, then the sign of a determines the sign of
ah*. Therefore Mathpert first applies the infer, refute, assume method to
the question whether u is odd. If this can neither be inferred nor refuted, it is
assumed, and no assumption need be made about the sign of a. If it can be
refuted, however, then the infer, refute, assume method is applied to a > 0.
In any event, then, val will terminate on ah® > 0, establishing (4).

9The provision about “immediate from” is necessary because if the limit point is not zero,
then the domain inequality which is actually in I" has the form, for example, « # ¢ for a
nonstandard variable a, and h = & — ¢; so h # 0 is not literally in I'; but we still need val to
terminate.

101f the expression a is sufficiently complicated that infer and refute cannot determine its
sign, but its sign is nevertheless actually determined by the assumptions in A, an inconsistent
assumption may be added, in which case the conclusion of the correctness theorem will be
vacuously true.
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6.2 Precise Definition of the Algorithm

The algorithm in question, here denoted val, takes three inputs: A list I' of
(standard) assumptions, two assumptions I about the nonstandard variable «
(namely, o = ¢ and a domain inequality), and a logical formula ¢ (which may
contain «, but no other nonstandard variables or symbols) to be simplified.
The procedure val will always terminate, either with success or failure. In case
it succeeds, it produces two outputs: the simplified form val(¢) of ¢, which
for full precision must be written as val(T', I; ¢), and a (possibly empty) list
of new assumptions A. To be precise, we would have to write something like
val(T, I; ¢).prop for the simplified proposition, and val(T, I; ¢).assumption for
A, to indicate that the return value is a pair consisting of a proposition and a
list of assumptions. This would be hopelessly unreadable, so instead we write
val(¢) for the simplified proposition and A for the list of generated assumptions.

Moreover, we have to distinguish two kinds of success: when only rules that
preserve logical equivalence have been used, we say val succeeds “positively”.
Otherwise success is “negative”. The exact definition of the algorithm must
indicate at each return whether the return is with failure, with positive success,
or negative success. The words “positive” and “negative” have no intrinsic
signifance here; we might as well have used “red” and “blue”.

The definition of the algorithm wval follows:

Step 1. When val operates on any input formula ¢, it may first perform
some ordinary logical simplifications, or mathematical simplifications on the
terms in the formula. The only relevant property of these simplifications is
that they preserve logical equivalence under the assumptions I', A, where A
is a (possibly empty) list of new assumptions generated by the simplifications
performed. If some simplication is performed, with result ¥ different from ¢,
return val(y). If no simplifications can be applied, and ¢ contains only standard
variables, then val terminates with positive success, returning ¢ unchanged. If
no simplifications can be applied and ¢ contains the nonstandard variable, go
to step 2 if ¢ is a disjunction or a conjunction. If it is an inequality or equality
in which both sides contain «, go to step 3. If it is an equality or inequality in
which exactly one side contains «a;, but that side is not exactly «, go to step 4.
If one side is exactly a and the other side is ¢, go to step 5. If one side is « and
the other is not ¢, go to step 6.

Remark: On input containing only standard variables, val does nothing but
ordinary simplification. We assume that val terminates on input containing
only standard variables. (This would be guaranteed, for example, if all the
simplifications shortened the formula. In practice some simplifications lengthen
the formula, but proving the termination of ordinary simplification procedures is
not what this paper is about.) The simplifications to be applied include the law
rewriting A — B as B V —A, and the laws pushing negation inwards, the law
that “flattens” disjunctions whose arguments include a disjunction (we allow
disjunctions of many arguments; for example AV (BV C) flattens to AV BV C,
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which means V(A, B, ('), the law that flattens conjunctions, and the laws that
rewrite negations of inequalities as other inequalities.!! Our base system has
no atomic formulae other than inequalities and equalities; in general (if the
system is enlarged) other atomic formulae might appear negated, but val will
not perform anything but pure mathematical simplification on such formulae. In
subsequent steps of the algorithm, it may therefore be assumed that implication
and negation do not occur.

Step 2. On disjunctions and conjunctions, if val does not perform some
immediate simplifications, it is called on each argument of the input in turn:

val(Py A ... AP,) < val(P)A ... Aval(P,)

val(Py V...V P,) < val(P) V... vval(P,)

These formulae are written with < instead of =, because the actual definition of
the algorithm calls for computing the right-hand side, and then performing some
simplifications, such as dropping duplicate conjuncts or disjuncts and combining
certain inequalities. The exact nature of these simplifications is not important
to the correctness proof as long as they preserve (provable) equivalence. If any
of the recursive calls val(Py) fails, then return with failure. In the case of
conjunction, if all the recursive calls return with positive success, then return
return with positive success, else return with negative success.

Disjunction is treated differently. If all the recursive calls return with posi-
tive success, return with positive success. If exactly one returns with negative
success, return with negative success. If one or more fails, return unsuccessfully.
If more than one returns with negative success, and one of those returning with
negative success is a conjunction, then use the distributive law on the original
input to move the disjunction in, and call val recursively on the result. This is
referred to below as the “forced distribution” clause.

Since disjunctions have been flattened and negations have been pushed in,
the only other possibility is two or more negative successes on atomic formulae.
In this case, we return unsuccessfully. This is referred to below as the “forced
failure clause”. (The purpose of this clause should be made clear in Remark 1
following Theorem 3 below.)

The recursive calls to val on the right can generate assumptions A. The
question arises of how these are handled. The simplest thing is just to take
their union and return that as the A from the call on the left. In actuality,
though, the calls on the right are not made in parallel, but sequentially, and the
assumptions A generated by the first call will be part of the I for the second call,
and so on. In other words, only one list of current assumptions is maintained,
and any new assumptions generated are added to that list.

M These laws include rewriting —(a < b) as b < a and several similar laws. We treat a # b
as an inequality symbol, not a negation.
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Step 3. If the input ¢ is an inequality r < s, and both sides contain «a, return
val(0 < s —r).12

The part of val in which nonstandard analysis is used comes into play only
when val is called on an equality or inequality containing a nonstandard variable.
Recall that we have assumed there is only one nonstandard variable, call it «,
in the input. Inequalities could be of the form r < s, » < s, or r # s, and input
r = s is also allowed. For simplicity we consider here only r < s; other forms
are treated similarly.

Step 4. If the input is < s and exactly one side contains «, make various
purely mathematical simplifications (about which we need to know only that
they preserve mathematical equivalence), and then solve the inequality for the
nonstandard variable « if possible. (For example, 2o < 1 will become a <
1/2.)'3 If the result of these computations is v, return val(z). If the inequality
cannot be solved for «, go to step 6.

Step 5. If the input is an inequality containing a single nonstandard variable
a, and the domain inequality for « is a # ¢ (indicating that « arose from a two-
sided limit as « approaches ¢), and the input inequality has one of the forms
a<ca>c o> a<c a=c return false. If the input is a # ¢, return
true.'* In these cases, val returns with negative success. (All negative-success
returns originate here, and are passed upwards by returns from recursive calls.)
If neither side is ¢, go to step 6.

Step 6. (We get here either from step 5 with an inequality solved for o« whose
other side is not ¢, or from step 4 with an inequality that could not be solved
for ) If the input ¢ is r < s with r not zero, set ¢ to the simplified form of
0 < s —r. Once the input has the form 0 < s, compute S = stdpart(s). We
have assumed that this computation will always terminate, either in success or
failure. If it fails, then val(0 < s) terminates unsuccessfully, returning 0 < s.
This is the only step in the algorithm (besides the forced failure clause in step
2) that can cause an unsuccessful return of val. In this case, the nonstandard
variable will not have been eliminated.

If S is successfully computed, we try to determine its sign. We assume that
the computation of the standard part has already simplified the result so that
there is no point in trying to infer S = 0; if that would succeed, S is already
zero. In case S is zero, we do not proceed immediately to compute the Puiseux
series using nonstdpart, because in some cases of interest, the result would

12As a practical matter, simplification does better at proving quantities are positive than
at proving one quantity exceeds another, because it is easier to find cancellations and certain
other simplifications that way.

13This step will make further assumptions (add to the list A) if need be. For example,
ga < 1 where ¢ is a variable may reduce to & < 1/¢ generating the assumption 0 < ¢, if this
can be neither inferred nor refuted.

141 the case of a one-sided limit from the right, we would return true on ¢ < ¢, ¢ < «,
a =c, and false on a < c and a < c.
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be failure. We first call infer 0 < s.'5 If this succeeds, we return true, with
positive success. If not, go to step 9.

If S'is not zero, call infer on the inequality 0 < S. If it succeeds, then return
true, with positive success.'® If not, go to step 7.

Step 7. Call infer(S < 0). If this succeeds, then return false, with positive
success; else go to step 8.

Step 8. Call infer 0 £ S. (It might be possible to infer this without being
able to determine the sign of S, for example if 0 £ S is a current assumption.)
In that case we add 0 < S to the list A of new assumptions and return true.
If the call to infer does not succeed, return

0<SV(S=0Aval(0 <s—29).

If the recursive call to val fails, the return is unsuccessful; otherwise the success
is positive or negative, the same as is returned from the recursive call. !

Step 9. Call nonstdpart on s. This results in attempting to compute the
leading term of the Puiseux series for s. If this computation does not succeed,
val(0 < s) terminates with failure. Now suppose that it succeeds. The series
in question is, by definition of the algorithm nonstdpart, computed in powers
of h = o — ¢, where c¢ is the standard part of o.? It is important to note that
computation of the series must include simplifying the coefficients, because there
can be cancellations. Consider, for example, h —sin h, in which the linear terms
cancel out, and the actual leading term is h3/6. The leading term can have a
symbolic power; the exponent does not have to be a specific rational number.
Since simplification is not (and cannot be) perfect, however, the leading term as
calculated might still really be zero. We therefore call it the apparent leading
term, as the true leading term would be farther out in the series.?

15This may succeed, even in case s has no Puiseux series. For example, Mathpert can infer
that e~ 1/ js positive.

16This part of the algorithm enables us, for example, to simplify h < 1 to true inside a
limit as A — 0. Thus we will correctly generate no assumption when cancelling A — 1 inside
such a limit.

11n the recursive call to val, the standard part of s — S will come out zero in step 6, and we
will go to step 9. It may help the reader to consider the example of Section 6.1, in which we
have the input 0 < & + h. In this case the standard part is x, and both the attempt to infer
0 < z and the attempt to infer z < 0 will fail, so we will return 0 < 2V (z = 0 A val(0 < h).
This will turn out to be 0 < zV (z = 0 A false), which simplifies to 0 < .

21t is necessary nonstdpart must “know” about which point to compute the Puiseux
series. There seems to be no way to ensure this in general except to make the restriction
(which we have made) that there is only one nonstandard variable, arising from a limit term
and hence uniquely associated to a point ¢ about which we are to compute series.

3An example without extra variables in which the apparent leading term is actually zero
would be complicated, because simplify will correctly handle simple examples like h — sin A,
but such examples surely do exist. The situation of an apparent leading term whose sign
cannot be determined will of course occur if extra variables are present whose signs are not
determined by the current assumptions, for example 0 < ah where a is a variable and no
assumption is made about the sign of a.
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Let us call the apparent leading term of the Puiseux series ah*. Then return
val(0 < ah™).

That completes the definition of val. Note that the steps in the computation
by val are of two kinds: (i) ordinary mathematical and logical reductions that
preserve logical equivalence, and (ii) infinitesimal-elimination steps. The latter
have been specified with complete precision. The former have not been fully
specified; instead specific assumptions have been listed which they must satisfy
in order to make the correctness proof work. This means that more simplifica-
tions of kind (i) can be added to the algorithm without having to rework the
correctness proof.

In particular, we have discussed a theory with nonlogical axioms only for
natural log and square root functions, thereby avoiding the need to discuss the
formalization of other functions. Our theorem has been formulated in such a way
that it immediately extends to a theory including sine, as soon as the diligent
reader defines that function by suitable non-logical axioms in T' (for example
y" = —y and y(0) = 0 and y'(0) = 1) and proves the Taylor series expansion
of the sine function at an arbitrary center on the basis of those axioms. To
cover the theory actually used in Mathpert, this would have to be done for the
trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic, Bessel and
other special functions.

7 Examples

In this section we trace the algorithm on two illustrative examples. It is not
logically necessary to read this section to follow the rest of the paper. We
continue the numbering of examples from section 2.

Ezample 8: Calculate the derivative of +/ f(x), using the limit definition of
derivative, where f is a polynomial. We will have to compute val(0 < f(z+h))
for h 22 0. Step 1 will simplify f, if it is not already simplified, and pass the
inequality to Step 4. Here some mathematical simplifications will be made; in
practice Mathpert incorporates nontrivial algorithms for polynomial inequali-
ties, but they are irrelevant here. Let us assume that the resulting inequality
can still not be solved exactly, e.g. if f is irreducible with several real roots. For
illustrative purposes let us neglect the fact that only rather complicated poly-
nomial inequalities would really remain unsolved, so that we can think about
simple examples like f(x) = 22 — 1 or 2% + 2. The inequality will then be
passed to Step 6, which requires computing the standard part of f(z + h). The
standard part of f(z+h) is f(x). If infer can show that 0 < f(x), that will end
the computation; for example if f(x) = x? + 1. Assuming the efforts in Steps
7 and 8 to determine the sign of f(x) also fail (as they will in practice for a
polynomial that has passed Step 4), we come to Step 9, in which nonstdpart
will be called. It will compute the apparent leading term of the Puiseux series
in h of f(x+ h). The first candidate for that will be hf'(x). If infer can show
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that 0 < f'(x), as in the example x> + x, val will return false on 0 < hf'(x),
and the top-level call to val will compute

0< f(x)V(f(x) =0Aval(0 < hf'(x))
which in the example 2 4+ 2 would simplify (using z* + z = z(z? 4 1)) to
0 <zVvval(0<h)

and finally to 0 < z. In the example f(x) = 2% — 1, infer will not be able to
determine the sign of f'(x). The computation will come to

0 < 2?—1Vval(0 < 2hx)

and val will have to solve the inequality 0 < 2hx for h. To do this without
making assumptions about the sign of z, Mathpertreturns (0 < xA0 < h)V(x <
0 A h <0). When val is called recursively on this input, the computation hits
the forced distribution clause in step 2. After distribution we get

O<zVz<OAO<hVz<OAO<zAh<OA0<hVh<O0)

The last conjunct simplifies to true, in view of h #£ 0, in Mathpert, although
this would not be guaranteed by the general assumptions we have made about
simplification. With or without this simplification, val applied to the displayed
formula returns false with negative success. Therefore the original call to val
returns 0 < 22 — 1. This is the correct condition for the differentiability of

V2 —1.

Example 9: Consider the one-sided limit

lim vz -9
r— 3+

In analyzing the domain of this expression, Mathpert will generate the expression
a® —9 > 0, where « is a nonstandard variable subject to the assumptions o =2 3
and o > 3. At Step 1, the inequality o — 9 > 0 will simplify to the disjunction
3 < aVa < —3. This will reach Step 2, which will call val separately on the
two inequalities 3 < a and o < —3. Let us consider a < —3 first. This will be
sent to Step 6, where it will be put in the form 0 < —3 — «. Since the standard
part of « is 3, the standard part of the right side is —6, and so we try to infer
0 < —6, which fails, and we go to Step 7. In Step 7, we try to infer —6 < 0,
which succeeds, so val returns false with positive success.

Now consider the other inequality, 3 < «. This reaches Step 6 and is put
in the form 0 < a — 3. Since the standard part of « is 3, we get zero for the
standard part, so the attempted inferences in Steps 6, 7, and 8 all fail, and we
arrive at Step 9. This calls nonstdpart on o — 3. This sets h = o — 3 and
asks for the leading term of the Pusieux series in h of a — 3. That leading
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term is of course just h itself; that is, a = v = 1. Now val(h > 0) is called.
The computation of val(h > 0) reaches Step 5, and returns true with negative
success, since the domain inequality is 3 < «. If this had been a two-sided limit,
or a one-sided limit from the left, the return value would have been false with
negative success.

Returning now to the original call to val on the disjunction, we have for the
results on the disjuncts, false with positive success and true with negative
success. The rules in Step 2 cause us to return true with negative success as
the final answer. The meaning of this result is that the limitand is defined in
the vicinity of the limit point. If the limit had been two-sided, the return value
would have been false, reflecting the fact that the limitand is defined only on
one side of the limit point.

8 A correctness proof

Our aim here is to formulate and prove a theorem to the effect that the proce-
dure described above is correct. This theorem can be summarized as follows:
Although val does not preserve strict logical equivalence, it preserves equiva-
lence in “neighborhood semantics”. Specifically, a formula involving « is true
in “neighborhood semantics” if it is true for all real x in a neighborhood of the
limit point ¢. The neighborhood in question must be a punctured neighborhood
and must be one-sided if the original limit was one-sided.

To formulate such a theorem precisely, let nbhd(¢, ¢) be the (standard) for-
mula expressing that ¢ is true in some punctured neighborhood of ¢ as a function
of h, namely (in the case of a two-sided limit)

Ja.real dbreal(a <cAc<bAVrreal(a <z Ax<bAzx#c— ¢lx/a]))

We will not treat the case of one-sided limits explicitly, as the details are quite
similar to the treatment of two-sided limits. Since ¢ will be clear from the
context we will often write simply nbhd(¢) instead of nbhd(¢, c).

This semantics depends on each nonstandard variable a being clearly asso-
ciated with a limit point ¢ and either a one-sided limit or a two-sided limit.
For this reason, our elimination procedure assumes that there is only one non-
standard variable and it is so associated. This will be adequate for symbolic
computation not involving nested limit terms.

Theorem. (Elimination of an infinitesimal) Let T' be a list of standard as-
sumptions, and let I be the list of two assumptions, « : ereal = ¢ : real, and
a “domain Inequality”, either o < ¢, a > ¢, or a # ¢. Let ¢ be a quantifier-free
formula, standard except that it may contain o. Then val(¢) = val(T', I; ¢) will
terminate. If val(¢) terminates with success, let A be the list of any additional
assumptions generated during the computation of val(¢). Then:

(i) A and val(¢) are both standard.
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(il) T* proves A,T" = nbhd(¢) < val(¢) where nbhd(given precisely above)
expresses that ¢ is true in a punctured neighborhood of c.

(iii)) A,T’' = nbhd(¢) < val(¢) is provable in classical set theory, and hence
true.

Remark 1. Consider the example input a < ¢V ¢ < a. If step 1 of the
algorithm fails to simplify this input to true, so that it would be passed to step
2, then val will be forced to return unsuccessfully, because it will succeed neg-
atively on each (atomic) disjunct. Since val returns false on each disjunction,
without the “forced failure” clause we would get the incorrect answer false on
this input; the answer is incorrect because the input is a theorem. Of course,
if the logical simplifier in step 1 of the algorithm does anything at all, it is
likely to catch this example before it is forced to fail, but there will certainly
be more complex examples which escape the simplifier and produce disjuncts of
this kind.

Remark 2: The theorem does not place a restriction on the syntactical
form of ¢. However, the theorem only states what happens if val(¢) can be
successfully computed. The “forced failure” clause in Step 1 of the algorithm
thus has a similar effect to a restriction on the syntax of ¢. The following section
of the paper will show that (under additional assumptions) the forced failure
clause is never used; this is similar to removing a syntactical restriction. This
formulation is better because it clearly separates the questions of the correctness
of val and the applicability of val. For example, the forced failure clause isn’t
used on the example a < ¢V ¢ < a because it gets simplified to true in Step 1
of the algorithm.

Remark 3: Consider the example arising from the limit computation of
the derivative of \/z. When this was informally considered (Section 6.1), the
analysis of 0 < x + h led to the formula 0 < 2V (0 = 2 A0 < h). Although
this is a disjunction, only one disjunct contains the nonstandard variable h, so
it meets the restriction. As it turns out, though, when the algorithm is traced
on this example, this disjunction is never passed as input to val anyway. See
the footnotes in the proof.

Proof: The first part of the theorem concerns the termination of val. This
is proved by a straightforward induction on the computation of val, using the
assumptions that infer, refute, stdpart, nonstdpart, and simplify always
terminate. The only clause that can cause failure of val is the failure to compute
a Puiseux series. We now turn to the proof of (i), (ii), and (iii) under the
assumption that val(¢) returns successfully.

According to Nelson’s theorem, (ii) implies (iii).* We turn to the verification
of (i) and (ii). There are three separate cases to the proof, according to the sense

4We would like to strengthen (iii) to provability in 7. That can probably be done, if T
includes the type constructor A — B, by adapting the proof of Nelson’s theorem, but if T
does not contain the constructor A — B, then the possibility of claiming provability in 7' in
(3) is an open question.
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of the domain inequality in I (that is, whether it came from a left limit, right
limit, or two-sided limit). We deal explicitly only with the two-sided case; the
two one-sided cases are similar.

Before giving the proof of (ii) in detail, we point to a key step. By standard
techniques of nonstandard analysis, nbhd(¢) is equivalent in T* to

Va.ereal (X cAa+#c— o).
Therefore the following is equivalent to (ii) in 7™*:
I,AT' = Vaereal(a X cAa# c— ¢) < val(o)

The heart of the proof is the following simple observation: in case the last step
is the problematic reduction of ¢ < « to false, it works, because Va.ereal (o =
cAa# ¢ c<a)isequivalent to false in T*.

In order to handle the maximum variety of input formulae, we have to keep
track of whether val returns with positive or negative success. The important
point about positive success is this: we will prove that if val(¢) returns with
positive success, then

Va.ereal (o X cAa#c— (val(g) < ¢)) (iv)

For example, val(a < ¢+ 1) is going to be true, with positive success, and
for any a = ¢, we will have a < ¢+ 1.

We will prove (ii) by induction on the number of steps of kinds (1) to (9) in
the computation of val(¢), simultaneously proving (iv) in case val(¢) returns
with positive success. Note that (iv) implies (ii). The basis case (immediate re-
turn) corresponds to step 1 in the definition of val. In that case no nonstandard
variables are involved, and we have assumed that val terminates and preserves
logical equivalence in the sense that T') A = ¢ < val(¢) is provable in T. But
since no nonstandard variables are present, nbhd(¢) < ¢ is a logical triviality,
hence provable in T. Then (ii) follows immediately.

There are many cases in the induction step, corresponding to steps 2-9 of
the definition of val. We take these cases one by one. In each case we repeat
the relevant clause of the definition, so that the reader will not need two copies
of the paper to follow the proof.

Case (2). First consider conjunctions. For notational simplicity we consider
a conjunction of two arguments. The computation rule implies (using the fact
that simplication preserves provable equivalence)

val(4 A B) « val(A) A val(B).
By induction hypothesis we have

val(4) —«Vala X cAha #c— A)
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val(B) < Va(a X cAa+#c— B)

Hence
val(AA B) < Va(a > cAa#c— ANB)

in view of the logical identity
YaP AVa@) « Va(P A Q).

If val(A A B) returns with positive success, that is because both val(A) and
val(B) do so, in which case we establish (iv) easily: for a = ¢ A a # ¢, we have

vallAA B) <« val(A) Aval(B)
—~ AAB

That completes the argument for conjunction.
Now consider disjunctions. Since the identity

YaP VVaQ « Va(PV Q).

is in general not valid, we cannot carry out a similar proof for arbitrary dis-
junctions. However, in the definition of val we imposed the restriction that at
most one of the recursive calls returns with negative success. (Otherwise the
forced distribution clause calls val recursively on a logically equivalent formula;
in that case there is nothing to prove.) Therefore (since for simplicity we are
showing the proof only for two disjuncts) we can assume that val(A4) returns
with positive success, so that by (iv) we have

Va(la 2 cAa#c— (val(A) < A))
Then to complete the proof we need only the valid identity
PvVa@ «—Va(PV Q)

in which P does not contain «. (Here P is val(4).) To make the argument
clear let us write Va..A to abbreviate Va.ereal (a2 cAa # ¢ — A). Then we
have

val(AV B) val(4) Vv val(B)
Yoa.AVYo. B
Ya..val(A) VVa..B
val(4) VVa..B
Ya..(val(4) vV B)
Ya(AV B)

111111
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If val(A Vv B) returns with positive success, that is because both val(4) and
val(B) do so, in which case we establish (iv) easily: for a = ¢ A a # ¢, we have

val(AV B) <« val(A)V val(B)
—~ AVB

Case (3). If the input ¢ is an inequality » < s, and 7 is not zero, and both
sides contain «, return val(0 < s — r).
Argue as follows in T™:

I'=val(r<s) < val(0 <s—r))
< 1nbhd(0 < s—1)
< nbhd(r < s)

(by definition of val). The latter is equivalent (by induction hypothesis provably
in T) to nbhd(0 < s — r). Since val(r < s) < val(0 < s —r)), we have
val(r < s) <> nbhd(0 < s —r). Evidently nbhd(0 < s —r) <> nbhd(r < s), so we
have val(r < s) <> nbhd(r < s) as desired.

If the return is with positive success, then (iv) is immediate:

I'=vallr<s) < vall0<s—r)
— 0<s—r

— r<s

Case (4). If the input is 7 < s and exactly one side contains «, perform
some mathematical simplifications that preserve logical equivalence and then
solve the inequality for the nonstandard variable « if possible. (For example,
2a < 1 will become « < 1/2.) If the result of these computations is ¥, return

val(%)).

Solving an inequality can generate an assumption, so the A returned from
val(r < s) can be nonempty. However, a solved inequality is equivalent to the
original inequality under the generated assumptions (if any). That is, T proves

A=y —r<s.
By induction hypothesis, T* proves
I' = val(v)) < nbhd(v).
Therefore T* proves

I, A = val(?)) <= nbhd(r < s)
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But since val(r < s) = val(y), T* proves
'y A = val(r < s) < nbhd(r < s)

which is (ii) in this case.
If the return is with positive success, then we prove (iv) as follows: in T we
have by induction hypothesis

LA =« val(y)

Hence
A= val(0 <r)

Hence
NLA=val0<r)—0<r

Case (5). If the input inequality contains a single nonstandard variable «,
and the domain inequality for « is a # ¢ (indicating that « arose from a two-
sided limit as « approaches ¢), and the input inequality has one of the forms
a<c a>c a>c a<ec, return false. If the input is « #£ ¢, return true.
Since the return in this case is always with negative success, we do not have to
establish (iv).

Let us take the input forms one at a time. Suppose ¢ is & < ¢. Then nbhd(¢)
says that for all x in some punctured two-sided neighborhood of ¢, x < ¢, which
is refutable since each such neighborhood includes some points larger than c.
Hence nbhd(¢) < val(¢), since both are equivalent to false. Similarly if ¢ is
¢ < @, since each punctured two-sided neighborhood of ¢ contains some points
less than c¢. The non-strict inequalities are treated the same way. Finally,
consider the input « # ¢. For this ¢, nbhd(¢) says that for all z in a punctured
neighborhood of ¢, x # ¢. Since it is a punctured neighborhood, this is true.
Hence val(¢, ¢) < ¢ as desired, since in this case val(¢, c) is true.

Case (6). If the input ¢ is r < s with 7 not zero, set ¢ to the simplified form
of 0 < s —r. If the input has the form 0 < s, compute S = stdpart(s).

The replacement of < s by an equivalent form preserves provable equiva-
lence, so we may assume we are already in the case of input 0 < s. In this part
of the proof we are assuming that val does not fail, so we can assume that S is
successfully computed. If S is zero we go to step 9, so under this case we may
assume S #£ 0. The definition of val then says to call infer on the inequality
0 < S. If it succeeds, return true, with positive success. If it does not succeed,
we are in case (7), so under this case, we may assume infer returns true on
0<S.

Since the success is positive, we are required to establish not only (ii), but
(iv). Since (iv) implies (ii), it will suffice to prove (iv). We must show in T*
that

NA=a~cAa#c— (val(0 < 8) < 0 < s)
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Since val(0 < s) is true, this boils down to showing
NA=a~cha#c—0<s
Using the nonstandard definition of limit (Theorem 1), it would suffice to prove

A = lim s[z/a] >0

r—cC

We have assumed that the algorithm stdpart has the property that T proves

lim s[x/a] = stdpart(s)

r—cC

so it will suffice to show that T proves
I'A =0 < stdpart(s)
That is, since S = stdpart(S5),
A=0<S.

We know that infer returns true on 0 < S. We have assumed (property (1) of
infer) that infer is sound, so T* proves I';) A = 0 < 5, as desired.

Case (7). When the input has the form 0 < s, and stdpart(s) = 5, call
infer(S < 0). If this succeeds, then return false, with positive success. Else
go to step 8.

We may suppose then that infer(S < 0) succeeds. We have to prove not
only (ii), but (iv), because the success is positive. We are required then to show
that T proves

NA=a~cAa#c— —(0<s).

As in the previous case, it would suffice to know T™* proves

A = lim s[z/a] <0

r—cC

But we know
A= limsfz/a] =S

and T proves I';) A = S < 0 because infer succeeds on S < 0. The desired
conclusion follows immediately.

Case (8). If the input is 0 < s and stdpart(s) = 5, call infer 0 # S. (Tt
might be possible to infer this without being able to determine the sign of S,
for example if 0 # S is a current assumption.) In that case we add 0 < S to the
list A of new assumptions and return true, with positive success. If the call to
infer does not succeed, return

0<SV(S=0Aval(0 <s—29).
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If the recursive call to val fails, the return is unsuccessful; otherwise the success
is positive or negative, the same as is returned from the recursive call.
First consider the case in which infer(0 # S) succeeds. To establish (iv),
we have to prove
[o<S=0<S5 < true

which is a triviality. (The interesting thing here is that hopefully this will not
create contradictory assumptions in the antecedent, but since in general that
cannot be entirely avoided, there is nothing to prove about it. Note that this
case comes up only when there are variables or complicated expressions whose
order relation to ¢ cannot be determined by the system.)

Now suppose that the call to infer(0 # S) does not succeed. Suppose first
that the recursive call to val returns with positive success. Then we have to
establish (iv). By induction hypothesis, we have

l=valll<s—9)—<0<s—5
Hence
'=vall0<s) < S=0Avall0<s—>5)

— S=0A0<s—5
— 0<s

which proves (iv).
Now we prove (ii). Suppose infer 0 # S succeeds. We have to show that T*
proves
I'=0 < S < nbhd(0 < s).

As in case (6), we have T* proves

= lim s[z/a] = S

r—cC

and hence, under the assumption 0 < S, we have nbhd(s < ¢) as desired.
If the attempt to infer 0 #£ S does not succeed, we are to return

0<SV(S=0Aval(0 <s—5)).
By property (3) of stdpart
S = ilir}: slx/a]
from which it follows that
nbhd(0 < s) <+ 0 < SV (S =0 Anbhd(0 < s))

or equivalently

nbhd(0 < §) 0 < SV (5 =0Anbhd(0 < s — 5))
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But by induction hypothesis, we have
I' = nbhd(0 < s — 5) < val(0 < s — 9).
Therefore
I'=nbhd(0 <s) =0 < SV (S=0Aval(0 < s—09).
In view of the definition of val in this case, that is nothing but
I' = nbhd(0 < s) < val(0 < s),

which was what we had to prove.

Case (9). The input 0 < s has stdpart(s) = 0. Call nonstdpart on s.
This results in attempting to compute the leading term of the Puiseux series
for s. Since we have assumed val(0 < s) returns successfully, we know that this
computation succeeds. The series in question is computed in powers of h = a—c,
where c is the standard part of a. Let us call the apparent leading term of the
Puiseux series ah™. Then val(0 < ah™) will be called. If this is a two-sided limit,
a domain inequality equivalent to h # 0 is in the assumption list I'. Therefore,
by assumption (4) in Section 6.1, the return value from val(0 < ah") will be
true or false (possibly this computation adds an assumption about the sign
of a to the previously-present assumptions, but since this is the recursive call,
by induction hypothesis that assumption is already in the list T').

Consider first the case in which the return value is true. By induction
hypothesis we have

I’ = nbhd(0 < ah*)

Since T proves the elementary properties of Puiseux series, we have
I’ = nbhd(0 < s)

which establishes (ii).
In case the success was positive, we have by induction hypothesis

F'=h>20Ah+#0— (true < 0 < ah")

and hence
F'=(Mh>20Ah+#£0—0<ah")

Again using the fact that T proves the elementary properties of Puiseux series,
we have

I=h~0Ah£0—0<s

establishing (iv) in case val(0 < ah™) = true.
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Now consider the case val(0 < ah*) = false. By induction hypothesis we
have T proves
I' = false <> nbhd(0 < ah")

from which, by the elementary properties of Puiseux series, we have
I' = false < nbhd(0 < s)

establishing (ii) for this case.
If the success is positive, we have

I' = false < 0 < ah®

whence we obtain
I' = false < nbhd(0 < s)

establishing (iv) for this case.

9 When will val succeed?

The above theorem contains as a hypothesis the assumption that val(¢) termi-
nates with success. This is the result of practical interest: it guarantees that
we get no wrong answers from inferences made by Mathpert during limit cal-
culations. However, it is also of interest to determine when the algorithm does
succeed, or when it does succeed and does not generate a contradictory set of
assumptions. The interest of this question is both theoretical and practical.
The practical application is this: if the algorithm succeeds, but generates con-
tradictory assumptions, software using this algorithm to guard against incorrect
steps may still take an incorrect step. At least in that situation we will know
it, provided that we recognize the assumptions as contradictory; but of course
it would be better to prove that under certain conditions this does not happen.
That is what we shall do in this section.

Originally I had hoped that “all expressions in the formula have Puiseux
series that the system can compute” should suffice for success, and the deter-
minability of the signs of the leading coeflicients in the Puiseux series should
be sufficient for success without contradictory assumptions.® This turns out to
be true, but only if one makes stronger assumptions about the simplification
algorithm than are necessary for the correctness proof. There are two places in
the algorithm for val that can produce failure: the failure to compute a Puiseux
series, and the forced failure clause in step 2. The question we take up in this
section is whether the forced-failure clause has any real effect: is there an input
¢ on which val will actually use the forced-failure clause? The answer is: Yes,
if simplification is weak; No, if simplification is strong enough.

5This sufficient condition might be made even stronger, as for example val will work on
0<e YY" and even on 0 < he 1/

37



Recall that our elimination algorithm contains some steps of “simplification”
which have not been completely specified; the correctness proof depends only on
the assumption that these steps preserve logical equivalence, and hence applies
to various versions of the algorithm, with “weak” or “strong” simplification
steps allowed. We shall show that the answer to the question is not the same
for every version of the algorithm covered by the correctness theorem.

One obvious condition which will guarantee avoidance of the forced-failure
clause is that the input ¢ should be a conjunction of equalities and inequalities.
Indeed, a disjunction of such things can be allowed, provided at most one of the
disjuncts contains the nonstandard variable a. This would not allow o« < cVe <
a; but this formula and many others will be allowed if we allow ¢ to be such
that after simplification it has the form just stated. For example, a« < cVe < o
will simplify to true in step 1. (This is not guaranteed by any assumptions
we have stated about the simplification algorithm, but it would be true of any
reasonable simplifier, and certainly is true of Mathpert.) Another example is
a<c—1Ve+1 < o This has a in two disjuncts, and will not simplify (or
at least might not simplify, if simplification is weak). But when val is called on
the disjuncts, both return true with positive success, so indeed val turns out
to return true with positive success on this formula too. This is the reason for
distinguishing two kinds of success.

The example at the end of Section 6 is an indication that without more
assumptions about simplification, the forced failure clause can be encountered
in natural problems. There we needed to know that simplification could reduce
¢ < aVa<ctotrue in the presence of the assumption ¢ # «, which is not
guaranteed by the hypotheses of the correctness theorem. However, even more
assumptions are needed, as the following discussion will show. To construct an
example that would encounter the forced-failure clause, we want a disjunction
AV B such that val succeeds, but with negative success, on both A and B.
For simplicity let us take ¢ = 0, and try to find A in the form 0 < u and B
in the form 0 < v. We must make sure that 0 < v V 0 < v does not simplify
as in the example 0 < oV 0 < —a, which simplifies to true when 0 # « is in
I'. We try to construct v and v so that 0 < « V0 < v is provable in 7%, but
the system can’t simplify it to true, and indeed val reduces each disjunct to
false. But val will fail unless it can compute the Puiseux series of u and v, so
they can’t be arbitrarily complicated. You might try 0 < a'/3Vv0 < —al/®, but
Mathpert will simplify this to 0 < o V0 < —a and then to true. In general,
the construction of a counterexample along these lines would depend on the
Puiseux series computations being more capable than the simplification rules.
For example, one could try

0 <sinaV0 < —arctan
If the system were able to compute the Puiseux series, but not to simplify the

inequalities 0 < sina and 0 < —arctanca, we would get a counterexample.
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Nothing in the assumptions used in the proof of the infinitesimal elimination
theorem would prevent this being the case. This shows that if simplification is
too weak to replace infinitesimal terms with the leading terms of their Puiseux
series, the forced failure clause can be encountered.

Now I will show that if simplification is strong, the forced failure clause is
never used. Suppose that simplification is allowed to compute Puiseux series
in h = a — ¢ and reduce inequalities by replacing each side with the leading
term of its Puiseux series. If the signs of the coeflients can be determined,
each inequality (or equality) containing « on which val returns successfully will
simplify to an inequality o < ¢, ¢ < @, or to true or false, or to a formula not
containing «, under the assumptions ¢ = o, « #£ ¢. This set of four inequalities
is closed under conjunction and disjunction, so any disjunction containing more
than one inequality involving « can be simplified to one involving only one such
inequality.

If the signs of the coeflicients cannot be determined, as in the example at the
end of Section 6, we will get a disjunction of conjunctions of one or the forms
PAc<a, or PANa <c, or just P, where P does not contain «. Either the
equality-solving code itself or the forced distribution clause in step 2 will cause
the distributive law to be used on such a disjunction. The result is a conjunction
of disjunctions. If these disjunctions contain more than one inequality involving
a, they can be combined into one as above. Hence the form eventually passed
to val will be a conjunction of disjunctions of the forms PA«a < ¢, PA¢ < @, or
P, where P does not contain «. Since these disjunctions have only one disjunct
involving «, the computation of val cannot encounter the forced failure clause.

10 Related Work

This is not the first use of nonstandard analysis in automatic deduction; Bal-
lantyne and Bledsoe have experimented with it[1, 2]. From the viewpoint of
automated deduction, I think that the method has much more potential than
has been exploited so far in Mathpert to support education in calculus. The
University of Texas group under Bledsoe’s direction[9, 10] rightfully considered
it an important achievement when their prover could automatically find a proof
that the sum of two continuous functions is continuous (using the standard
epsilon-delta definition of continuity). In nonstandard analysis, this theorem
becomes a triviality.® Let A be an infinitesimal, and compute:

(F+g)@+h) = flz+h)+g(x+h)= fr)+g(x) = (f+9)()

The essential reason why nonstandard analysis was helpful in Mathpert and
in the above example, is that two alternating quantifiers are reduced to a

6This observation is in no way meant to detract from the achievement of the UT prover in
finding a standard proof. This same research group pioneered the use of non-standard analysis
in automated deduction.
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quantifier-free formulation. Once we have a quantifier-free formulation, proof
search can be reduced to rewrite-rule style computation, with tremendous gains
in efficiency. This is true for computerized inference, and probably for human
inference as well.

The idea that side conditions needed for operations can be added to the
assumption list has also been used in Wu’s method for proofs in geometry, as
implemented by Chou[13].

Other systems allowing the use of partial terms have been implemented,
for example IMPS[14, 15]. The integral has been treated as a variable-binding
operator by Keisler[18].

The problem of combining a theorem-prover with a computer-algebra system
has been addressed experimentally by Harrison and Théry[17] (who linked HOL
and Maple), and Clarke and Zhao[12], who wrote a theorem prover Analytica
in the Mathematica language. The former paper points out that it is safe to use
the result of a symbolic integration performed by a possibly unreliable computer
algebra system, if you can check the result by differentiation within the prover.
The second is a direct attempt to keep track of conditions of operations. At
the end of the paper, the authors call for building an integrated system for
computer algebra and logic. This is what has been done in Mathpert, although
on the logical side a full-fledged theorem prover has not been provided; only
enough to support the correctness of symbolic computation.
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