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Abstract. NF set theory using intuitionistic logic is called iNF. We develop the theories of finite sets

and their power sets and mappings, finite cardinals and their ordering, cardinal exponentiation, addi-

tion, and multiplication. We follow Rosser and Specker with appropriate constructive modifications,

especially replacing “arbitrary subset” by “separable subset” in the definitions of exponentiation and

order. It is not known whether iNF proves that the set of finite cardinals is infinite, so the whole

development must allow for the possibility that there is a maximum integer; arithmetical computa-

tions might “overflow” as in a computer or odometer, and theorems about them must be carefully

stated to allow for this possibility. The work presented here is intended as a substrate for further

investigations of iNF, including the development of Bishop-style constructive mathematics in iNF.

1 Introduction

Quine’s NF set theory is a first-order theory whose language contains only the binary predicate symbol ∈,

and whose axioms are two in number: extensionality and stratified comprehension. The definition of these

axioms will be reviewed below; full details can be found in [16]. Intuitionistic NF, or iNF, is the theory with the

same language and axioms as NF, but with intuitionistic logic instead of classical.1 Here we intend to provide

a coherent infrastructure of definitions, theorems, and Lean-checked proofs on which further investigations can

be based.2

The “axiom” of infinity is a theorem of NF, proved by Rosser [14; 16] and Specker [17]. These proofs use

classical logic in an apparently essential way. It is still an open question whether iNF proves the existence of

an infinite set. The Stanford Encyclopedia of Philosophy article on NF says [6]

The only known proof (Specker’s) of the axiom of infinity in NF has too little constructive content

to allow a demonstration that iNF admits an implementation of Heyting arithmetic.

In attempting to determine whether the quoted statement is true, I found that I first needed to develop enough

basic mathematics in iNF to tackle Specker’s proof. That mathematical infrastructure is presented in this

paper.3 The purpose of this development is to provide a basis on which one can:

Correspondence email: profbeeson@gmail.com

1 iNF is briefly mentioned in Forster’s thesis [8]; next mentioned in [4], [5], and [3], where the focus is on intuitionistic type
theories. The initial development of iNF may be in [7], which first called attention to the problem of interpreting HA in iNF.
2 The development of NF and its variants has been surveyed by Forster [9], and a comprehensive online bibliography of research
on set theories with a universal set is maintained by Holmes [11].
3 Eventually I came to the conclusion that the quoted statement is true; that is beyond the scope of this paper, but see a short
discussion near the end.
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• investigate iNF further;

• develop Bishop-style constructive mathematics in iNF

(after proving or assuming infinity).

The following questions about iNF remain open:4

• Is the set F of finite cardinals finite? Is it infinite?

• Can one point to any specific instance of the law of the excluded middle that is not provable in iNF

(even assuming NF is consistent)?

• Is iNF consistent?

• Is there any double-negation interpretation from NF to iNF?

• Is Church’s thesis consistent with iNF? Markov’s principle?

• Is iNF closed under Church’s rule?

Regarding whether F is finite: For all we know, there might be a largest finite cardinal m, which would

contain a finite set U that is “unenlargeable”, in the sense that we cannot find any x that is not a member of

U . Classically, that would imply U = V, which is a contradiction, since V is not finite. But intuitionistically,

it is an open question.

Each of the lemmas and theorems in this paper is provable in iNF. An important reference for NF is

Rosser’s book [15; 16].5 But the logical apparatus of Rosser’s system includes a Hilbert-style epsilon-operator,

which is not compatible with an intuitionistic version, and also, we do not wish to assume the axiom of infinity.

Since all of Rosser’s results are obtained using classical logic, we cannot rely on Rosser.

It should be noted that the consistency of classical NF has been proved [12], and the proof has been checked

in Lean. This result implies, of course, that the subtheory iNF considered here is also consistent; but it is

otherwise not directly relevant.

Notational issues. There is no traditional, universally accepted notation for some of the notions central

to NF. Rosser [16] and Specker [17] are two of the original sources. Both of these were written prior to the

advent of TEX and LATEX, and for the most part were limited to characters found on a typewriter keyboard.

Forster [9] used different notation, making use of TEX. Now, however, keyboard characters are back in style,

because they are easier to use in computer proof-checking. Lean, for example, goes to great lengths to support

complicated typography—but one cannot search for those symbols, which is quite annoying.

I therefore used Specker’s notation when using Lean and in pre-publication versions of this paper; but the

referee asked me to change it, so I did. The following table compares the notational styles of Specker and this

paper. It may prove useful if anyone wants to compare this paper to Specker or Rosser, or to the Lean proofs,

or to readers who know one style or the other already.

Table 1: Notation

Specker This paper

USC(x) P1(x)
SSC(x) Ps(x)
SC(x) P(x)
Nc(x) |x|
Λ ∅

Use of computer proof-checking. All the proofs in this paper have been checked in the proof assistant Lean.

Could there still be errors? The possible sources of error are

4 The terms used in these questions can be looked up in the index of [1].
5 The two editions are identical except for the Appendices added to the second edition, one of which contains Rosser’s proof of
infinity.
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• Use of an unstratified definition

• Lean proof and paper proof might not exactly correspond

• Lean might have smuggled in classical logic, i.e., used it without telling me.

• Perhaps the order of theorems in the paper is not strictly the logical order.

Regarding the smuggling: Lean’s underlying theorem is intuitionistic, but the library is classical, and even

though I didn’t use the library, and even though Lean experts helped me, the possibility theoretically exists.

Regarding the correspondence: if there are such problems, they are just typos. Regarding stratification: I

allowed the full comprehension axiom, but used only stratified instances. I used a computer script ex post facto

to check stratification.6 Regarding the order of theorems: At least no lemma or theorem is cited before it is

proved. Of course in Lean, the logical order is enforced, but that is often not the best order for presentation.

The reader who is worried about errors in Lean has the option to forget it was ever mentioned, and just

read the proofs, which are here presented in complete human-readable detail.

Acknowledgements. Thanks to Thomas Forster for asking me (once a year for twenty years) about the

strength of iNF. Thanks to Randall Holmes, Albert Visser, and Thomas Forster for many emails on this

subject. Thanks to the creators of the proof assistant Lean [2], which has enabled me to state with high

confidence that there are no errors in this paper. Thanks to the users of Lean who helped me acquire sufficient

expertise in using Lean by answering my questions, especially Mario Carneiro.

2 Axioms of NF, ordered pairs, and functions

NF has exactly two axioms: extensionality and stratified comprehension. The axiom of extensionality

says that two sets with the same elements are equal. The axiom schema of stratified comprehension says

that {x : ϕ(x)} exists, if ϕ is a stratified formula. A formula is stratified, or stratifiable, if each of its

variables (both bound and free) can be assigned a non-negative integer (“index” or “type”) such that (i) in

every subformula x ∈ y, y gets an index one greater than x gets, and (ii) every occurrence of each variable

gets the same index.

Thus, the “universe” V can be defined as

V = {x : x = x}

but the Russell set {x : x 6∈ x} cannot be defined.

We write 〈x, y〉 for the (Wiener-Kuratowski) ordered pair {{x}, {x, y}}. The ordered pair and the corre-

sponding projection functions are defined by stratified formulas. To wit, the formula that expresses z = 〈x, y〉

is

u ∈ z ↔ ∀w ∈ u (w = x) ∨ ∀w ∈ u (w = x ∨ w = y),

which is stratifiable. Note that the ordered pair gets an index 2 more than the indices of the paired elements.7

Then we have the basic property

Lemma 1. 〈x, y〉 = 〈a, b〉 ↔ x = a ∧ y = b.

Proof. Straightforward application of the definition and extensionality. We omit the approximately 70-step

proof.

6 Originally I intended to use a finite axiomatization. But it is often quite complicated to derive simple definitions from a finite
axiomatization; and then one still has to worry if the finite axiomatization is really correct.
7 The axiom of infinity is needed to construct an ordered pair that does not raise the type level. See [16], p. 280.
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As usual, a function is a univalent set of ordered pairs. We note that being a function in NF is a strong

condition. For example, {x} exists for every x, but the map x 7→ {x} is not a function in NF, since to stratify

an expression involving ordered pairs, the elements x and y of 〈x, y〉 must be given the same index, while in

the example, {x} must get one higher index than x.

Because the ordered pair raises types by two levels, we define ordered triples by

Definition 2.2 (Ordered triples).

〈x, y, z〉 := 〈〈x, y〉, {{z}}〉.

Then a function of two variables is definable in iNF if its graph forms a set of ordered triples 〈x, y, f(x, y)〉.

We can conservatively add function symbols for binary union x∪y and intersection x∩y, union, intersection,

set difference x − y, and generally we can add a function symbol cϕ for any stratified formula ϕ, so that

x ∈ cϕ(y) ↔ ϕ(x, y). For a detailed discussion of the logical underpinnings of this step, see [10]. Function

symbols for {x}, {x, y}, and 〈x, y〉 are also special cases of the cϕ; we can add these function symbols even

though the “functions” they denote are not functions in the sense that their graphs are definable in iNF. Thus

for example we have

Lemma 3. For all x, u: u ∈ {x} ↔ u = x

Proof. This is the defining axiom for the function symbol {x}, which is really just {u : u = x}; that is, the

function symbol is cϕ where ϕ(u, x) is u = x.

Lemma 4. For all a, b, x (x ∈ a − b ↔ x ∈ a ∧ x 6∈ b).

Proof. This can be taken as the defining axiom for a − b; or it may be derived in a finite axiomatization from

other axioms.

Lemma 5. For all x, y, {x} = {y} ↔ x = y.

Proof. Right to left is just equality substitution. Ad left to right: Suppose {x} = {y}. Then

u ∈ {x} ↔ u ∈ {y} by extensionality

u = x ↔ u = y by Lemma 3

x = y by equality axioms

Technical details about stratification

In practice we need to use stratified comprehension in the presence of function symbols and parameters;

the notion of stratification has to be extended to cover these situations. We define the notion of a formula ϕ

being “stratified with respect to x”. The variables of ϕ(x) are of three kinds: x (the “eigenvariable”), variables

other than x that occur only on the right of ∈ (“parameters”), and all other variables. An assignment of

natural numbers (indices) to the variables that are not parameters is said to stratify ϕ with respect to x if

for each atomic formula z ∈ y, y is assigned an index one larger than the index assigned to z. Note that the

assignment is to variables, rather than occurrences of variable, so every occurrence of z gets the same index.

Note also that parameters need not be assigned an index.

Now when terms are allowed, built up from constants and function symbols that are introduced by defi-

nitions, an assignment of indices must be extended from variables to terms. When we introduce a function

symbol, we must tell how to do this. For example, the ordered pair 〈x, y〉 must have x and y assigned the
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same index, and then the pair gets an index 2 greater. The singleton {x} must get an index one more than x,

and so on. Stratified comprehension in the extended language says that {x : Φ(x)} exists, when Φ is stratified

with respect to x. The set so defined will depend on any free variables of Φ besides x, some of which may be

parameters and some not.

It is “well-known” that stratified comprehension, so defined, is conservative over NF, but it does not seem

to proved in the standard references on NF; and besides, we need that result for iNF as well. The algorithm in

[10] meets the need: it will unwind the function symbols in favor of their definitions, preserving stratification.

The confused reader is advised to work this out on paper for the example of the binary function symbol 〈x, y〉.

In our work, we repeatedly assert that certain formulas are stratifiable, and then we apply comprehension,

either directly or indirectly by using mathematical induction or induction on finite sets. The question then

arises of ensuring that only correctly stratified instances of comprehension are used. One approach is to use

a finite axiomatization of iNF. (It is easy to write one down following well-known examples for classical NF.)

But that just pushes the problem back to verifying the correctness of that axiomatization; moreover it is

technically difficult to reduce given particular instances of comprehension to a finite axiomatization. Instead,

we just made a list of each instance of comprehension that we needed. There were at some point 154 instances

of comprehension in that list (which includes more than just the instances used in this paper). The Lean

proof assistant does not check that those instances are stratified. If one is not satisfied with a manual check

of those 154 formulas, then one has to write a computer program to check that they are stratified. We did

write one and those 154 formulas passed; since this paper is being presented as human-readable, we rely here

on the human reader to check each stratification as it is presented; we shall not go into the technicalities of

computer-checking stratification.

Functions and functional notation

Definition 2.6. f : X → Y (“f maps X to Y ”) means for every x ∈ X there exists a unique y ∈ Y such

that 〈x, y〉 ∈ f . “f is a function” means

〈x, y〉 ∈ f ∧ 〈x, z〉 ∈ f → y = z.

The domain and range of f are defined as usual, so f is a function if and only if it maps its domain to its

range.

When f is a function, one writes f(x) for that unique y. It is time to justify that practice in the context

of iNF.8 Here is how to do that. We introduce a function symbol Ap (with the idea that we will abbreviate

Ap(f, x) to f(x) informally).

Definition 2.7.

Ap(f, x) = {u : ∃y (〈x, y〉 ∈ f ∧ u ∈ y}.

It is legal to introduce Ap because it is a special case of a stratified comprehension term. One can actually

introduce the symbol Ap formally, or one can regard Ap as an informal abbreviation for the comprehension

term in the definition. Informally we are going to abbreviate Ap(f, x) by f(x) anyway, so Ap will be invisible

in the informal development anyway. This procedure is justified by the following lemma:

Lemma 8. If f is a function and 〈x, y〉 ∈ f , then y = Ap(f, x).

8 Rosser’s version of classical NF has Hilbert-style choice operator, which gives us “some y such that 〈x, y〉 ∈ f .” But iNF does
not and cannot have such an operator, so a different formal treatment is needed.
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Proof. Suppose f is a function and 〈x, y〉 ∈ f . We must prove y = Ap(f, x). By extensionality it suffices to

show that for all t,

t ∈ y ↔ t ∈ Ap(f, x) (1)

Left to right: Suppose t ∈ y. Then by the definition of Ap, we have t ∈ Ap(f, x).

Right to left: Suppose t ∈ Ap(f, x). Then by the definition of Ap, for some z we have 〈x, z〉 ∈ f and t ∈ z.

Since f is a function, y = z. Then t ∈ y. That completes the right-to-left direction.

One-to-one, onto, and similarities

The function f : X → Y is one-to-one if

y ∈ Y ∧ 〈x, y〉 ∈ f → x ∈ X

and for x, z ∈ X we have

f(x) = f(z) → x = z.

If f : X → Y is one-to-one then we define

f−1 = {〈y, x〉 : 〈x, y〉 ∈ f}.

The definition of f−1 can be given by a stratified formula, so it is legal in iNF.

Remark. We could also consider the notion of “weakly one-to-one”:

x, y ∈ X ∧ x 6= y → f(x) 6= f(y).

The two notions are not equivalent unless equality on X and Y is stable, meaning ¬¬ x = y → x = y. Since

equality on finite sets is decidable, the two notions do coincide on finite sets, but we need the stronger notion

in general, in particular, to make the notion of “similarity” in the next definition be an equivalence relation.

The point is that the stronger notion is needed for the following lemma.

Lemma 9. The inverse of a one-to-one function from X onto Y is a one-to-one function from Y onto X .

That is, if f : X → Y is one-to-one, then f−1 : Y → X and f−1 is one-to-one and onto.

Proof. Let f : X → Y be one-to-one and onto. Since f is one-to-one, for each y ∈ Y there is a unique x such

that 〈x, y〉 ∈ f . Then by definition of function, f−1 : y → x. Since f : X → Y , for each x ∈ X there is a

unique y ∈ Y such that 〈x, y〉 ∈ f .

I say f−1 : Y → X . Let y ∈ Y . Since f is one-to-one, there exists a unique x ∈ X such that 〈x, y〉 ∈ f .

That is, 〈y, x〉 ∈ f−1. Therefore f−1 : Y → X , as claimed.

I say f−1 is one-to-one from Y to X . Let x ∈ X ; since f : X → Y there is y ∈ Y such that 〈x, y〉 ∈ f .

Then 〈y, x〉 ∈ f−1. Suppose also 〈z, x〉 ∈ f−1 with z ∈ Y . Then 〈x, z〉 ∈ f . Since f : X → Y , we have x = z.

Therefore f−1 is one-to-one, as claimed.

I say f−1 maps Y onto X . Let x ∈ X . Let y = f(x). Then 〈x, y〉 ∈ f . Then 〈y, x〉 ∈ f−1. Therefore f−1

is onto, as claimed.

Definition 2.10. The relation “x is similar to y” is defined by

x ∼ y ↔ ∃f (f : x → y ∧ f is one-to-one and onto).

In that case, f is a similarity from x to y.

The defining formula is stratified giving x and y the same type, so the relation is definable in iNF.
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Lemma 11. The relation x ∼ y is an equivalence relation.

Proof. Ad reflexivity: x ∼ x because the identity map from x to x is one-to-one and onto.

Ad symmetry: Let x ∼ y. Then there exists a one-to-one function f : x → y. By Lemma 9, there exists a

function f−1 : y → x that is one-to-one and onto. Hence y ∼ x. That completes the proof of symmetry.

Ad transitivity: Let x ∼ y and y ∼ z. Then there exist f and g such that f : x → y is one-to-one and

onto, and g : y → z is one-to-one and onto. Then f ◦ g : x → z is one-to-one and onto. Therefore x ∼ z. That

completes the proof of transitivity.

Lemma 12. For all x,

x ∼ ∅ ↔ x = ∅.

Proof. Left to right: suppose x ∼ ∅. Let f : x → ∅ be a similarity. Suppose u ∈ x. Then for some v,

〈u, v〉 ∈ f and v ∈ ∅. But v 6∈ ∅. Hence u 6∈ x. Since u was arbitrary, x = ∅, as desired.

Right to left: Suppose x = ∅. We have to show ∅ ∼ ∅. But ∅ : ∅ → ∅ is a similarity.

Lemma 13. a ⊆ b ∧ b ⊆ a ↔ a = b.

Proof. By the definition of ⊆ and the axiom of extensionality.

3 Finite sets

Definition 3.1. The set FINITE of finite sets is defined as the intersection of all X such that X contains the

empty set ∅ and

u ∈ X ∧ z 6∈ u → u ∪ {z} ∈ X.

The formula in the definition can be stratified by giving u index 1, z index 0, and X index 2, so the

definition can be given in iNF.

This definition was introduced in [5] as “N -finite.”9

Definition 3.2. The set X has decidable equality if

∀x, y ∈ X(x = y ∨ x 6= y).

The class DECIDABLE is the class of all sets having decidable equality.

The formula defining decidable equality is stratified, so the class DECIDABLE can be proved to exist.

Lemma 3. Every finite set has decidable equality. That is, FINITE ⊆ DECIDABLE.

Proof. Let Z be the set of finite sets with decidable equality. I say that Z satisfies the closure conditions in the

definition of FINITE, Definition 3.1. The empty set has decidable equality, so the first condition holds. Now

suppose Y = X ∪ {a}, where X ∈ Z and a 6∈ X . We must show Y ∈ Z. Let x, y ∈ Y . Then x ∈ X ∨ x = a

and y ∈ X ∨ y = a. There are thus four cases to consider: If both x and y are in X , then by the induction

hypothesis, we have the desired x = y ∨ x 6= y. If one of x, y is in X and the other is a, then x 6= y, since

a 6∈ X ; hence x = y ∨ x 6= y. Finally if both are equal to a, then x = y and hence x = y ∨ x 6= y. Therefore,

as claimed, Z satisfies the closure conditions. Hence every finite set belongs to Z.

9 He also defined other notions of “finite”; for example K-finite drops the requirement z 6∈ u from the definition. That notion,
and the other notion considered op. cit., do not satisfy the property that the cardinality of a finite set is a finite cardinal, i.e., an
integer. For example, {c} will be K-finite, even if we do not know whether or not c is inhabited, so we cannot assign {c} a finite
cardinal.
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Lemma 4. A finite set is empty or it is inhabited (has a member).

Proof. Define

Z = {X ∈ FINITE : X = ∅ ∨ ∃u (u ∈ X)}.

We will show Z satisfies the closure conditions in the definition of FINITE. Evidently ∅ ∈ Z. Now suppose

X ∈ Z and Y = X ∪ {a} with a 6∈ X . We must show Y ∈ Z. Since X ∈ Z, X is finite. Therefore Y is finite.

Since a ∈ Y we have Y ∈ Z.

Corollary 3.5 (Finite Markov’s principle). For every finite set X

¬¬ ∃u (u ∈ X) → ∃u (u ∈ X).

Proof. Let X be a finite set. Suppose ¬¬ ∃u (u ∈ X). That is, X is nonempty. By Lemma 4, X has a

member.

Lemma 6. ∅ ∈ FINITE.

Proof. ∅ belongs to every set W containing ∅ and containing u ∪ {e} whenever u ∈ W and e 6∈ W . Since

FINITE is the intersection of such sets W , ∅ ∈ FINITE.

Lemma 7. If x ∈ FINITE and c 6∈ x, then x ∪ {c} ∈ FINITE.

Proof. Let x ∈ FINITE. Then x belongs to every set W containing ∅ and containing u ∪ {e} whenever u ∈ W

and e 6∈ W . Let W be any such set. Then x ∪ {c} ∈ W . Since W was arbitrary, x ∪ {c} ∈ FINITE.

Lemma 8. If z ∈ FINITE, then z = ∅ or there exist x ∈ FINITE and c 6∈ x such that z = x ∪ {c}.

Proof. The formula is stratified, giving c index 0, and x and z index 1. FINITE is a parameter. We prove the

formula by induction on finite sets. Both the base case (when z = ∅) and the induction step are immediate.

Lemma 9. Every unit class {x} is finite.

Proof. We have

∅ ∈ FINITE by Lemma 6

x 6∈ ∅ by the definition of ∅

∅ ∪ {x} ∈ FINITE by Lemma 7

{x} = ∅ ∪ {x} by the definitions of ∪ and ∅

{x} ∈ FINITE by the preceding two lines

Lemma 10. P1(x) is finite if and only if x is finite.

Proof. Left-to-right: we have to prove

∀y ∈ FINITE ∀x (y = P1(x) → x ∈ FINITE) (2)

The formula is weakly stratified with respect to y, as we are allowed to give the two occurrences of FINITE

different types. So we may prove the formula by induction on finite sets y.

Base case. When y = ∅ = P1(x) we have x = ∅, so x ∈ FINITE.
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Induction step. Suppose y ∈ FINITE has the form y = z ∪ {w} = P1(x) and w 6∈ z, and z ∈ FINITE. Then

w = {c} for some c ∈ x. The induction hypothesis is

∀w (z = P1(w) → w ∈ FINITE) (3)

Then

z = y − {w} since y = z ∪ {w}

= P1(x) − {{c}} since y = P1(x) and w = {c}

= P1(x − {c}).

Since y ∈ FINITE and {c} ∈ y, we have

q ∈ y → q = {c} ∨ q 6= {c} by Lemma 3

u ∈ x → {u} = {c} ∨ {u} 6= {c} since y = P1(x)

u ∈ x → u = c ∨ u 6= c

It follows that

(x − {c}) ∪ {c} = x (4)

By the induction hypothesis (3), with x − {c} substituted for w, we have

x − {c} ∈ FINITE

(x − {c}) ∪ {c} ∈ FINITE by definition of FINITE

x ∈ FINITE by (4)

That completes the induction step. That completes the proof of the left-to-right implication.

Right-to-left: We have to prove

x ∈ FINITE → P1(x) ∈ FINITE (5)

Again the formula is weakly stratified since FINITE is a parameter. We proceed by induction on finite sets x.

Base case: P1(∅) = ∅ ∈ FINITE.

Induction step: We have for any x and c 6∈ x,

P1(x ∪ {c}) = P1(x) ∪ {{c}}.

Let c 6∈ x and x ∈ FINITE. By the induction hypothesis (5), P1(x) is finite, and since c 6∈ x, we have

{c} 6∈ P1(x). Then P1(x) ∪ {{c}} is finite. Then P1(x ∪ {c}) is finite. That completes the induction step.

Lemma 11. The union of two disjoint finite sets is finite.

Proof. We prove by induction on finite sets X that

∀ Y ∈ FINITE (X ∩ Y = ∅ → X ∪ Y ∈ FINITE).

Base case: ∅ ∪ Y = Y is finite.

Induction step: Suppose X = Z ∪ {b} with b 6∈ Z and Y ∩ (Z ∪ {b}) = ∅ and Z finite. Then

X ∪ Y = (Z ∪ Y ) ∪ {b}

X ∪ Y = Z ∪ (Y ∪ {b}) (6)
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Since Y ∩ (Z ∪ {b}) = ∅, b 6∈ Y . Then by the definition of FINITE, Y ∪ {b} is finite. We have

Z ∩ (Y ∪ {b}) = Y ∩ (Z ∪ {b}) = ∅.

Then by the induction hypothesis, Z ∪ (Y ∪ {b}) is finite. Then by (6), X ∪ Y is finite. That completes the

induction step.

Lemma 12. If x has decidable equality, and x ∼ y, then y has decidable equality.

Proof. Suppose x ∼ y. Then there exists f : x → y with f one-to-one and onto. By Lemma 9, f−1 : y → x is

a one-to-one function. Then we have for u, v ∈ y,

u = v ↔ f1(u) = f−1(v). (7)

Since x has decidable equality, we have

f1(u) = f−1(v) ∨ f1(u) 6= f−1(v).

By (7),

u = v ∨ u 6= v.

Therefore y has decidable equality.

Lemma 13. Let f : z ∪ {c} → y be one-to-one and onto. Suppose c 6∈ z, and let g be f restricted to z. Then

g : z → y − {f(c)} is one-to-one and onto.

Remark. Somewhat surprisingly, it is not necessary to assume that z ∪ {c} has decidable equality. That is not

important as decidable equality is available when we use this lemma.

Proof. Let q = f(c). Then g : z → y − {q}. Suppose g(u) = g(v). Then f(u) = f(v). Since f is one-to-one,

u = v. Hence g is one-to-one. Suppose v ∈ y − {q}. Since f is onto, v = f(u) for some u ∈ z ∪ {c}; but u 6= c

since if u = c then v = f(u) = q, but v 6= q since v ∈ y − {q}. Then u ∈ z. Hence g is onto.

Lemma 14. A set that is similar to a finite set is finite.

Proof. We prove by induction on finite sets x that

∀y (y ∼ x → y ∈ FINITE).

The formula is stratified, so induction is legal.

Base case: When x = ∅. Suppose y ∼ ∅. Then y = ∅, so y ∈ FINITE. That completes the base case.

Induction step: Suppose the finite set x has the form x = z ∪ {c} with c 6∈ z, and x ∼ y. By Lemma 3, x

has decidable equality. Then by Lemma 12, y has decidable equality. Let f : z ∪ {c} → y be f one-to-one and

onto. Let q = f(c). Then 〈c, z〉 ∈ f . Let g be f restricted to z. By Lemma 13, g : z → y − {q} is one-to-one

and onto. Then by the induction hypothesis, y −{q} is finite. Then (y −{q})∪{q} ∈ FINITE, by the definition

of FINITE. But since y has decidable equality, we have

y = (y − {q}) ∪ {q)}.

Therefore y ∈ FINITE. That completes the induction step.

Definition 3.15. The power set of a set X is defined as the set of subclasses of X :

P(X) = {Y : Y ⊂ X}.
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We shall not make use of P(X), because there are “too many” subclasses of X . Consider, by contrast, the

separable subclasses of X :

Definition 3.16. We define the set of separable subclasses of X by

Ps(X) := {u : u ⊆ X ∧ X = u ∪ (X − u)}

That is, u is a separable subclass (or subset, which is synonymous) of X if and only if ∀y ∈ X (y ∈ u ∨ y 6∈ u).

Classically, of course, every subset is separable, so we have Ps(X) = P(X), but that is not something we can

assert constructively. The formula in the definition is stratified, so the definition can be given in iNF. When

working with finite sets, Ps(X) is a good constructive substitute for SC(X). We illustrate this by proving

some facts about SC(X), before returning to the question of the proper constructive substitute for SC(X)

when X is not necessarily finite.

Lemma 17. Let x be a finite set. Then Ps(x) is also a finite set.

Remark. We cannot prove this with SC(x) in place of Ps(x).

Proof. The formula to be proved is

x ∈ FINITE → Ps(x) ∈ FINITE.

The formula is weakly stratified because the two occurrences of the parameter FINITE may receive different

indices. Therefore we can proceed by induction on finite sets x.

Base case: Ps(∅) = {∅} is finite.

Induction step: Suppose x is finite and consider x ∪ {c} with c 6∈ x. Then x ∪ {c} is finite and hence, by

Lemma 3, it has decidable equality.

By the induction hypothesis, Ps(x) ∈ FINITE. I say that the map u 7→ u ∪ {c} is definable in iNF:

f := {〈u, y〉 : u ∈ Ps(x) ∧ y = u ∪ {c}.}

The formula can be stratified by giving c index 0, u and y index 1, Ps(x) index 2; then 〈u, y〉 has index 3 and

we can give f index 4. Hence f is definable in iNF as claimed. f is a function since y is uniquely determined

as u ∪ {c} when u is given. Also f is one-to-one, since if u ⊆ x and v ⊆ x and c 6∈ x, and u ∪ {c} = v ∪ {c},

then u = v. Define

A := Range(f).

Then

A = {u ∪ {c} : u ∈ Ps(x)}. (8)

Then Ps(x) ∼ A, because f : Ps(x) → A is one-to-one and onto. Since Ps(x) is finite (by the induction

hypothesis), by Lemma 3, Ps(x) has decidable equality. Then A has decidable equality, by Lemma 12. Since

A has decidable equality, and is similar to the finite set Ps(x), A is finite, by Lemma 14.

I say that

Ps(x ∪ {c}) = A ∪ Ps(x). (9)

By extensionality, it suffices to show that the two sides of (9) have the same members.
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Left-to-right: Let v ∈ Ps(x ∪ {c}). Then v is a separable subset of x ∪ {c}. Then c ∈ v ∨ c 6∈ v. If c 6∈ v

then v ∈ Ps(x). If c ∈ v

x ∪ {c} ∈ FINITE since x ∈ FINITE and c 6∈ x

x ∪ {c} has decidable equality by Lemma 3

v has decidable equality since v ⊆ x ∪ {c}

v = (v − {c}) ∪ {c} since x ∈ v → x = c ∨ x 6= c

We have v − {c} ∈ Ps(x), since v ⊂ x ∪ {c} and v has decidable equality. Then f(v − {c}) ∈ Range(f) = A.

But f(v − {c}) = (v − {c}) ∪ {c} = v. Therefore v ∈ A. Therefore v ∈ A ∪ Ps(x), as desired. That completes

the proof of the left-to-right direction of (9).

Right-to-left. Let v ∈ A ∪ Ps(x). Then v ∈ A ∨ v ∈ Ps(x).

Case 1, v ∈ A. Then by (8), v has the form v = u ∪ {c} for some u ∈ Ps(x). Then u ∪ {c} ∈ Ps(x ∪ {c}) as

required.

Case 2, v ∈ Ps(x). First we note that if c 6∈ x then

Ps(x) ⊆ Ps(x ∪ {c})

Therefore, since v ∈ Ps(x), we have v ∈ Ps(x ∪ {c}). That completes the proof of (9).

Note that A and Ps(x) are disjoint, since every member of A contains c, and no member of Ps(x) contains

c, since c 6∈ x. Then by Lemma 11 and (9), Ps(x ∪ {c}) ∈ FINITE, as desired.

Lemma 18. A finite subset of a finite set is a separable subset.

Proof. Let a ∈ FINITE. By induction on finite sets b we prove

b ∈ FINITE → b ⊆ a → a = (a − b) ∪ b. (10)

The formula is stratified, so induction is legal.

Base case: Suppose b = ∅. Then b ⊆ a, so we have to prove a = (a − ∅) ∪ ∅, which is immediate. That

completes the base case.

Induction step: Suppose b ∈ FINITE and c 6∈ b and b ∪ {c} ⊆ a. We must show

a = (a − (b ∪ {c})) ∪ (b ∪ {c})

By extensionality, it suffices to show that

x ∈ a ↔ x ∈ (a − (b ∪ {c}) ∪ (b ∪ {c}) (11)

Since a is finite, a has decidable equality, by Lemma 3.

Ad left-to-right of (11): Let x ∈ a. Then by decidable equality on a, we have

x = c ∨ x 6= c (12)

By the induction hypothesis (10), we have

x ∈ b ∨ x 6∈ b (13)

By (12) and (13) we have

x ∈ b ∪ {c} ∨ x 6∈ b ∪ {c} (14)
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Therefore

x ∈ (a − (b ∪ {c}) ∪ (b ∪ {c}).

That completes the left-to-right implication in (11).

Ad right-to-left: Suppose

x ∈ (a − (b ∪ {c}) ∪ (b ∪ {c}).

We must show x ∈ a. If x ∈ (a − (b ∪ {c}) then x ∈ a. If x ∈ (b ∪ {c}) then x ∈ a, since by hypothesis

b ∪ {c} ⊆ a. That completes the right-to-left direction. That completes the induction step.

Lemma 19. Every separable subset of a finite set is finite.

Proof. By induction on finite sets X . When X is the empty set, every subset of X is the empty set, so every

subset of X is empty, and hence finite. Now let X = Y ∪{a} with a 6∈ Y and Y finite, and let U be a separable

subset of X ; that is,

∀z ∈ X (z ∈ U ∨ z 6∈ U). (15)

We have to show U is finite. Since U is separable, a ∈ U ∨ a 6∈ U ; we argue by cases accordingly.

Case 1: a 6∈ U . Then U ⊆ Y , so by the induction hypothesis, U is finite.

Case 2: a ∈ U . Let V = U − {a}. Then V ⊆ Y . I say that V is a separable subset of Y ; that is,

∀z ∈ Y (z ∈ V ∨ z 6∈ V ) (16)

Let z ∈ Y . Since U is a separable subset of X , z ∈ U ∨ z 6∈ U . By Lemma 3, X has decidable equality, so

z = a ∨ z 6= a. Therefore z ∈ V ∨ z 6∈ V , as claimed in (16). Then, by the induction hypothesis, V is finite.

Since a 6∈ V , also V ∪ {a} is finite. I say that V ∪ {a} = U . If x ∈ V ∪ {a} then x ∈ U , since V ⊆ U and

a ∈ U . Conversely if x ∈ U then x = a ∨ x 6= a, since a and x both are members of X and X has decidable

equality by Lemma 3. If x = a then x ∈ {a} and if x 6= a then x ∈ V , so in either case x ∈ V ∪ {a}. Therefore

V ∪ {a} = U as claimed. Since V is finite and a 6∈ V , V ∪ {a} is finite. Since U = V ∪ {a}, U is finite. That

completes the induction step.

Lemma 20. Let a and b be finite sets with b ⊆ a. Then a − b is also a finite set.

Proof. We first prove the special case when b is a singleton, b = {c}. That is,

a ∈ FINITE ∧ c ∈ a → a − {c} ∈ FINITE (17)

By Lemma 3, a has decidable equality. Hence a − {c} is a separable subset of a. Then by Lemma 19, it is

finite. That completes the proof of (17).

We now turn to the proof of the theorem proper. By induction on finite sets a we prove

∀b ∈ FINITE (b ⊆ a → (a − b) ∈ FINITE).

Base case: ∅ − b = ∅ is finite.

Induction step. Let a = p ∪ {c}, with c 6∈ p. Let b be a finite subset of a. We have c ∈ b ∨ c 6∈ b by

Lemma 18. We argue by cases accordingly.

Case 1: c ∈ b. Then

a − b = p ∪ {c} − b

= p − b

= p − (b − {c}) since c 6∈ p and c ∈ b
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Since b is finite, also b − {c} is finite, by (17). Since b − {c} ⊆ p, by the induction hypothesis we have

p − (b − {c}) ∈ FINITE.

Therefore p − b ∈ FINITE. Therefore a − b ∈ FINITE. That completes Case 1.

Case 2: c 6∈ b. Then b ⊆ p, so by the induction hypothesis p − b is finite.

a − b = (p ∪ {c}) − b

= (p − b) ∪ {c} since c 6∈ b

Therefore a − b is finite. That completes Case 2. That completes the induction step.

Lemma 21 (Bounded quantification). Let X be any set with decidable equality, and B a finite subset of X .

Let Y be any set, with R a separable subset of X × Y Let P be defined by

z ∈ P ↔ z ∈ X ∧ ∃u ∈ B 〈u, z〉 ∈ R

Then P is a separable subset of X . With complete precision:

∀u, v ∈ X (u = v ∨ u 6= v) ∧

B ∈ FINITE ∧ B ⊆ X ∧ ∀u ∈ X ∀z ∈ Y (〈u, z〉 ∈ R ∨ ¬ 〈u, z〉 ∈ R)

→ ∀z ∈ X (∃u ∈ B 〈u, z〉 ∈ R ∨ ¬ ∃u ∈ B 〈u, z〉 ∈ R)

Remark. We may express the lemma informally as “The decidable sets are closed under bounded quantification.”

Proof. The formula to be proved is stratified, with FINITE as a parameter, giving u and z index 0, B index 1,

and R index 3. Therefore it is legal to prove it by induction on finite sets B.

Base case: B = ∅. Then X × Y = ∅, so R = ∅. Then ∀z ¬ ∃u ∈ B 〈u, z〉 ∈ R, and therefore

∀z ∈ X (∃u ∈ B 〈u, z〉 ∈ R ∨ ¬ ∃u ∈ B 〈u, z〉 ∈ R).

That completes the base case.

Induction step. Suppose B = A ∪ {c} with A finite and c 6∈ A. Then

∀z ∈ X (∃u ∈ B 〈u, z〉 ∈ R ↔ (∃u ∈ A 〈u, z〉 ∈ R) ∨ 〈c, z〉 ∈ R) (18)

We have to prove

(∃u ∈ B 〈u, z〉 ∈ R) ∨ ¬ (∃u ∈ B 〈u, z〉 ∈ R) (19)

By (18), that is equivalent to

(∃u ∈ A 〈u, z〉 ∈ R ∨ 〈c, z〉 ∈ R) ∨ ¬ (∃u ∈ A 〈u, z〉 ∈ R ∨ 〈c, z〉 ∈ R)

↔ (∃u ∈ A 〈u, z〉 ∈ R ∨ 〈c, z〉 ∈ R) ∨ (¬ (∃u ∈ A 〈u, z〉 ∈ R) ∧ 〈c, z〉 6∈ R))

↔ (∃u ∈ A 〈u, z〉 ∈ R ∨ ¬ ∃u ∈ A 〈u, z〉 ∈ R ∨ 〈c, z〉 ∈ R)

∧ (∃u ∈ A 〈u, z〉 ∈ R ∨ ¬ ∃u ∈ A 〈u, z〉 ∈ R ∨ ¬ 〈c, z〉 ∈ R)

Since 〈c, z〉 ∈ R ∨ ¬ 〈c, z〉 ∈ R, the last formula is equivalent to

∃u ∈ A 〈u, z〉 ∈ R ∨ ¬ ∃u ∈ A 〈u, z〉 ∈ R.

But by the induction hypothesis, that holds. That completes the induction step.
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Lemma 22 (swap similarity). Let X have decidable equality and let U ⊆ X and b, c ∈ X with b ∈ U and

c 6∈ U . Let Y = U − {b} ∪ {c}. Then U ∼ Y .

Proof. Since b ∈ U and c 6∈ U , we have b 6= c. Define f : U → Y by

f(x) =







c if x = b

x otherwise

Since X has decidable equality, f is well-defined on X , and from the definitions of f and Y we see that

f : U → Y and f is onto. Ad one-to-one: suppose f(u) = f(v). Since X has decidable equality, u and v are

either equal or not. If u = v, we are done. If u 6= v then exactly one of u, v is equal to b, say u = b and v 6= b.

Then xf(u) = c and f(v) = v. Since f(u) = f(v) we have v = c. But v ∈ U and c 6∈ U , contradiction.

Definition 3.23 (Dedekind).

The class X is infinite if X ∼ Y for some Y ⊆ X with Y 6= X .10

Theorem 3.24. Let X be infinite, in the sense that it is similar to some Y ⊂ X with Y 6= X . Then X is

not finite.

Remark. We expressed the theorem as “infinite implies not finite”, but of course it is logically equivalent to

“finite implies not infinite”, since both forms amount to “not both finite and infinite.”

Proof. It suffices to show that every finite set is not infinite. The formula to be proved is

X ∈ FINITE → ∀Y (Y ⊆ X → X ∼ Y → X = Y )}.

That formula is stratified, giving X and Y index 1, since the similarity relation can be defined in iNF. Therefore

induction is legal.

Base case, X = ∅. The only subset of ∅ is ∅, so any subset of X is equal to X . That completes the base

case.

Induction step. Suppose X = A ∪ {b}, with A ∈ FINITE and b 6∈ A. Then

Y ⊆ X by hypothesis

X ∈ FINITE by Lemma 7

X ∈ DECIDABLE by Lemma 3

X ∼ Y ∧ Y ⊆ X assumption

f : X → Y with f one-to-one and onto, by definition of X ∼ Y

Y ∈ FINITE by Lemma 14

Y ∈ DECIDABLE by Lemma 3

Let c = f(b) and U = Y − {c}. Let g be f restricted to A. Then g : A → U is one-to-one and onto (140 steps

omitted). Thus A ∼ U .

Since X has decidable equality, b = c ∨ b 6= c. By Lemma 18, Y is a separable subset of X . Therefore

b ∈ Y ∨ b 6∈ Y . We can therefore argue by three cases: b = c, or b 6= c and b ∈ Y , or b 6= c and b 6∈ Y .

Case 1, b = c. Then U ⊆ A. By the induction hypothesis, we have A = U . Then X = A ∪ {b} = U ∪ {b} =

U ∪ {c} = Y . That completes Case 1.

10 Alternate definitions one might consider: X is infinite if there is a similarity from X to a subset of X that omits a value; X

is infinite if X − A is inhabited, for every finite set A. Whether Dedekind infinite implies these properties is not known.



16 Michael Beeson

Case 2, b 6= c and b ∈ Y . Then

f(p) = b for some p ∈ A ∪ {b}, since f is onto Y

p 6= b since f(b) = c 6= b, and f is one-to-one

Define

g = (f − {〈b, c〉} − {〈p, b〉}) ∪ {〈p, c〉}.

Then one can check that g : A → Y − {b} is one-to-one and onto. (It requires more than six hundred inference

steps, here omitted.) We note that A ∪ {b} is finite, and therefore has decidable equality, which allows us to

argue by cases whether x = b or not, and whether x = p or not.) Then

A ∼ Y − {b} since g is a similarity

Y − {b} ⊆ A since X = A ∪ {b} and Y ⊆X

Thus A is similar to its subset Y − {b}. Then by the induction hypothesis,

A = Y − {b} (20)

Therefore Y = A ∪ {b} = X . That completes Case 2.

Case 3: b 6= c and b 6∈ Y . Since Y ⊆ X = A ∪ {b}, and b 6∈ Y , we have Y ⊆ A. Then f : A → Y − {c} ⊆ A.

Then by the induction hypothesis,

Y − {c} = A. (21)

Then c 6∈ A. But X = A ∪ {b}, and c = f(b) ∈ Y ⊆ A, so c ∈ A. That contradiction completes Case 3, and

that completes the proof of the induction step.

Lemma 25. A finite union of finite disjoint sets is finite. That is,

x ∈ FINITE ∧ ∀u (u ∈ x → u ∈ FINITE)

∧ ∀u, v ∈ x (u 6= v → u ∩ v = ∅)

→
⋃

x ∈ FINITE.

Proof. By induction on the finite set x. Base case, x = ∅. Then
⋃

x = ∅, which is finite.

Induction step, x = y ∪ {c} with c 6∈ y. The induction hypothesis is that if all members of y are finite, and

any two distinct members of y are disjoint, then
⋃

y is finite. We have to prove that if all members of x are

finite and any two distinct members of x are disjoint, then
⋃

x ∈ FINITE. Assume all members of x are finite

and any two distinct members of x are disjoint. Since the members of y are members of x, all the members of

y are finite, and any two distinct members of y are disjoing. Then by the induction hypothesis,
⋃

y is finite.

A short argument from the definitions of union and binary union proves
⋃

(y ∪ {c}) =
(

⋃

y
)

∪ c.

Since x = y ∪ {c}, we have
⋃

x =
(

⋃

y
)

∪ c (22)

Now c is finite, since every member of x is finite and c ∈ x. We have
⋃

y ∩ c = ∅, since if p belongs to both
⋃

y and c, then for some w ∈ y we have p ∈ w ∩ c, contradicting the hypothesis that any two distinct members

of x = y ∪ {c} are disjoint. Then
⋃

y ∪ c is finite, by Lemma 11. Then
⋃

x is finite, by (22). That completes

the induction step.
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Lemma 26. Suppose c 6∈ x. Then

Ps(x) ⊆ Ps(x ∪ {c}).

Proof. About 30 straightforward steps, which we choose to omit here.

Lemma 27. Let A be any set. Then the intersection and union of two separable subsets of A are also

separable subsets of A.

Proof. Let X and Y be two separable subsets of A. Let u ∈ A. By definition of separability, we have

(u ∈ X ∨ u 6∈ X) ∧ (u ∈ Y ∨ u 6∈ Y ).

I say that X ∩ Y is a separable subset of A. To prove that, we must prove

u ∈ X ∩ Y ∨ u 6∈ X ∩ Y. (23)

This can be proved by cases; there are four cases according to whether u is in X or not, and whether u is in Y

or not. In each case, (23) is immediate. Hence X ∩ Y is a separable subset of A, as claimed. Similarly, X ∪ Y

is a separable subset of A.

Lemma 28 (Finite DNS). For every finite set B we have

∀P (∀x ∈ B (¬¬ x ∈ P )) → ¬¬ ∀x ∈ B (x ∈ P ).

Remark. DNS stands for “double negation shift.” Generally it is not correct to move a double negation leftward

through ∀x; but this lemma shows that it is OK to do so when the quantifier is bounded by a finite set.

Proof. The formula of the lemma is stratified, giving x index 0, B index 1, and P index 1. Therefore we may

proceed by induction on finite sets B. (Notice that the statement being proved by induction is universally

quantified over P –that is important because in the induction step we need to substitute a different set for P ;

the proof does not work with P a parameter.)

Base case, B = ∅. The conclusion ∀x ∈ ∅ x ∈ P holds since x ∈ ∅ is false.

Induction step. Suppose c 6∈ B and B ∈ FINITE and

∀x ∈ B ∪ {c} (¬¬ x ∈ P ).

By Lemma 4, B is empty or inhabited. We argue by cases.

Case 1, B is empty. Then B ∪ {c} = {c}, so we must prove

∀x (x ∈ {c} → ¬¬ x ∈ P ) → ¬¬∀x (x ∈ {c} → x ∈ P )

That is equivalent to

∀x (x = c → ¬¬ x ∈ P ) → ¬¬ ∀x (x = c → x ∈ P )

That is, ¬¬ c ∈ P → ¬¬ c ∈ P , which is logically valid. That completes case 1.

Case 2, B is inhabited. Fix u with u ∈ B. Then

∀x ∈ B (¬¬ x ∈ P )

¬¬ c ∈ P

Since x does not occur in c ∈ P we have

∀x ∈ B (¬¬ x ∈ P ∧ ¬¬ c ∈ P )

∀x ∈ B ¬¬ (x ∈ P ∧ c ∈ P )
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Define Q = {x : x ∈ P ∧ c ∈ P }, which is legal since the defining formula is stratified. Then

∀x ∈ B (¬¬ x ∈ Q) (24)

Since P is quantified in the formula being proved by induction, we are allowed to substitute Q for P in the

induction hypothesis; then with (24) we have

¬¬ ∀x ∈ B (x ∈ Q) by the induction hypothesis

¬¬ ∀x ∈ B (x ∈ P ∧ c ∈ P ) by the definition of Q (25)

Now we would like to infer

¬¬ ((∀x ∈ B (x ∈ P )) ∧ c ∈ P ), (26)

which seems plausible as x does not occur in ‘c ∈ P ’. In fact we have the equivalence of (25) and 26), since

B is inhabited. (That was why we had to break the proof into cases according as B is empty or inhabited.)

Then indeed (26) follows. By the definitions of union and unit class we have

(∀x ∈ B (x ∈ P )) ∧ c ∈ P ↔ ∀x ∈ (B ∪ {c}) (x ∈ P ).

Applying that equivalence to (26), we have the desired conclusion,

¬¬ ∀x ∈ (B ∪ {c}) (x ∈ P ).

That completes the induction step.

Lemma 29. Every subset of a finite set is not-not separable and not-not finite.

Remark. We already know that separable subsets of a finite set are finite, and finite subsets of finite set are

separable, but one cannot hope to prove every subset of a finite set is finite, because of sets like {x ∈ {∅} : P }.

That set is finite if and only if P ∨ ¬P , by Lemma 4.

Proof. Let X be a finite set, and A ⊆ X . By Lemma 19, if A is a separable subset of X then A is finite.

Double-negating that implication, if A is not-not separable, then it is not-not finite. Hence, it suffices to prove

that not-not A is a separable subset of X . More formally, we must prove

¬¬ X = A ∪ (X − A) (27)

We have

∀t ∈ X ¬¬ (t ∈ A ∨ t 6∈ A) by logic

¬¬ ∀t ∈ X t ∈ A ∨ t 6∈ A) by Lemma 28

¬¬ X = A ∪ (X − A) by the definitions of union and difference

That is (27).

Lemma 30. Let x ∈ FINITE and y ∈ FINITE. Then ¬¬ (x ∪ y ∈ FINITE).

Remark. Lemma 11 shows the double negation can be dropped if x and y are assumed to be disjoint. It cannot

be dropped in general, as {a} ∪ {b} ∈ FINITE implies a = b ∨ a 6= b, so if we could drop the double negation

in this lemma, then every set would have decidable equality.
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Proof. The formula is stratified, so we can prove it by induction on finite sets y, for a fixed finite set x.

Base case, y = ∅. We have x ∪ ∅ = x, which is finite by hypothesis. That completes the base case.

Induction step. Suppose y ∈ FINITE, x ∪ y ∈ FINITE, and c 6∈ y. Then I say

c 6∈ x → x ∪ (y ∪ {c}) ∈ FINITE (28)

To prove that:

x ∪ (y ∪ {c}) = (x ∪ y) ∪ {c} by definition of union

c 6∈ x ∪ y since c 6∈ x

x ∪ (y ∪ {c}) ∈ FINITE

That completes the proof of (28).

We also have

c ∈ x → x ∪ (y ∪ {c}) ∈ FINITE (29)

since (x ∪ y) ∪ {c} = x ∪ y ∈ FINITE.

We have by intuitionistic logic

¬¬ (c ∈ x ∨ c 6∈ x).

and by the induction hypothesis we have ¬¬ x ∪ y ∈ FINITE. Then by (28) and (29), we have

¬¬ (x ∪ y) ∪ {c} ∈ FINITE.

That completes the induction step.

Lemma 31. Let X be a finite set and c ∈ X . Then X − {c} is finite.

Proof.

X has decidable equality by Lemma 3

X − {c} is a separable subset of X by the definition of separable

X − {c} ∈ FINITE by Lemma 19

Before leaving this section, we shall state a technical lemma about similarities, arising from the details of

the definitions of “maps” and “similarity”. The issue is that f : X → Y does not require that the domain of f

be exactly X ; it is allowed to be larger. That is generally a good thing, as once we have defined X and proved

it maps X to Y , it automatically maps subsets of X to Y . But to be a similarity from X to Y , the domain of

f must be exactly X and the range exactly Y . The following lemma is the price we must pay for allowing the

domain of f to be larger in “maps”. Stating it here allows us to cite it, without revisiting this issue in future

work.

Lemma 32. Suppose f : A → B and f is one to one and onto B. Let R be the range of f . Suppose R ⊆ B

and the domain of f is A. Then f is a similarity from A to R.

Proof. We omit the proof, which takes 111 lines of Lean, because it is just a straightforward unwinding of the

definitions involved.
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4 Frege cardinals

The formula in the following definition is stratifiable, so the definition can be given in iNF. Specifically, we

can give a index 0, x and z index 1, and κ index 2. Then κ+ gets index 2, so the successor function κ 7→ κ+

is a function in iNF.

Definition 4.1. The successor of any set κ, denoted κ+, is defined as

κ+ = {x : ∃z, a (z ∈ κ ∧ a 6∈ z ∧ x = z ∪ {a})}.

Definition 4.2.

zero = {∅}

Definition 4.3. The set F of finite Frege cardinals is the least set containing zero = {∅} and containing κ+

whenever it contains κ and κ+ is inhabited. More precisely,

κ ∈ F ↔ ∀w (zero ∈ w ∧ ∀µ (µ ∈ w ∧ (∃z (z ∈ µ+)) → µ+ ∈ w) → κ ∈ w).

Remarks. The formula defining F is stratified, so the definition can be given in iNF. According to that

definition, if there were a largest finite cardinal κ, then κ+ would be the empty set, not Frege zero, which

is {∅}. So in that case, the successor of the largest finite cardinal κ would not belong to F, which does not

contain ∅. Instead, in that case the result would be that successor does not map F → F. Of course ∅+ = ∅,

so once that happened, more applications of successor would do nothing more. Note also that in general a

finite cardinal is not a finite set; rather, the members of a finite cardinal are finite sets.

Lemma 4. Let κ ∈ F and x ∈ κ. Then x is a finite set.

Proof. Define

Z = {x ∈ F : ∀y ∈ x (y ∈ FINITE)}.

The formula in the definition is stratifiable, so the definition is legal. We will show that Z is closed under the

conditions defining F. First, Frege zero = {∅} is in Z, since ∅ is finite. To verify the second condition, assume

κ ∈ Z and κ+ is inhabited; we must show κ+ ∈ Z. Let u ∈ κ+. Then there exists x ∈ κ and there exists a

such that u = x ∪ {a}. Since κ ∈ Z, x is finite. Then by definition of FINITE, u is finite. That completes the

proof that Z satisfies the second condition. Hence F ⊆ Z.

Lemma 5 (Stratified induction). Let ϕ be a stratified formula (or weakly stratified with respect to x), so

{x : ϕ(x)} exists. Then

(ϕ(zero) ∧ ∀x (ϕ(x) ∧ ∃u (u ∈ x+) → ϕ(x+))) → ∀x ϕ(x).

Proof. Z := {x : ϕ(x)} is definable and satisfies the closure conditions that define F. Therefore F ⊆ Z.

Remark. When carrying out a proof by induction, during the induction step we get to assume that x+ is

inhabited.

We follow Rosser ([15], p. 372) in defining cardinal numbers: a cardinal number, or just “cardinal”, is an

equivalence class of the similarity relation x ∼ y of one-to-one correspondence:

Definition 4.6. The class NC of cardinal numbers is defined by

NC = {κ : ∀u ∈ κ ∀v (v ∈ κ ↔ u ∼ v)}.
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Remark. It would not do to use ∃u instead of ∀u, since then ∅ would not be a cardinal, but allow for that

possibility. We note that Rosser’s definition requires cardinals to be inhabited. In the work presented here, it

makes no difference, as we work only with finite cardinals.

The following two lemmas show that the members of F are indeed cardinals in that sense.

Corollary 4.7. Every finite cardinal is inhabited.

Proof. Lemma 5 justifies us in proving ∃u (u ∈ κ) by induction on κ.

Base case: zero = {∅} is inhabited.

Induction step: Suppose κ+ is inhabited. Then κ+ is inhabited. (We do not even need to use the induction

hypothesis.)

Lemma 8. If κ ∈ F and x ∈ κ and x ∼ y, then y ∈ κ.

Remarks. This lemma shows that finite cardinals are cardinals, in the sense of equivalence classes under

similarity.

Proof. Define

Z = {κ ∈ F : ∀x ∈ κ ∀y (x ∼ y → y ∈ κ)}.

That formula can be stratified, since we have already shown that x ∼ y is definable in iNF. Therefore the

definition of Z is legal.

We will show Z contains Frege zero and is closed under Frege successor. Z contains Frege zero since the

only member of Frege zero is the empty set, and the only set in one-to-one correspondence with the empty set

is ∅ itself.

Ad the closure under Frege successor: Suppose κ ∈ Z, and x ∈ κ+, and f : x → y is one-to-one and onto.

Then x = u ∪ {a} for some u ∈ κ and a 6∈ u. Let g be f restricted to u, and let v be the range of g. Then

g : u → v is one-to-one and onto. Since κ ∈ Z and u ∈ κ, we have v ∈ κ. Let b = f(a). Then b 6∈ v, since f is

one-to-one. Then v ∪ {b} ∈ κ+.

I say that v ∪ {b} = y. Let p ∈ y. Then p = f(q) for some q ∈ x, since f maps x onto y. By Lemma 4,

since x ∈ κ+, x is finite. Since x is finite, it has decidable equality by Lemma 3. Therefore q = a ∨ q 6= a.

If q = a then p = f(a) = b ∈ {b}. If q 6= a then since q ∈ x = u ∪ {a} and q ∈ x, we have q ∈ u. Then by

definition of v, p = f(q) ∈ v. Therefore p ∈ v ∪ {b}. Since p was an arbitrary member of y, we have proved

y ⊆ v ∪ {b}. But v ∪ {b} ⊆ y is immediate, since v ⊆ y and b ∈ y. Therefore v ∪ {b} = y, as claimed.

Since v ∈ κ, it follows that y ∈ κ+ as desired. Thus Z is closed under Frege successor. By the definition of

F, we have F ⊆ Z.

Lemma 9. Let κ ∈ F and x, y ∈ κ. Then x ∼ y.

Proof. By induction on κ. Similarity is defined by a stratified formula, so induction is legal. The base case is

immediate as Frege zero has only one member. For the induction step, let x and y belong to κ+. Then there

exist u, v, a, b such that u, v ∈ κ and a 6∈ u and b 6∈ v and x = u ∪ {a} and y = v ∪ {b}. By the induction

hypothesis, there is a one-to-one correspondence g : u → v. We define f : x → y by

f(x) =







g(x) if x ∈ u

b if x = a

By Lemma 4, x is finite. Since x is finite, it has decidable equality by Lemma 3. Since a 6∈ u, f is a function.

Hence the domain of f is x. By Lemma 4, y is finite. Therefore by Lemma 3, y has decidable equality, so the
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range of f is y. I say that f is one-to-one. Suppose f(x) = f(z). We must show x = z. Since y has decidable

equality, we may argue by the following cases:

Case 1: f(x) = f(z) = b. Then since b 6∈ v, x and z are not in u, so x = a and z = a. Then x = z as

desired.

Case 2: f(x) = g(x) and f(z) = g(z). Then g(x) = g(z). Since g is one-to-one, we have x = z as desired.

Therefore f is one-to-one, as claimed. Therefore x ∼ y. That completes the induction step.

Definition 4.10. Following Rosser, we define the cardinal of x to be

|x| = {u : u ∼ x}.

Then the inhabited cardinals, that is, the inhabited members of NC, are exactly the sets of the form |x|

for some x.

Lemma 11. For all x, x ∈ |x|

lemma By Lemma 11, we have x ∼ x. Then x ∈ |x| by Definition 4.10.

Lemma 12. |x| = |y| if and only if x ∼ y.

Proof. By Lemma 11, which says that the relation ∼ is an equivalence relation.

Lemma 13. c 6∈ x → |x ∪ {c}| = |x|+.

Proof. By extensionality, it suffices to show that the two sides have the same members. That is, we must show,

under the assumption c 6∈ x,

u ∼ x ∪ {c} ↔ ∃b, v (b 6∈ v ∧ v ∼ x ∧ u = v ∪ {b}). (30)

Ad right-to-left: Suppose b 6∈ v and v ∼ x and u = v ∪ {b}. Let f : v → x be a similarity, and extend it to

g defined by g = f ∪ {〈b, c〉}. Then g is a similarity from v ∪ {b} to x ∪ {c}. That completes the right-to-left

direction. f Ad left-to-right: Suppose f : u → x ∪ {c} is a similarity. Since f is onto, there exists b ∈ x with

f(b) = c. Let v = u − {b}. Use this b and v on the right. Then g = f − {〈b, c〉} is a similarity from v to x. It

remains to show u = v ∪ {b} = (u − {b}) ∪ {b}. That is,

z ∈ u → z ∈ u → z 6= b ∨ z = b.

Let z ∈ u. Since f is a similarity from u to x ∪ {c}, there is a unique y ∈ x ∪ {c} such that 〈z, y〉 ∈ f . Then

z = b ↔ y = c. Since c 6∈ x, and y ∈ x ∪ {c}, y = c ∨ y 6= c. Therefore z = b ∨ z 6= b, as desired. Note that

it is not necessary that z have decidable equality. That completes the left-to-right direction.

Lemma 14. |∅| = zero.

Proof. By Definition 4.2, zero = {∅}. By definition, |∅| contains exactly the sets similar to ∅. By Lemma 12,

∅ is the only set similar to ∅. Therefore |∅| = {∅}. Then |∅| = zero since both are equal to {∅}.

Lemma 15. For every set κ, if κ+ is inhabited, then κ+ contains an inhabited set, and every member of κ+

is inhabited.

Remark. Note that κ is not assumed to be a finite cardinal, or even a cardinal. Successor cannot take the

value zero = {∅} on any set.
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Proof. By definition the members of κ+ are exactly the sets of the form x ∪ {a} with x ∈ κ and a 6∈ x. (That

is true whether or not there are any such members.) But if κ+ is inhabited, then there is at least one such

member, and each such member x ∪ {a} is inhabited, since it contains a.

Lemma 16. Frege successor does not take the value Frege zero on any set at all: ∀x (x+ 6= zero).

Remark. This does not depend on the finiteness or not-finiteness of F. If F is finite then eventually κ+ is ∅,

rather than zero, which is {∅}, so even in that case Frege zero does not occur as a successor.

Proof. If κ+ = {∅} then κ+ is inhabited, but contains no inhabited set, contradicting Lemma 15.

Lemma 17. Every finite cardinal is either equal to Frege zero or is the successor of an element of F.

Proof. The set Z = {κ ∈ F : κ = zero ∨ ∃µ (µ ∈ F ∧ κ = µ+)} is definable in iNF, since its defining formula

is stratified. Z contains Frege zero and is closed under successor. Therefore, by definition of F, F ⊆ Z.

Lemma 18. zero ∈ F.

Proof. Let W be one of the sets whose intersection defines F, i.e., W contains zero and is closed under inhabited

successor. Then W contains zero. Since W was arbitrary, zero ∈ F.

Lemma 19. F is closed under inhabited successor.

Proof. Suppose κ ∈ F and κ+ is inhabited. Let W be one of the sets whose intersection defines F, i.e., W

contains zero and is closed under inhabited successor. By induction on κ, we can prove κ ∈ W . Since W is

closed under inhabited successor, and κ ∈ W , and κ+ is inhabited, we have κ+ ∈ W . Since F is the intersection

of all such sets W , and κ+ belongs to every such W , we have κ+ ∈ F as desired.

Lemma 20. one ∈ F.

Proof.

zero ∈ F by Lemma 18

one = zero
+ by the definition of one

∅ ∈ zero by the definition of zero

zero 6∈ zero since zero = {∅} and zero 6= ∅

∅ ∪ {zero} ∈ zero
+ by definition of successor

∃u (u ∈ one) since one = zero+

one ∈ F by Lemma 19

Lemma 21. The cardinal of a finite set is a finite cardinal. That is,

∀x ∈ FINITE (|x| ∈ F).

Proof. The formula to be proved is stratified, so we can prove it by induction on finite sets.

Base case: By Lemma 14, |∅| = zero. By Lemma 19, zero ∈ F.

Induction step: Let x ∈ FINITE and c 6∈ x. Consider |x∪{c}|, which by Lemma 13 is |x|+. By the induction

hypothesis, |x| ∈ F. By definition of F, |x|+ ∈ F. That completes the induction step.

Lemma 22. Every member of F is inhabited.
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Proof. By induction we prove

∀m (m ∈ F → ∃u (u ∈ m)).

The formula is stratified, giving u index 0 and m index 1. For the base case, zero = {∅} by definition, so zero

is inhabited. For the induction step, we always suppose m+ is inhabited, so there is nothing more to prove.

To put the proof directly: the set of inhabited members of F contains zero and is closed under inhabited

successor, so it contains F.

Lemma 23. A set similar to a finite set is finite.

Proof. Let a be finite and a ∼ b. Let κ = |a|. Then

κ ∈ F by Lemma 21

a ∼ a by Lemma 11

a ∈ κ by definition of |a|

b ∈ κ by Lemma 8

b ∈ FINITE by Lemma 4

Lemma 24.

(i) If two finite cardinals have a common member, then they are equal.

(ii) Two distinct finite cardinals are disjoint.

Proof. Part (ii) is the contrapositive of (i), so it suffices to prove (i). Let κ and µ belong to F. Suppose x

belongs to both κ and µ. We must show κ = µ. By extensionality, it suffices to show that κ and µ have the

same members. Let y ∈ κ. Then by Lemma 9, y ∼ x. By Lemma 8, y ∈ µ. Therefore κ ⊆ µ. Similarly

µ ⊆ κ.

Lemma 25. Let x and y be finite sets. Then

x ∼ y → |x| = |y|.

Proof. Assume x ∈ FINITE and y ∈ FINITE and x ∼ y. Then

x ∈ |x| by Lemma 11

y ∈ |y| by Lemma 11

|x| ∈ F by Lemma 21

|y| ∈ F by Lemma 21

y ∈ |x| by Lemma 8

|x| = |y| by Lemma 24

5 Order on the cardinals

In this section, κ, µ, and λ will always be cardinals. We start with Rosser’s classical definition (which is

not the one we use).
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Definition 5.1 (Rosser).

κ ≤ µ := ∃a, b (a ∈ κ ∧ b ∈ µ ∧ a ⊆ b)

κ < µ := κ ≤ µ ∧ κ 6= µ.

For constructive use, we need to add the requirement b = a∪ (b−a), which says that b is a separable subset

of a. Classically, every subset is separable, so the definition is classically equivalent to Rosser’s.

Definition 5.2. For cardinals κ and µ:

κ ≤ µ := ∃a, b (a ∈ κ ∧ b ∈ µ ∧ a ⊆ b ∧ b = a ∪ (b − a))

κ < µ := κ ≤ µ ∧ κ 6= µ.

Definition 5.3. The image of a under f , written f“a, is defined by

f“a := Range(f ∩ (a × V)).

If f is a function then f“a is the set of values f(x) for x ∈ a.

Lemma 4. The image of a separable subset under a similarity is a separable subset. More precisely, let

f : b → c be a similarity and suppose b = a∪(b−a). Let e = f“a be the image of a under f . Then c = e∪(c−e).

Proof. We have

e ∪ (c − e) ⊆ c (31)

since e ⊆ c and c − e ⊆ c. We have

c ⊆ e ∪ (c − e) (32)

since if q ∈ c then q = f(p) for some p ∈ b, and p ∈ a ∨ p ∈ b − a, since b = a ∪ (b − a), and if p ∈ a then

q ∈ e, while if p ∈ b − a then q ∈ c − e. Combining (31) and (32), we have c = e ∪ (c − e) as desired.

Lemma 5. Let f : a → b be a similarity, and let x ⊆ a. Let g be f restricted to x. Then g : x → f“x is a

similarity.

Proof. Straightforward; requires about 75 inferences that we choose to omit here.

Lemma 6. The ordering relation ≤ is transitive on F.

Proof. Suppose κ ≤ λ and λ ≤ µ. We must show κ ≤ µ. Since κ < λ and λ < µ, there exist a ∈ κ, b, c ∈ λ,

and d ∈ µ such that a ⊆ b and c ⊆ d, and b = a ∪ (b − a), and d = c ∪ (d − c). By Lemma 9, b ∼ c, since

both belong to λ. Let f : b → c be one-to-one and onto. Let e = f“a. Then e ⊆ c and a ∼ e. So e ∈ κ, by

Lemma 8. Then e ⊆ d. By Lemma 4 we have

c = e ∪ (c − e) (33)

Now I say that d = e ∪ (d − e).

e ∪ (d − e) = e ∪ ((c ∪ (d − c)) − e) since d = c ∪ (d − c)

= e ∪ (c − e) ∪ ((d − c) − e) since (p ∪ q) − r = (p − r) ∪ (q − r)

= c ∪ ((d − c) − e) by (33)

= c ∪ (d − c) since e ⊆ c

= d since d = c ∪ (d − c)

as desired. Then κ ≤ µ as desired.
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Lemma 7. For finite cardinals κ and µ,

κ < µ ↔ ∃x, y (x ∈ κ ∧ y ∈ µ ∧ x ⊂ y ∧ y = x ∪ (y − x)).

Proof. Left to right: Suppose κ < µ. Then by definition of <, κ ≤ µ and κ 6= µ. By definition of ≤, there

exist x and y with x ∈ κ, y ∈ µ, and x ⊆ y and y = x ∪ (y − x). By Lemma 24, which applies because κ 6= µ,

we have x 6= y. Therefore x ⊂ y as desired. That completes the proof of the left-to-right implication.

Right to left: Suppose x ∈ κ and y ∈ µ and x ⊂ y and y = x ∪ (y − x). Then κ ≤ µ by definition. We

must show κ 6= µ. If κ = µ then y ∼ x, by Lemma 9. Then y is similar to a proper subset of y, namely x.

Since y ∈ µ and µ ∈ F, by Lemma 4, y is finite. Since y is similar to a proper subset of itself (namely x),

Theorem 3.24 implies that y is not finite, which is a contradiction.

Lemma 8. Let κ, µ ∈ F, with µ inhabited. Then

κ ≤ µ ↔ ∀b ∈ µ ∃a ∈ κ (a ⊆ b ∧ b = a ∪ (b − a)).

Proof. Left-to-right. Suppose κ ≤ µ. Then by definition of ≤, there exist x ∈ κ and y ∈ µ with x ⊆ y and

y = x ∪ (y − x) (34)

Let b ∈ µ; we must show there exists a ∈ κ with a ⊆ b and b = a ∪ (b − a).

We have b ∼ y by Lemma 9. So y ∼ b. Let f : y → b be one-to-one and onto. Let a = f“(x). Then a ⊆ b

and x ∼ a. By Lemma 8, a ∈ κ. By Lemma 4 and (34), we have b = a ∪ (b − a). That completes the proof of

the left-to-right implication.

Right-to-left. Suppose ∀b ∈ µ ∃a ∈ κ (a ⊆ b ∧ b = a ∪ (b − a)). Since µ is a inhabited, there exists b ∈ µ.

Then ∃a ∈ κ (a ⊆ b ∧ b = a ∪ (b − a)).

Lemma 9. Suppose κ ∈ F and x ∈ κ+ and c ∈ x. Then x − {c} ∈ κ.

Remark. We will use this in the proof that successor is one to one, so we cannot use that fact to prove this

lemma.

Proof. Since x ∈ κ+, there exists z ∈ κ and a 6∈ z such that x = z ∪ {a}. Since c ∈ x, we have c ∈ z ∨ c = a.

If c = a then z = x − {c} ∈ κ and we are done. Therefore we may assume c ∈ z and c 6= a.

Since a 6= c we have

(z ∪ {a}) − {c} = (z − {c}) ∪ {a} (35)

Since x ∈ κ+, x is finite, by Lemma 4. By Lemma 3, x has decidable equality. Then

z ∼ (z − {c}) ∪ {a} by Lemma 22

= (z ∪ {a}) − {c} by (35)

Then by Lemma 8 and the fact that z ∈ κ, we have

(z ∪ {a}) − {c} ∈ κ (36)

Since z ∪ {a} = x, that implies x − {c} ∈ κ, which is the conclusion of the lemma.

Lemma 10. For finite cardinals κ and µ, if µ+ is inhabited, we have

κ ≤ µ ↔ κ+ ≤ µ+.
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Proof. Left to right. Suppose κ ≤ µ. Since µ+ is inhabited, there is some y ∈ µ and some c 6∈ y, so y∪{c} ∈ µ+.

By Lemma 8, there is a separable subset x ⊆ y with x ∈ κ. Then x ∪ {c} ∈ κ+ and x ∪ {c} ⊂ y ∪ {c}. We

have to show that

y ∪ {c} = (x ∪ {c}) ∪ (y ∪ {c} − (x ∪ {c})). (37)

Left-to-right of (37): Suppose u ∈ y ∪ {c}. Then u ∈ y or u = c. If u = c then u ∈ x ∪ {c}, so u belongs

to the right side of (37). Now y ∪ {c} is finite (by Lemma 4), and hence has decidable equality by Lemma 3.

Therefore u = c ∨ u 6= c; so we can assume u 6= c. If u ∈ y then, since y = x ∪ (y − x), u ∈ x ∨ u 6∈ x. If

u ∈ x then u ∈ x ∪ {c} and hence u belongs to the right side of (37). If u 6∈ x then u ∈ y ∪ {c} − (x ∪ {c}), and

hence u belongs to the right side of (37). That completes the proof of the left-to-right direction of (37).

Right-to-left of (37). Since x ⊆ y we have

x ∪ {c} ⊆ y ∪ {c}

and

y ∪ {c} − (x ∪ {c}) ⊆ y ∪ {c}.

Hence the right side of (37) is a subset of the left side. That completes the proof of (37).

Therefore κ+ ≤ µ+. That completes the proof of the left-to-right direction of the lemma.

Right-to-left. Suppose κ+ ≤ µ+. Then there exist x ∈ κ+ and y ∈ µ+ with x ⊆ y and y = x ∪ (y − x). By

Lemma 15, x is inhabited, so there exists c ∈ x. Since x ⊆ y, also c ∈ y. Then by Lemma 9, x − {c} ∈ κ and

y − {c} ∈ µ. Since y ∈ µ+, y is finite, by Lemma 4. By Lemma 3, y has decidable equality. Then

u ∈ y → u = c ∨ u 6= c (38)

Since y = x ∪ (y − x), we have

u ∈ y → u ∈ x ∨ u 6∈ x (39)

Then by (38) and (39), we have

u ∈ y → u ∈ (x − {c}) ∨ u 6∈ (x − {c}). (40)

It follows from (40) that

y − {c} = ((y − {c}) − (x − {c})) ∪ (x − {c})

Therefore κ ≤ µ.

Lemma 11. For λ and µ in F, if λ+ and µ+ are inhabited, then

λ = µ ↔ λ+ = µ+.

Proof. Left to right is immediate. We take up the right to left implication. Suppose κ+ = µ+. By Lemma 24,

it suffices to show that κ∩µ is inhabited. Since κ+ is inhabited, there exists y ∈ κ+. By definition of successor,

y has the form y = x ∪ {a} for some x ∈ κ and a 6∈ x. We will prove x ∈ µ. Since µ+ = κ+ we have

x ∪ {a} ∈ µ+. Then by Lemma 9, x ∪ {a} − {a} ∈ µ. Since x ∪ {a} ∈ µ+, x ∪ {a} is finite, by Lemma 4. By

Lemma 3, x ∪ {a} has decidable equality. Then x ∪ {a} − {a} = x, so x ∈ µ. Then x ∈ κ ∩ µ as claimed.

Lemma 12. Let x be a separable subset of y, that is, x ⊆ y and y = x ∪ (y − x). Then y − x = ∅ ↔ y = x.
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Proof. Suppose x ⊆ y and y = x ∪ (y − x). Left to right: suppose y − x = ∅; we must show y = x. If u ∈ x

then by y = x ∪ (y − x) we have u ∈ y. Conversely, if u ∈ y then u ∈ x ∨ u 6∈ x. If u ∈ x we are done. If

u 6∈ x then u ∈ y − x, so u ∈ y. That completes the left-to-right direction. Right to left: Suppose y = x. Then

y − x = x − x = ∅.

Lemma 13. For finite cardinals κ and µ, if κ+ and µ+ are inhabited we

κ < µ ↔ κ+ < µ+.

Proof. Left-to-right. Suppose κ < µ. By definition that means κ ≤ µ and κ 6= µ. By Lemma 10, κ+ ≤ µ+.

We have to show κ+ 6= µ+. Suppose κ+ = µ+. Since µ+ is inhabited, there is an element y ∪ {c} of µ+ with

y ∈ µ and c 6∈ y. Since κ+ = µ+, we also have y ∪ {c} ∈ κ+. Since y ∈ µ, by Lemma 4, y is finite. Since µ+ is

inhabited, µ is also inhabited. Since κ < µ, by Lemma 8, there exists a separable subset x of y with x ∈ κ. By

Lemma 4, x is finite. By Lemma 20, y − x is finite. Since κ 6= µ, we have x 6= y, by Lemma 24. Then, since x

is a separable subset of y, y − x is not empty, by Lemma 12. Since it is finite, by Lemma 4, y − x is inhabited.

Hence there exists some b ∈ y with b 6∈ x. Then x ∪ {b} ∈ κ+. Then x ∪ {b} and y ∪ {c} both belong to κ+.

Note that x ∪ {b} and y ∪ {c} are finite (by Lemma 4), and hence have decidable equality (by Lemma 3).

Hence y = (y ∪ {c}) − {c}; then by Lemma 9 we have y ∈ κ. But from the start we had y ∈ µ. Then by

Lemma 24, we have κ = µ, contradicting the hypothesis κ < µ. Hence the assumption κ+ = µ+ has led to a

contradiction. Hence κ+ < µ+. That completes the proof of the left-to-right direction of the lemma.

Right-to-left: Suppose κ+ < µ+. Then κ+ ≤ µ+ and κ+ 6= µ+. By Lemma 10, κ ≤ µ, and since successor

is a function, κ 6= µ.

Definition 5.14. We define names for the first few integers (repeating the definition of zero, which has

already been given).

zero = {∅}

one = zero
+

two = one
+

three = two
+

four = three
+

Lemma 15. We have

∀κ ∈ F (κ = zero ∨ κ 6= zero).

Proof. By induction on κ. More explicitly, define

W := F ∩ ((F − {zero}) ∪ {zero}).

We will show that W satisfies the conditions defining F. Specifically 0 ∈ W (which is immediate from the

definitions of W and union), and W is closed under (inhabited) Frege successor. Suppose κ ∈ W and κ+ is

inhabited. We have to show κ+ ∈ W . By Lemma 16, κ+ 6= zero. By definition of W , κ ∈ F. By definition of

F, κ+ ∈ F; therefore κ+ ∈ F − {zero}. Therefore κ+ ∈ W , as claimed.

Then by definition of F (or, if you prefer, “by induction on κ”), F ⊆ W . Then by the definition of union,

κ ∈ F → κ = zero ∨ κ 6= zero.

Theorem 5.16. For finite cardinals κ and µ, we have

κ < µ ∨ κ = µ ∨ µ < κ

and

¬ (κ < µ ∧ µ < κ).
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Proof. We prove by induction on κ that for all µ we have the assertion in the statement of the lemma. Lemma 5

justifies this method of proof. The formula is stratified since the relation x < y is definable.

Base case: We have to prove

zero < µ ∨ zero = µ ∨ µ < zero

and exactly one of the three holds. If µ ≤ zero, then we would have x ∈ µ and x a separable subset of y and

y ∈ zero; but the only member of zero is ∅, so x = y = ∅. Then ∅ ∈ µ and ∅ ∈ zero, so by Lemma 24,

µ = zero. Thus µ < zero is impossible and µ ≤ zero if and only if µ = zero. If µ ∈ F then by Lemma 15,

µ = zero ∨ µ 6= zero; and if µ 6= zero then zero < µ, since ∅ is a separable subset of any x ∈ µ.

Induction step: Suppose κ+ is inhabited. We have to prove

κ+ < µ ∨ κ+ = µ ∨ µ < κ+ (41)

By Lemma 15, we have µ = zero ∨ µ 6= zero. If µ = zero, we are done by the base case. If µ 6= zero, then by

Lemma 17, µ = λ+ for some λ ∈ F. By Corollary 4.7, λ+ is inhabited. We have to prove

κ+ < λ+ ∨ κ+ = µ+ ∨ µ+ < λ+. (42)

By the induction hypothesis we have

κ < λ ∨ κ = µ ∨ µ < λ.

and exactly one of the three holds. By Lemma 13 and Lemma 11, each disjunct is equivalent to one of the

disjuncts of (42). That completes the induction step.

Corollary 5.17. F has decidable equality. Precisely,

∀κ, µ ∈ F (κ = µ ∨ κ 6= µ).

Proof. Let κ, µ ∈ F. We must show κ = µ ∨ κ 6= µ. By Theorem 5.16, we have κ < µ or κ = µ or µ < κ, and

exactly one of the disjuncts holds. Therefore κ 6= µ is equivalent to κ < µ ∨ µ < κ.

Lemma 18. For all κ ∈ F, we have κ ≤ κ.

Proof. Suppose κ ∈ F. By Corollary 4.7, κ is inhabited. Let a ∈ κ. Since a is a separable subset of a, we have

κ ≤ κ by the definition of ≤.

Lemma 19. For κ, µ ∈ F we have

κ ≤ µ ↔ κ < µ ∨ κ = µ.

Proof. Suppose κ, µ ∈ F. By Theorem 5.16 we have κ < µ ∨ κ = µ ∨ µ < κ, and exactly one of the three

disjuncts holds.

Left to right: Suppose κ ≤ µ. By Definition 5.2, there exist a and b with a ∈ κ, b ∈ µ, a ⊆ b, and

b = a ∪ (b − a). By Lemma 4, a and b are finite. By Lemma 20, b − a is finite. By Lemma 4, b − a is empty or

inhabited.

Case 1, b − a = ∅. I say b = a. By extensionality, it suffices to prove t ∈ b ↔ t ∈ a. Left to right: assume

t ∈ b. Since b = a ∪ (b − a) we have t ∈ a ∨ t ∈ b − a. But t 6∈ b − a, since b − a = ∅. Therefore t ∈ a. Right

to left: assume t ∈ a. Since a ⊆ b we have t ∈ b. Therefore b = a as claimed.

Then a ∈ κ ∩ µ. Then by Corollary 24, κ = µ. That completes Case 1.

Case 2, b − a is inhabited. Then a is a proper subset of b. By Lemma 7, κ < µ. That completes Case 2.

That completes the left to right direction.

Right to left: Suppose κ < µ. Then by definition of <, we have κ ≤ µ. On the other hand, if κ = µ then

κ ≤ µ by Lemma 18.
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Lemma 20. For κ, µ ∈ F we have

κ ≤ µ ∧ µ ≤ κ → κ = µ.

Proof. By Lemma 19, it suffices to prove

(κ < µ ∨ κ = µ) ∧ (µ < κ ∨ µ = κ) → κ = µ. (43)

By Theorem 5.16,

κ < µ ∨ κ = µ ∨ µ < κ

and exactly one of the three disjuncts holds. Now (43) follows by propositional logic.

We next prove two variations on trichotomy that are frequently useful.

Lemma 21. Suppose κ < µ ≤ λ, where κ, µ, λ ∈ F. Then κ < λ.

Proof. By Lemma 6, we have κ ≤ λ. We must show κ 6= λ. Suppose κ = λ. Since κ < µ we have λ < µ.

Hence λ ≤ µ. By hypothesis µ ≤ λ. By Lemma 20, µ = λ, contradicting µ < λ.

Lemma 22. Let κ, µ ∈ F. Then

κ < µ ∨ µ ≤ κ.

Proof.

κ < µ ∨ κ = µ ∨ µ < κ by Theorem 5.16 (44)

Case 1, κ < µ. Then we are done.

Case 2, κ = µ. Then κ ≤ µ by Lemma 18.

Case 3, µ < κ. Then µ ≤ κ by the definition of <.

Lemma 23. Let κ, µ ∈ F. Then

κ ≤ µ ∨ µ < κ.

Proof.

κ < µ ∨ κ = µ ∨ µ < κ by Theorem 5.16 (45)

Case 1, κ < µ. Then κ ≤ µ by the definition of <.

Case 2, κ = µ. Then κ ≤ µ by Lemma 18.

Case 3, µ < κ. Then we are done.

Lemma 24. Let κ, λ, µ ∈ F and suppose κ ≤ λ < µ. Then κ < µ.

Proof. By Lemma 6, we have κ ≤ µ. Since κ < µ is defined as κ ≤ µ and κ 6= µ, it only remains to show

κ 6= µ. Suppose κ = µ. Then κ ≤ λ and λ ≤ κ. By Theorem 5.16, we have κ = λ, contradiction.

Lemma 25. Let κ, λ, µ ∈ F and suppose κ < λ < µ. Then κ < µ.

Proof. Since κ < λ we have κ ≤ λ, by the definition of <. Then by Lemma 21, κ < µ.

Lemma 26. Let κ+ ∈ F. Suppose κ+ is inhabited. Then κ < κ+.
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Proof. Since κ+ ∈ F and κ+ is inhabited, there exists x ∈ κ+. Then x = y ∪ {c} for some y ∈ κ and c 6∈ x.

Then x − y = {c}. By Lemma 4, since x ∈ κ+, x is finite. By Lemma 3, x has decidable equality. Therefore

x = y ∪ {c} = y ∪ (x − y). Then y ⊆ x. It is a proper subset, since c ∈ x but c 6∈ y. Now, we will use the

right-to-left direction of Lemma 7. κ < κ+, substituting κ+ for µ. That gives us

∃x, y (x ∈ κ ∧ y ∈ κ+ ∧ x ⊂ y ∧ y = x ∪ (y − x) → κ < κ+).

Then take (y, x) for (x, y) in the hypothesis. That yields

y ∈ κ ∧ x ∈ κ+ ∧ y ⊂ x ∧ x = y ∪ (x − y) → κ < κ+.

Since we have verified all four hypotheses, we may conclude κ < κ+.

Lemma 27. For all m ∈ F, we do not have m+ ≤ m.

Proof. Suppose m ∈ F and m+ ≤ m. By the definition of ≤, m+ is inhabited. Then by Lemma 26, we have

m < m+, which contradicts Theorem 5.16, since m+ ≤ m.

Lemma 28. For x ∈ F, x 6< x.

Proof. Immediate from Theorem 5.16, since x = x.

Lemma 29. For x ∈ F we have x 6< zero.

Proof. Suppose x < zero. We will derive a contradiction.

x ≤ zero by definition of <

a ∈ x ∧ a ⊂ b ∧ b ∈ zero for some a, b, by definition of ≤

b ∈ {∅} since zero = {∅}

b = ∅ by Lemma 3

a = ∅ since a ⊂ b

∅ ∈ x ∩ zero by definition of intersection

x = zero by Lemma 24

zero < zero since x < zero

¬ zero < zero by Lemma 28

That is the desired contradiction.

Lemma 30. For κ, µ ∈ F, if κ < µ, then κ+ ≤ µ.

Proof. Suppose κ < µ. Then there exists a ∈ κ and b ∈ µ such that b = a ∪ (b − a). Then

b ∈ FINITE ∧ a ∈ FINITE by Lemma 4

b − a ∈ FINITE by Lemma 20

b − a = ∅ ∨ ∃u (u ∈ b − a) by Lemma 4

We argue by cases.

Case 1, b − a = ∅. Then b = a, so a ∈ κ ∩ µ, so by Lemma 24, κ = µ, contradicting κ < µ.



32 Michael Beeson

Case 2, ∃c (c ∈ b − a). Fix c. Then

a ∪ {c} ∈ κ+ by the definition of successor

a ∪ {c} ⊆ b since c ∈ b

b = (a ∪ {c}) ∪ (b − (a ∪ {c})) by Lemma 5.17

κ+ ≤ µ by the definition of ≤.

Lemma 31. If a < b and a, b ∈ F, then a+ ∈ F.

Proof. Suppose a < b and a, b ∈ F. By the definition of <, we have a ≤ b and a 6= b. By the definition of ≤,

there exists v ∈ b and u ∈ a with u ∈ Ps(v). Then

v ∈ FINITE by Lemma 4

u ∈ FINITE by Lemma 19

v − u ∈ FINITE by Lemma 20

v − u 6= ∅ by Lemma 24, since a 6= b

∃c (c ∈ v − u) by Lemma 4

c ∈ v − u fixing c

u ∪ {c} ∈ a+ by definition of successor

a+ ∈ F by Lemma 19

Lemma 32. For κ, µ ∈ F, we have

κ ≤ µ+ → κ ≤ µ ∨ κ = µ+.

If we also assume µ+ ∈ F then we have

κ ≤ µ+ ↔ κ ≤ µ ∨ κ = µ+.

Remark. We cannot replace the → with ↔ without the extra assumption, because if κ ≤ µ there is no

guarantee that µ+ ∈ F.

Proof. Suppose κ ≤ µ+. Then by Lemma 19,

κ < µ+ ∨ κ = µ+.

If κ = µ+ we are done; so we may suppose κ < µ+. Then

κ+ ≤ µ+ by Lemma 30

∃u (u ∈ µ+) by the definition of ≤

∃u (u ∈ κ+) by the definition of ≤

κ ≤ µ by Lemma 10
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Lemma 33. For κ, µ ∈ F, we have

κ < µ+ → κ < µ ∨ κ = µ.

If we also assume µ+ ∈ F then we have

κ < µ+ ↔ κ < µ ∨ κ = µ.

Proof. Left to right. Suppose κ < µ+. Then by the definition of <, κ ≤ µ+ and κ 6= µ+. By Lemma 32, κ ≤ µ.

By Lemma 19, κ < µ ∨ κ = µ as desired.

Right to left. Assume µ+ ∈ F. Then µ+ is inhabited, by Lemma 4.7. If κ = µ then κ < µ+ by Lemma 26.

If κ < µ then κ < µ+ by Lemma 25.

Lemma 34. ∀m ∈ F (¬ (m < zero)).

Proof. By definition, zero = {∅}. Suppose m ∈ F and m < zero. By definition of <, m ≤ zero and m 6= zero.

By definition of ≤, there exist a and b with a ∈ m and b ∈ zero and a ∈ Ps(b). Since zero = {∅} we have

b = ∅. The only separable subset of ∅ is ∅, so a = ∅. Then by Lemma 24, m = zero. But that contradicts

m 6= zero. Therefore the assumptions m ∈ F and m < zero are untenable.

Lemma 35. Every nonempty finite subset of F has a maximal element.

Remark. By Lemma 4, it does not matter whether use “nonempty” or “inhabited” to state this lemma.

Proof. The formula to be proved is

∀x ∈ FINITE (x ⊆ F → x 6= ∅ → ∃m ∈ x ∀t (t ∈ x → t ≤ m))

The formula is stratified, giving m and t index 0 and x index 1. F and FINITE are parameters, and do not

require an index. Therefore we may proceed by induction on finite sets.

Base case: immediate, since ∅ 6= ∅.

Induction step. Let x be a finite subset of F and c ∈ F−x. By Lemma 4, x is empty or inhabited. If x = ∅,

then c is the maximal element of x ∪ {c}, and we are done. So we may assume x is inhabited. Then by the

induction hypothesis, x has a maximal element m. By Theorem 5.16, c ≤ m or m < c. If c ≤ m, then m is the

maximal element of x ∪ {c}. If m < c, then c is the maximal element of x ∪ {c}, by the transitivity of ≤.

Lemma 36. For x ∈ F and x+ ∈ F, we have x 6= x+.

Proof. Suppose x = x+; then

z ∈ x+ for some z, by Lemma 4.7

z = u ∪ {c} for some u ∈ c and c 6∈ u, by definition of successor

u ∪ {c} ∈ x+ by the previous two lines

u ∪ {c} ∈ x since x = x+

u ∪ {c} ∈ FINITE by Lemma 4

u ∼ u ∪ {c} by Lemma 9

u ∪ {c} 6= u since c 6∈ u

Now u∪{c} is a finite set, similar to a proper subset of itself (namely u). Then by definition, u∪{c} is infinite.

By Theorem 3.24, it is not finite. But it is finite. That contradiction shows x 6= x+.

Lemma 37. For x ∈ F and x+ ∈ F, we have x < x+.

Proof. Let u ∈ x and u ∪ {c} ∈ x+, with c 6∈ x. Then by definition of ≤ we have x ≤ x+. By Lemma 36, we

have x 6= x+. Then by definition of <, we have x < x+.
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6 Power sets and similarity

We will replace Rosser and Specker’s use of the full power set SC by the separable power set Ps. In

this section we prove some lemmas from Specker §2, and some other similar lemmas. For finite sets a, since

finite sets have decidable equality, every unit subclass is separable, which is helpful. We begin with Specker’s

Lemma 2.6, which we take in two steps with the next two lemmas, and after that Specker 2.4 and 2.3.

Lemma 1. Let y ∈ Ps(P1(a)). Then there exists z ∈ Ps(a) such that y = P1(z).

Proof. Suppose y ∈ Ps(P1(a)). Define

z := {u : {u} ∈ y}. (46)

That definition is legal since the formula is stratified giving u index 0 and y index 2. Then y = P1(z) since

the members of y are the singletons of the members of z. I say that z ⊆ a: Suppose u ∈ z. Then

{u} ∈ y by (46)

{u} ∈ P1(a) since y ⊆ P1(a)

u ∈ a by definition of P1(a)

Therefore z ⊆ a, as claimed. It remains to show that z is a separable subset of a; it suffices to show that for

u ∈ a, we have u ∈ z ∨ u 6∈ z. Suppose u ∈ a. Then by (46),

u ∈ z ∨ u 6∈ z

↔ {u} ∈ y ∨ {u} 6∈ y

and that is true since y is a separable subset of P1(a).

Lemma 2 (Specker 2.6). |Ps(P1(a))| = |P1(Ps(a))|.

Remarks. Or course Specker has P instead of Ps. We follow the proof from [15], p. 368, that Specker cites,

checking it constructively with Ps in place of P . But fundamentally, this lemma is just about shuffling brackets.

We have {{p}, {q}, {r}} ∈ Ps(P1(a)) corresponding to {{p, q, r}} ∈ P1(Ps(a)). It is a useful result but not a

deep one.

Proof. Let

W := {u : ∃z (u = 〈{z}, P1(z)〉)}.

The definition is stratified giving z index 1, so {z} and P1(z) both get index 2, and u gets index 4. It follows

that W is a relation (contains only ordered pairs) and

〈x, y〉 ∈ W ↔ ∃z (x = {z} ∧ y = P1(z)). (47)

I say that W is (the graph of) a one-one-function mapping P1(Ps(a)) onto Ps(P1(a)). (Formally there is no

distinction between a function and its graph.) For if x is given, then z is uniquely determined, so y is uniquely

determined; and if y is given with y = P1(z), then z =
⋃

y is unique, so x = {z} is unique. Hence W is a

function and one-to-one. It remains to show that W is onto. Let y ∈ Ps(P1(a)). By Lemma 1, there exists

z ∈ Ps(a) such that y = P1(z). Then 〈{z}, y〉 ∈ W . Hence y is in the range of W . Since y was an arbitrary

member of Ps(P1(a)), it follows that W is onto.

We have shown that W is a similarity from Ps(P1(a)) to P1(Ps(a)). Therefore those two sets have the

same cardinal.
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Lemma 3. Any two unit classes are similar.

Proof. Let {a} and {b} be unit classes. Define f = {〈a, b〉}. One can verify that f : {a} → {b} is a similarity.

We omit the 75 inferences required to do so.

Lemma 4. Any set similar to a unit class is a unit class.

Proof. Let x ∼ {a}. Then let f : x → {a} be a similarity. Since f is onto, there exists c ∈ x with f(c) = a.

Let e ∈ x. Then f(e) ∈ {a}, so f(e) = a. Since f is one to one, e = c. Then x = {c}.

Lemma 5. We have

u ∈ one ↔ ∃a (u = {a}).

Proof. By definition, one = zero+ and zero = {∅}. For any a, we have a 6∈ ∅, so

∅ ∪ {a} = {a} ∈ zero
+ = one.

Conversely, if u ∈ one, then u = ∅ ∪ {a} for some a, by definition of successor, so u = {a}.

Lemma 6. Suppose a and b are finite sets. Then

a ∈ Ps(b) → P1(a) ∈ Ps(Ps(b)).

Proof. Suppose a ∈ Ps(b). Since b is finite, it has decidable equality, by Lemma 3. Therefore P1(b) ⊆ Ps(b).

Since P1(a) ⊆ P1(b), we have

P1(a) ⊆ Ps(b) (48)

It remains to show that P1(a) is a separable subset of Ps(b); that is,

Ps(b) = P1(a) ∪ (Ps(b) − P1(a)).

By extensionality and the definitions of subset and union, it suffices to show

t ∈ Ps(b) ↔ t ∈ P1(a) ∨ (t ∈ Ps(b) ∧ t 6∈ P1(a)) (49)

Right to left: It suffices to show t ∈ P1(a) → t ∈ Ps(b). Let t ∈ P1(a). Then t = {c} for some c ∈ a. Since b

has decidable equality, t is a separable subset of b. That completes the right-to-left direction.

Left to right: suppose t ∈ Ps(b). Then t ∈ FINITE, by Lemma 19. Then |t| ∈ F, by Lemma 21. Then by

Lemma 5.17,

|t| = one ∨ |t| 6= one.

Case 1, |t| = one. By Lemma 5, t is a unit class. Since a ∈ Ps(b), we have

x ∈ b → x ∈ a ∨ x 6∈ a.

Since t ∈ P1(a) if and only if for some x we have t = {x} ∧ x ∈ a, we have

t ∈ Ps(b) → t ∈ P1(a) ∨ t 6∈ P1(a).

That completes Case 1.

Case 2,|t| 6= one. Then |t| is not a unit class, by Lemma 5 and Lemma 24, so the second disjunct on the

right holds.
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Lemma 7 (Specker 2.4). For any sets a and b

a ∼ b ↔ P1(a) ∼ P1(b).

Proof. Left-to-right. Suppose f : a → b is a similarity. Let g be the singleton image of f , namely

g := {〈{u}, {v}〉 : 〈u, v〉 ∈ f.

The definition is legal since the formula is stratified, giving u and v the same index. Then g : P1(a) → P1(b)

is a similarity. We omit the straightforward proof.

Right-to-left. Let g : P1(a) → P1(b) be a similarity. Define

f := {〈u, v〉 : 〈{u}, {v}〉 ∈ g}.

Again the definition is legal since the formula is stratified, giving u and v the same index. Then f : a → b is a

similarity. We omit the proof.

Lemma 8 (Specker 2.3). For any sets a and b

a ∼ b → Ps(a) ∼ Ps(b).

Proof. Let f : a → b be a similarity. Define

g := {〈u, f“u〉 : u ∈ Ps(a)}

where f“u is the image of u under f , i.e., the range of the restriction of f to u. Then g : Ps(a) → Ps(b).

The fact that the values of g are separable subsets of b follows from Lemma 4. We omit the proof that g is

one-to-one. To prove g is onto, let y ∈ Ps(b). Then define

x = {u ∈ a : ∃v (v ∈ y ∧ 〈u, v〉 ∈ f)}.

The formula is stratified, giving u and v index 0 and x and y index 1. Hence x can be defined. We omit the

proof that g(x) = y. (x can also be defined using the operations of domain and inverse relation, which in turn

can be defined by stratified comprehension.)

Lemma 9. If a has decidable equality, then P1(a) ⊆ Ps(a).

Proof. Let x ∈ P1(a). Then x = {u} for some u ∈ a. Then x ⊆ a. We must show a = x ∪ (a − x). By

extensionality, that follows from

∀u (u ∈ a ↔ u ∈ x ∨ u ∈ a − x),

which in turn follows from decidable equality on a.

Lemma 10. For all a, b,

a ⊆ b ↔ P1(a) ⊆ P1(b),

Proof. Left to right. Suppose a ⊆ b and t ∈ P1(a). We must show t ∈ P1(b). Then t = {x} for some x ∈ a.

Since a ⊆ b we have x ∈ b. Then t ∈ UCS(b). That completes the left-to-right direction.

Right to left. Suppose P1(a) ⊆ P1(b) and t ∈ a. We must prove t ∈ b. Since t ∈ a we have {t} ∈ P1(a).

Then {t} ∈ P1(b). Then {t} = {q} for some q ∈ b. Then t = q. Then t ∈ b as desired.

Lemma 11. For all a, b,

a ∈ Ps(b) ↔ UCS(a) ∈ Ps(P1(b)).
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Proof. Left to right. Suppose a ∈ Ps(b). Then a ⊂ b and

b = a ∪ (b − a). (50)

By Lemma 10,

P1(a) ⊆ P1(b) (51)

It remains to show that UCS(a) is a stable subset of P1(b); that is,

P1(b) = P1(a) ∪ (P1(b) − P1(a)). (52)

By extensionality and the definitions of union and set difference, that is equivalent to

t ∈ P1(b) ↔ t ∈ P1(a) ∨ (t ∈ P1(b) ∧ t 6∈ P1(a)). (53)

Then we need only consider unit classes t = {x}, and using the fact that {x} ∈ P1(b) ↔ t ∈ b, and {x} ∈

P1(a) ↔ t ∈ a, (53) follows from (51).

Lemma 12. For all a, b, we have

a ∈ Ps(b) ↔ Ps(a) ⊆ Ps(b).

Proof. Left to right: Suppose a ∈ Ps(b). Then a ⊆ b and

b = a ∪ (b − a) (54)

Now let x ∈ Ps(a). We must show x ∈ Ps(b). Since x ∈ Ps(a), we have x ⊆ a. Since a ⊆ b we have x ⊆ b. We

have

x ∈ Ps(a)

a = x ∪ (a − x) by definition of Ps(a)

b = (x ∪ (a − x)) ∪ (b − (x ∪ (a − x))) by (54)

b = x ∪ (b − x)

x ∈ Ps(b) by definition of Ps(b)

That completes the left-to-right direction.

Right to left: Suppose Ps(a) ⊆ Ps(b). We have to show a ∈ Ps(b); but that follows from a ∈ Ps(a) and the

definition of subset. That completes the right to left direction.

Lemma 13. Let b be a finite set. Then the subset relation on Ps(b) is decidable. That is,

∀x, y ∈ Ps(b) (x ⊆ y ∨ x 6⊆ y).

Proof. Assume b ∈ FINITE. By Lemma 17, Ps(b) ∈ FINITE. Then by Lemma 3,

Ps(b) ∈ DECIDABLE (55)

We will prove by induction on finite sets y that

y ∈ Ps(b) → ∀x ∈ Ps(b) (x ⊆ y ∨ x 6⊆ y). (56)

It is legal to proceed by induction, since the formula is stratified.

Base case. When y = ∅, we will prove

∀x ∈ Ps(b) (x ⊆ ∅ ∨ x 6⊆ ∅).
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Assume x ∈ Ps(b). We have x ⊆ ∅ if and only if x = ∅, so it suffices to prove x = ∅ ∨ x 6= ∅. But that

follows from (55). That completes the base case.

Induction step. Let y = z∪{c}, with c 6∈ z and z ∈ Ps(b) and y ⊆ b. Then c ∈ b The induction hypothesis is

z ∈ Ps(b) → ∀x ∈ Ps(b) (x ⊆ z ∨ x 6⊆ z). (57)

We have to prove

y ∈ Ps(b) → ∀x ∈ Ps(b) (x ⊆ y ∨ x 6⊆ y) (58)

Assume y ∈ Ps(b) and x ∈ Ps(b). We have to prove x ⊆ y ∨ x 6⊆ y. That is,

x ⊆ z ∪ {c} ∨ x 6⊆ z ∪ {c}

We have

y ∈ Ps(b) assumed above

z ∪ {c} ∈ Ps(b) since y = z ∪ {c}

I say that z ∈ Ps(b). To prove that, let u ∈ z. Since z ∪ {c} ∈ Ps(b), u ∈ z ∪ {c} ∨ u 6∈ z ∪ {c}. Since c 6∈ z,

u 6= c. Therefore u ∈ z ∨ u 6∈ z. Then z ∈ Ps(b) as claimed.

I say that also x − {c} ∈ Ps(b). Since b is finite, it has decidable equality by Lemma 3. Then for y ∈ b,

we have y = c ∨ y 6= c. Since x ∈ Ps(b) we have y ∈ x ∨ y 6∈ x. Then a short argument by cases shows

y ∈ x − {c} ∨ y 6∈ x{c}. Then x − {c} ∈ Ps(b), as claimed.

By (57) and z ∈ Ps(b), we have

∀x ∈ Ps(b) (x ⊆ z ∨ x 6⊆ z). (59)

Since x ∈ Ps(b), we have c ∈ x ∨ c 6∈ x. We argue by cases accordingly.

Case 1: c ∈ x. Then x ⊆ z ∪ {c} if and only if x − {c} ⊆ z. By (59), instantiated to x − {c} in place of x

(which is allowed since x − {c} ∈ Ps(b)), we have

x − {c} ⊆ z ∨ x − {c} 6⊆ z.

That completes Case 1.

Case 2: c 6∈ x. Then x ⊆ z ∪ {c} ↔ x ⊆ z, so (58) follows from the induction hypothesis (57). That

completes Case 1. That completes the induction step.

Lemma 14. Suppose a and b are finite sets. Then

a ∈ Ps(b) → Ps(a) ∈ Ps(Ps(b)).

Proof. Suppose a ∈ Ps(b). By Lemma 12,

Ps(a) ⊆ Ps(b) (60)

It remains to show that Ps(a) is a separable subset of Ps(b); that is,

Ps(b) = Ps(a) ∪ (Ps(b) − Ps(a)).
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By extensionality and the definitions of subset and union, it suffices to show

t ∈ Ps(b) ↔ t ∈ Ps(a) ∨ (t ∈ Ps(b) ∧ t 6∈ Ps(a)) (61)

The right-to-left direction follows logically from (60) and the definition of subset.

Ad the left-to-right direction of (61): suppose t ∈ Ps(b). Then t ⊆ b. By Lemma 13,

t ⊆ a ∨ t 6⊆ a. (62)

It remains to prove the left-to-right direction of (61). Suppose t ∈ Ps(b). We argue by cases using (62).

Case 1: t ⊆ a. It suffices to prove t ∈ Ps(a). It remains to prove a = t ∪ (a − t). We have

∀u ∈ b (u ∈ t ∨ u 6∈ t) since t ∈ Ps(b)

∀u ∈ a (u ∈ t ∨ u 6∈ t) since a ⊆ b

Then a = t ∪ (a − t) by the definitions of union and set difference. That completes Case 1.

Case 2: t 6⊆ a. Then t 6∈ Ps(a). Since t ∈ Ps(b), the second disjunct on the right of (61) holds. That

completes Case 2.

Lemma 15. For all a and c 6∈ a, we have

P1(a ∪ {c}) = P1(a) ∪ {{c}}.

Proof. By extensionality it suffices to verify the two sides have the same members.

Left to right: Let x ∈ P1(a ∪ {c}). Then x = {u} for some u ∈ a ∪ {c}. Then u ∈ a ∨ a = c. If u ∈ a then

x ∈ P1(a) and hence x ∈ P1(a) ∪ {{c}}. That completes the left-to-right direction.

Right to left: Let x ∈ P1(a) ∪ {{c}}. Then x ∈ P1(a) ∨ x = {c}. If x ∈ P1(a), then x ∈ P1(a ∪ {c}) by

Lemma 10. If x = {c}, then x ∈ P1(a ∪ {c}) by definition of P1.

Lemma 16. For all a, b we have

P1(a − b) = P1(a) − P1(b).

Proof. By the definitions of P1 and set difference, using about 50 straightforward inferences, which we choose

to omit.

Lemma 17. P1(∅) = ∅.

Proof. Suppose x ∈ P1(∅). By definition of P1, there exists a ∈ ∅ such that x = {a}. But that contradicts

the definition of ∅.

Lemma 18. For every x and a,

x ∈ a ↔ {x} ∈ P1(a).

Proof. Left to right, by definition of P1(a). Right to left: if {x} ∈ P1(a), then for some y ∈ a, {x} = {y}.

Then by extensionality x = y.

Lemma 19. Ps(∅) = {∅}.

Proof. The only subset of ∅ is ∅, and it is a separable subset.

Lemma 20. Suppose a ∼ b and a is inhabited. Then b is inhabited.
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Proof. Let f : a → b be a similarity. Since a is inhabited, there exists some c ∈ a. Fix c. Then f(c) ∈ b. Hence

b is inhabited.

Lemma 21 (Bounded DNS). Let P be any set, and let y ∈ F. Then

¬¬ ∀x (x ∈ F → x < y → x ∈ P ) ↔ ∀x (x ∈ F → x < y → ¬¬ x ∈ P ).

Remarks. This lemma is closely related to Lemma 28, and can be derived from that lemma, but here we just

prove it directly.

Proof. The left-to-right direction is logically valid. We prove the right-to-left implication by induction on y.

The formula to be proved is stratified, giving x and y index 0, so induction is legal.

Base case: by Lemma 29, x < 0 can never hold. That completes the base case.

Induction step: The key fact will be Lemma 33:

x < y+ ↔ x < y ∨ x = y. (63)

Assume y+ is inhabited (as for any proof by induction). Then

∀x (x ∈ F → x < y+ → ¬¬ x ∈ P ) assumption

∀x (x ∈ F → (x < y ∨ x = y) → ¬¬ x ∈ P ) by (63)

∀x (x ∈ F → (x < y → ¬¬ x ∈ P ) ∧ (x = y → ¬¬ x ∈ P )) by logic

∀x (x ∈ F → (x < y → ¬¬ x ∈ P )) ∧ ¬¬ y ∈ P by logic

¬¬ ∀x (x ∈ F → (x < y → x ∈ P )) ∧ ¬¬ y ∈ P induction hyp.

¬¬ ∀x (x ∈ F → x ≤ y → x ∈ P ) by (63)

That completes the induction step.

7 Cardinal exponentiation

Specker 4.1 follows Rosser in defining 2m for cardinals m. They define 2m to be the cardinal of P(a) where

P1(a) ∈ m. That definition requires some modification to be of use constructively. It is separable subsets of a

that correspond to functions from a to 2, so it makes sense to use Ps(a), the class of separable subsets of a,

instead of P(a).

Definition 7.1. For finite cardinals m, we define

2m = {u : ∃a (P1(a) ∈ m ∧ u ∼ Ps(a))}.

The following lemma shows that our definition is classically equivalent to Specker’s definition.

Lemma 2. Let m ∈ F and P1(a) ∈ m. Then Ps(a) ∈ 2m, and 2m = |Ps(a|).

Remark. This is Specker’s definition of 2m, but our definition avoids a case distinction as to whether m does

or does not contain a set of the form P1(a).

Proof. Suppose m ∈ F and P1(a) ∈ m. I say that 2m is a cardinal, i.e., it is closed under similarity. Suppose

u and v are members of 2m. Then there exist a and b such that P1(a) and P1(b) are both in m and u ∼ Ps(a)

and v ∼ Ps(b). Then by Lemma 9, P1(a) ∼ P1(b). By Lemma 7, a ∼ b. By Lemma 8, Ps(a) ∼ Ps(b). By

Lemma 11, u ∼ v. Hence, as claimed, 2m is a cardinal.

Therefore 2m and |Ps(a|) are both closed under similarity. Since they both contain Ps(a), they each consist

of all sets similar to Ps(a). Hence by extensionality, they are equal.
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Remark. We note that 2m 6= ∅ does not a priori imply that 2m is inhabited, so we must carefully distinguish

these two statements as hypotheses of lemmas. 2m is inhabited if m contains a set of the form P1(a). 2m 6= ∅

means not-not m contains such a set.

Discussion. It is possible, of course, to investigate what happens if we use intuitionistic logic, but keep the

classical definitions of order and exponentiation. The most obvious difficulty with this approach is that the

integers F are not closed under exponentiation. For example, let us calculate what 2one would be. We have

{{∅}} = P1({∅}) ∈ one. So 2zero would be the cardinal of SC({∅)}, instead of the cardinal of Ps({∅}). But

SC({∅}) contains every set of the form XP = {x : x = ∅ ∧ P }, where P is a stratified formula not containing

the variable x. Unless we can prove or refute P , we cannot prove that XP is one of the two members of

Ps(∅), and in fact there is no hope of proving 2one is an integer. Hence this notion is useless for constructive

mathematics in NF. Still we did investigate the matter further, as there was the possibility that this approach

might help analyze Specker’s proof. In short, it did not help. Without the axiom of choice, one can prove

nothing useful about large cardinals. For example, one cannot prove 2x = 2y → x = y for cardinals; there

might even be incomparable x, y such that 2x = 2y. That might even be the case with 2x = 2κ = κ, where κ

is the cardinal of V. We consider this subject no further.

Lemma 3. The graph of the exponentiation function

{〈m, 2m〉 : m ∈ F}

is definable in iNF.

Proof. We have to show that the relation is definable by a formula that can be stratified, giving the two

members of ordered pairs the same index. The formula in Definition 7.1 is

2m = {u : ∃a (P1(a) ∈ m ∧ u ∼ Ps(a)}.

Stratify it, giving a index 0, P1(a) and Ps(a) and u index 1, m index 2. Then 2m gets one index higher than

u, namely 2, which is the same index that m gets.

Lemma 4. If 2m is inhabited, then there exists a such that P1(a) ∈ m and Ps(a) ∈ 2m.

Proof. Suppose 2m is inhabited. Then by Definition 7.1, there exists a with P1(a) ∈ m, and 2m contains any

set similar to Ps(a). Since Ps(a) ∼ Ps(a), by Lemma 11, we have Ps(a) ∈ 2m.

Lemma 5. Let m be a finite cardinal. If 2m is inhabited, then 2m is a finite cardinal.

Proof. Suppose m is a finite cardinal and 2m is inhabited. By Definition 7.1, there exists a such that P1(a) ∈ m

and Ps(a) ∈ 2m. Then |Ps(a|) = 2m, by Definition 7.1. We have

P1(a) ∈ FINITE by Lemma 4

a ∈ FINITE by Lemma 10

Ps(a) ∈ FINITE by Lemma 17

|Ps(a|) ∈ F by Lemma 21

2m ∈ F since |Ps(a|) = 2m

Lemma 6. 2zero = one.

Proof. zero = {∅}. It therefore contains ∅ = P1(∅). Hence 2zero is inhabited and contains Ps(∅). But ∅ has

only one subset, namely ∅, which is a separable subset, so Ps(∅) = {∅} = zero. Thus 2zero = |zero| = one.
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Lemma 7. 2one = two.

Proof. one is the set of all singletons. It therefore contains {zero} = P1(zero). Then 2one contains Ps(zero).

There are exactly two subsets of {∅}, namely ∅ and {∅}, and both are separable. Hence 2one contains the

two-element set Ps(zero) = {∅, {∅}}. That set belongs to two = one+ since it is equal to {{∅}} ∪ {∅}, and

the singleton {{∅}} belongs to one and {∅} 6∈ {{∅}}. Therefore 2one and one+ have a common element. Both

are cardinals, by Lemma 5. Then by Lemma 24, 2one = two.

Lemma 8. 2two = four.

Proof. By definition, four = three
+ = two

++. One can show (but we omit the details) that

P1({one, two}) = {{one}, {two}} ∈ two

Therefore, by the definition of exponentiation,

Ps({one, two}) = {∅, {one}, {two}, {one, two}} ∈ 2two

One can explicitly exhibit the ordered pairs of a similarity between the last-mentioned set and the element

{one, two, three, four} of four. We omit the details. Then by Lemma 8, 2two = four.

Lemma 9. We have

u ∈ two ↔ ∃a, b (a 6= b ∧ u = {a, b}).

Proof. We have two = one
+. If a 6= b then by Lemma 5, {a} ∈ one, and {a} ∪ {b} = {a, b} ∈ two. Conversely,

If u ∈ two then u = v ∪ {b}, where v ∈ one and b 6∈ v. By Lemma 5, v = {a} for some a, so u = {a, b}.

Lemma 10. We have

u ∈ three ↔ ∃a, b, c (a 6= b ∧ b 6= c ∧ a 6= c ∧ u = {a, b, c}).

Proof. We have three = two+. Assume a, b, c are pairwise distinct. Then by Lemma 9, {a, b} ∈ two. Since

three = two+, {a, b} ∪ {c} = {a, b, c} ∈ three. Conversely, If u ∈ three then u = v ∪ {c}, where v ∈ two and

c 6∈ v. By Lemma 9, v = {a, b} for some a, b with a 6= b. Since c 6∈ v, a 6= c and b 6= c. Therefore u = {a, b, c}

with a, b, c pairwise distinct.

Lemma 11. We have zero < one < two < three < four.

Proof. Since each of these numbers is defined as the successor of the one listed just before it, the lemma is a

consequence of Lemma 37.

Lemma 12. For m ∈ F, we have m < one ↔ m = zero.

Proof. Let m ∈ F and m < one. By Theorem 5.16, m < zero ∨ = zero ∨ zero < m. By Lemma 29, m < zero

is ruled out. It remains to rule out zero < m. Assume zero < m. Then

m < one by hypothesis

m+ ≤ one by Lemma 30

m+ ≤ zero
+ since zero+ = one

m ≤ zero by Lemma 10

zero < zero by Lemma 21, since zero ≤ m < zero

zero 6< zero by Lemma 29
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Lemma 13. For m ∈ F, we have

m < two ↔ m = zero ∨ m = one.

Proof. Left to right. Assume m ≤ two. We have

zero 6= one by Lemma 36

{zero, one} ∈ two by Lemma 9

m ≤ two by Definition 5.2

a ∈ m ∧ a ∈ Ps({zero, one}) for some a, by Lemma 8

a 6= {zero, one} since m 6= two

zero ∈ a ∨ zero 6∈ a since a ∈ Ps({zero, one})

one ∈ a ∨ one 6∈ a since a ∈ Ps({zero, one})

An argument by cases (about 170 steps, which we omit) shows that a = ∅, or a = {zero}, or a = {one}. Then

a = zero or one, by Lemma 24. That completes the left to right direction.

Right to left: we have zero < two and one < two by Lemma 11.

Lemma 14. For all a, a is a unit class if and only if P1(a) is a unit class.

Proof. Left to right. Suppose a = {x}. Then the only unit subset of a is {a}, so P1(a) is a unit class.

Right to left. Suppose P1(a) = {u}. Then u ∈ a. Let t ∈ a. Then {t} ∈ P1(a), so {t} = u. Hence every

element of a is equal to u. Hence a = {u}.

Lemma 15. For all x ∈ F, x ≤ zero → x = zero.

Proof. Suppose x ∈ F and x ≤ zero. By the definition of ≤, there exists a, b such that a ∈ x, b ∈ zero, a ⊆ b,

and b = (a ∪ b) − a. Then

b = ∅ by definition of zero

a = ∅ since a ⊆ b

∅ ∈ x ∩ zero by definition of ∩

x = zero by Lemma 24

Lemma 16 (Specker 4.6).

If m is a finite cardinal and 2m is inhabited, then m < 2m.

Remark. This version of Specker 4.6 phrases the matter positively, so it is constructively stronger.

Proof. Since F has decidable equality, by Corollary 5.17

m = zero ∨ m = one ∨ (m 6= zero ∧ m 6= one.)

We argue by cases.

Case 1, m = zero. Then by Lemma 6, 2m = one, and we have to show zero < one, which follows from the

definition of < by exhibiting the separable subset ∅ of the set {∅}, and noting that ∅ ∈ zero while {∅} ∈ one.
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Case 2, m = one. Then by Lemma 7, 2m = two, and we have to show one < two, which follows from

zero < one by Corollary 4.7 and Lemma 10, or more directly, from the definition of < by exhibiting the

separable subset {∅} of {{∅},∅}, the former of which belongs to one while the latter belongs to two.

Case 3, m 6= zero and m 6= one. By hypothesis, 2m is inhabited. Then there exists a such that P1(a) ∈ m.

Since m ∈ F, we have

P1(a) ∈ FINITE by Lemma 4

a ∈ FINITE by Lemma 10

Ps(a) ∈ FINITE by Lemma 17

a ∈ DECIDABLE by Lemma 3

Then by Lemma 18, P1(a) is a separable subset of Ps(a). Now with u = P1(a) and v = Ps(a) we have proved

that u is a separable subset of v and u ∈ m and v ∈ 2m. Then by Definition 5.2 we have m ≤ 2m.

By definition m < 2m means m ≤ 2m and m 6= 2m. It remains to prove that m 6= 2m. Suppose m = 2m.

As just proved, we have P1(a) ⊆ Ps(a). I say that it is a proper subset, P1(a) ⊂ Ps(a). It suffices to prove

P1(a) 6= Ps(a). We have to produce an element of Ps(a) that does not belong to P1(a). We propose a as this

element. We have a ∈ Ps(a) since a is a separable subset of itself. It remains to show that a 6∈ P1(a). Assume

a ∈ P1(a). Then a is a unit class. By Lemma 14, P1(a) is also a unit class. Any two unit classes are similar, so

P1(a) ∼ zero. Since zero ∈ one, P1(a) ∈ one, by Lemma 8. Then m ∩ one is inhabited, since it contains P1(a).

Then by Lemma 24, m = one, contradiction. That completes the proof that P1(a) is a proper subset of Ps(a).

We have

P1(a) ⊂ Ps(a) as proved above

P1(a) ∼ Ps(a) by Lemma 9, since P1(a) ∈ m and Ps(a) ∈ 2m

Ps(a) is infinite since Ps(a) ∼ P1(a) ⊂ Ps(a)

¬ (Ps(a) ∈ FINITE) by Theorem 3.24

Ps(a) ∈ FINITE by Lemma 17, since a ∈ FINITE

That is a contradiction.

Lemma 17. For all m ∈ F,

∃u (u ∈ 2m) → m+ ≤ 2m.

Proof. Suppose m ∈ F and ∃u (u ∈ 2m). Then

m < 2m by Lemma 16

2m ∈ F by Lemma 5

m+ ≤ 2m by Lemma 30

Lemma 18 (Specker 4.8). Let m, n ∈ F. If m ≤ n and 2n is inhabited, then 2m is inhabited and 2m ≤ 2n.

Proof. Suppose m ≤ n and 2n is inhabited. Then

∃u (u ∈ n) by Corollary 4.7

∃b (P1(b) ∈ n) by Lemma 4

∃b (P1(b) ∈ m) by Lemma 4
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Since m ≤ n, by Lemma 8 there is a separable subset x of P1(b) such that x ∈ m. Let a =
⋃

x. Then

using the definitions of
⋃

and P1, we have x = P1(a). Therefore 2m is inhabited. Now 2m = NC(Ps(a)) and

2n = NC(Ps(b)).

I say that b is finite. We have

P1(b) ∈ n

P1(b) ∈ FINITE by Lemma 4

b ∈ FINITE by Lemma 10

I say that a is also finite. We have

x ∈ FINITE by Lemma 4, since x ∈ m

Every member of x is a unit class, since x = P1(a)). Every unit class is finite. Therefore every member of x

is finite. Moreover, since the members of x are unit classes, distinct members of x are disjoint. Since x is also

finite, a =
⋃

x is a finite union of disjoint finite sets. Hence a is finite, by Lemma 25.

Since x = P1(a) is a separable subset of P1(b), we have

P1(a) ∈ Ps(P1(b))

a ∈ Ps(b) by Lemma 11 (right to left)

Ps(a) ∈ Ps(Ps(b)) by Lemma 14, since a and b are finite

Then Ps(a) belongs to 2m, and is a separable subset of Ps(b), which belongs to 2n. Therefore, by Definition 5.2,

2m ≤ 2n.

8 Addition

Specker uses addition in §5 of his paper, and relies on Rosser for its associativity and commutativity. Those

properties can be proved (as is very well-known) by induction from the two fundamental “defining equations”:

x + y+ = (x + y)+

x + zero = x

In the present context, where the main point of the paper is to prove that there are infinitely many finite

cardinals, we need to bear in mind the possibility that successor or addition may “overflow”. We have arranged

that successor is always defined (for any argument whatever); and if there is a largest natural number then

when we take its successor we get the empty set, which can be thought of as the computer scientist’s “not a

number.” We need to define addition with similar behavior; if x + y should “overflow”, it should produce “not

a number”, but still be defined. Then the equations above should be valid without further qualification, i.e.,

without insisting that x and y should be members of F. If we assume only that those equations are valid for

x, y ∈ F, then the inductive proofs of associativity and commutativity do not go through.

The proofs of associativity and commutativity proceed via another important property, “successor shift”:

x+ + y = x + y+

Normally this property is proved by induction from the “defining equations.” In the present context, that

does not work, because if x and y are restricted to F, then when we try to use successor shift to prove the

associative law, we need x + y ∈ F, which we do not want to assume, as the statement of the associative



46 Michael Beeson

law should cover the case when x + y overflows. Therefore, we prove below that successor shift is generally

valid, i.e., without restricting x and y to F. Once we have these three equations generally valid, then the usual

proofs of associativity and commutativity by induction go through without difficulty. But in fact, it is simpler

and more general to verify them directly from the definition of addition, and then we have associativity and

commutativity of addition for all sets, not just finite cardinals.

Definition 8.1 (Specker 3.1, Rosser 373). For any sets x and y we define

x + y := {z : ∃u, v (u ∈ x ∧ v ∈ y ∧ u ∩ v = ∅ ∧ z = u ∪ v)}

The formula in the definition is stratified, giving u, v, and z index 1 and x and y index 2. Then x, y, and

z all get the same index, so addition is definable as a function in iNF. (See Definition 2.2 for ordered triples.)

Lemma 2. Addition satisfies the “defining equations” and successor shift:

x + zero = x

x + y+ = (x + y)+

x + y+ = x+ + y

Remark. Addition is defined on any arguments, not just on F.

Proof. Ad x + zero = x. By extensionality, it suffices to show z ∈ x + zero ↔ z ∈ x. Left to right: suppose

z ∈ x + zero. Then z = u ∪ v, where u and v are disjoint and u ∈ x and v ∈ zero. Since zero = {∅}, we have

v = λ, so z = u ∪ ∅ = u ∈ x. That completes the left-to-right implication.

Right-to-left: Let z ∈ x. Then z ∪ ∅ ∈ x + zero, by the definition of addition. Since z ∪ ∅ = z, we have

z ∈ x + zero as desired. That completes the proof of x + zero = x.

Ad x + y+ = (x + y)+. By extensionality, it suffices to show the two sides have the same members. Left to

right: We have

z ∈ x + y+ assumption

z = u ∪ v where u ∈ z and v ∈ y+ and u ∩ v = ∅

v = w ∪ {c} where w ∈ y and c 6∈ w, by definition of y+

z = (u ∪ w) ∪ {c} by associativity of union

u ∪ w ∈ x + y by definition of addition

c 6∈ u ∪ w since c 6∈ w and u ∩ v = ∅

z ∈ (x + y)+ by definition of successor

That completes the left to right implication.

Right to left:

z ∈ (x + y)+ assumption

z = w ∪ {c} where c 6∈ w and w ∈ x + y

w = u ∪ v where u ∈ x and v ∈ y and u ∩ v = ∅

z = u ∪ (v ∪ {c}) by the associativity of union

c 6∈ v since c 6∈ w = u ∪ v

v ∪ {c} ∈ y+ by definition of successor

u ∩ (v ∪ {c}) = ∅ since u ∩ v = ∅ and c 6∈ u

u ∪ (v ∪ {c}) ∈ x + y+ by definition of addition

(u ∪ v) ∪ {c} ∈ x + y+ by the associativity of union

z ∈ x + y+ since z = w ∪ {c} = (u ∪ v) ∪ {c}
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That completes the proof of the right to left direction. That completes the proof of x + y+ = (x + y)+.

Ad successor shift. We must prove

z ∈ x + y+ ↔ z ∈ x+ + y.

Left to right:

z ∈ x + y+ assumption

z = u ∪ (v ∪ {c}) where u ∈ x, v ∈ y, and c 6∈ v, and u ∩ (v ∪ {c}) = ∅

z = (u ∪ {c}) ∪ v by the associativity and commutativity of union

c 6∈ u since u ∩ (v ∪ {c}) = ∅

u ∪ {c} ∈ x+ by the definition of successor

(u ∪ {c}) ∩ v = ∅ by the associativity and commutativity of union

z ∈ x+ + y by the definition of addition

That completes the left to right direction.

Right to left:

z ∈ x+ + y assumption

z = (u ∪ {c}) ∪ v where u ∈ x, v ∈ y, c 6∈ u, and (u ∪ {c}) ∩ v = ∅

z = (u ∪ v) ∪ {c} by the associativity and commutativity of union

c 6∈ u ∪ v since c 6∈ u and (u ∪ {c}) ∩ v ∅

u ∪ v ∈ x + y by the definition of addition

z ∈ (x + y)+ by the definition of successor

That completes the right to left direction.

Lemma 3. Addition obeys the associative and commutative laws and left identity (without restriction to F)

zero + x = x

(x + y) + z = x + (y + z)

x + y = y + x

Remark. We call attention to the fact that, even when x, y, z are assumed to be in F, the expressions in the

equations might “overflow”, and the equations contain implicitly the assertion that the overflows “match”, i.e.,

one side overflows if and only if the other does. Here “overflow” means to have the value ∅.

Proof. These laws are immediate consequences of the definition of addition, via the associative and

commutative laws of set union. We omit the proofs.

Lemma 4. For all m ∈ F, we have m+ = m + one.

Proof. We have

m + one = m + zero
+ by definition of one

m + one = m+ + zero by Lemma 2

m + one = m+ by Lemma 2
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Lemma 5. one + one = two.

Proof.

two = one
+ by definition of two

two = one + one by Lemma 4

Lemma 6. Suppose κ, µ ∈ F, and κ + µ is inhabited. Then κ + µ ∈ F.

Remark. This lemma addresses the problem of possible “overflow” of addition. If there are enough elements

to find disjoint members of κ and µ then adding κ and µ will not overflow.

Proof. By induction on µ, which is legal since the formula is stratified.

Base case: κ + zero = κ is in F because κ ∈ F.

Induction step: Suppose κ + µ+ is inhabited and µ+ is inhabited. Then κ + µ+ = (κ + µ)+ is inhabited.

By the induction hypothesis, κ + µ ∈ F. Then by Lemma 19, (κ + µ)+ ∈ F. Since (κ + µ)+ = κ + µ+, we have

κ + µ+ ∈ F. That completes the induction step.

Lemma 7. Suppose p, q, r ∈ F and p+ q + r ∈ F. Then p+ q and q + r are also in F. Similarly, if p, q, r, s ∈ F

and p + q + r + s ∈ F, then p + q + r ∈ F.

Proof. By Corollary 4.7, p+q+r is inhabited. Let u ∈ p+q+r. Then by the definition of addition, u = a∪b∪c

with a ∈ p, b ∈ q, c ∈ r, and a, b, c pairwise disjoint. Then a ∪ b ∈ p + q and b ∪ c ∈ q + r. Then by Lemma 6,

p + q ∈ F and q + r ∈ F. That completes the proof of the three summand case. The case of four summands is

treated similarly. We omit the details.

Lemma 8. If p ∈ F and p + q+ ∈ F, then p+ ∈ F.

Remark. It is not assumed that q ∈ F.

Proof. Suppose p ∈ F and p + q+ ∈ F. By Corollary 4.7, there exists u ∈ p + q+. Then by Definition 8.1, there

exist a and b with a ∈ p and b ∈ q+ and a ∩ b = ∅. By definition of successor, b = x ∪ {c} for some x and c,

so c ∈ b. Since a ∩ b = ∅, we have c 6∈ a. Then a ∪ {c} ∈ p+. Then p+ ∈ F.

Lemma 9. If p, q ∈ F and p + q+ ∈ F, then p + q ∈ F.

Proof. We have

p + q+ ∈ F by hypothesis

p + q + one ∈ F by definition of one and Lemma 2

p + q ∈ F by Lemma 7

Lemma 10. For a, b, p, q ∈ F, if b + q ∈ F we have

a ≤ b ∧ p ≤ q → a + p ≤ b + q
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Proof. Suppose a, b, p, q ∈ F and b + q ∈ F. Suppose also a ≤ b, p ≤ q. Then

w ∈ b + q for some w, by Lemma 4.7, since b + q ∈ F

By the definition of addition, there exist u, v with w = u ∪ v, u ∈ b, v ∈ q, and u ∩ v = ∅. By Lemma 8, since

a ≤ b there exists r ∈ a with r ∈ Ps(u). By Lemma 8, since p ≤ q, there exists s ∈ p with s ∈ Ps(v). Then

one can verify that r ∪ s ∈ Ps(u ∪ v). (We omit the details of that verification.) Since u ∪ v = w we have

r ∪ s ∈ Ps(w). We have r ∩ s = ∅, since r ⊆ u, s ⊆ v, and u ∩ v = ∅. Then r ∪ s ∈ a + p, by the definition of

addition. Then a + p ≤ b + q, as witnessed by r ∪ s ∈ a + p, r ∪ s ∈ Ps(w), and w ∈ b + q.

Lemma 11. For a, p, b, q ∈ F, if b + q ∈ F we have

a < b ∧ p ≤ q → a + p < b + q

Remark. It is not assumed that a + p ∈ F, which would make the proof easier.

Proof. Suppose a < b and p ≤ q. Then

a+ ≤ b by Lemma 30

∃u (u ∈ a+) by the definition of addition

a+ ∈ F by Lemma 19

a+ + p ≤ b + q by Lemma 10

(a + p)+ ≤ b + q by Lemma 3

∃u (u ∈ (a + p)+) by the definition of ≤

∃u (u ∈ a + p) by definition of successor

a + p ∈ F by Lemma 6

(a + p)+ ∈ F by Lemma 19

a + p < (a + p)+ by Lemma 37

a + p < b + q by Lemma 21

Lemma 12. For m ∈ F we have

P1(x) ∈ m → Ps(x) ∈ 2m.

Proof. Suppose P1(x) ∈ m. By Definition 7.1, 2m contains all sets similar to Ps(x). By Lemma 11, Ps(x) is

one of those sets, so Ps(x) ∈ 2m.

Lemma 13. For all z we have 2z 6= zero.

Proof. Suppose 2z = zero. Then

∅ ∈ zero by Definition 5.14

∅ ∈ 2z since 2z = zero

∅ ∼ Ps(a) ∧ P1(a) ∈ x by Definition 7.1

Ps(a) = ∅ since only ∅ is similar to ∅

But a ∈ Ps(a), contradiction.
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Lemma 14. Suppose x ∼ y, and a 6∈ x and b 6∈ y. Then

x ∪ {a} ∼ y ∪ {b}.

Proof. Extend a similarity f : x → y by defining f(a) = b. We omit the details.

Lemma 15. Let p and q be disjoint finite sets. Then |p ∪ q| = |p| + |q|.

Proof. We have

p ∪ q ∈ FINITE by Lemma 11

|p ∪ q| ∈ F by Lemma 21

|p| ∈ F by Lemma 21

|q| ∈ F by Lemma 21

p ∪ q ∈ |p ∪ q| by Lemma 11

p ∈ |p| by Lemma 11

q ∈ |q| by Lemma 11

p ∪ q ∈ |p| + |q| by the definition of addition

|p ∪ q| ∩ |p| + |q| 6= ∅ since both contain p ∪ q

|p| + |q| ∈ F by Lemma 6

|p ∪ q| = |p| + |q| by Lemma 24

Lemma 16. For p, q, r ∈ F, if q + p ∈ F we have

q + p = r + p → q = r

p + q = p + r → q = r.

Proof. The two formulas are equivalent, by Lemma 3. We prove the first one by induction on p, which is legal

since the formula is stratified. More precisely we prove by induction on p that

∀q, r ∈ F (q + p ∈ F → q + p = r + p → q = r).

Base case, p = 0. Suppose q + 0 = r + 0. Then q = r by the right identity property of addition, Lemma 2.

That completes the base case.

Induction step. Suppose q + p+ = r + p+ and q + p+ ∈ F. Then

(q + p)+ = (r + p)+ by Lemma 2

q + p ∈ F by Lemma 9

r + p ∈ F by Lemma 9

∃u (u ∈ q + p) by Lemma 4.7

∃u (u ∈ r + p) by Lemma 4.7

(q + p)+ = q + p+ by Lemma 2

(r + p)+ = r + p+ by Lemma 2

(q + p)+ ∈ F equality substitution

(r + p)+ ∈ F equality substitution

∃u (u ∈ (q + p)+) by Lemma 4.7

∃u (u ∈ (r + p)+) by Lemma 4.7
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q + p = r + p by Lemma 11, since (q + p)+ = (r + p)+

q = r by the induction hypothesis

That completes the induction step.

Lemma 17. Let b ∈ FINITE and c 6∈ b. Then

|Ps(b ∪ {c})| = |Ps(b)| + |Ps(b)|.

Proof. Define

R := {x ∪ {c} : x ∈ Ps(b)}.

The definition can be rewritten in stratified form, so R can be defined in iNF. Define f : x 7→ x ∪ {c}, which

can also be defined in iNF:

f := {〈x, x ∪ {c}〉 : x ∈ Ps(b)}.

The formula is stratified, since all the occurrences of x can be given index 0, and {c} and Ps(b) are just

parameters. Then f : Ps(b) → R is a similarity. (We omit the 150 steps required to prove that.)

We first note that if x ∈ Ps(b ∪ {c}) and c ∈ x, then x = (x − c) ∪ {c}, since x is finite and therefore has

decidable equality. Similarly b ∪ {c} has decidable equality, so every x ∈ Ps(b ∪ {c}) either contains c or not.

If c ∈ x then x ∈ R. If c 6∈ x then x ∈ Ps(b). Therefore

Ps(b ∪ {c}) = Ps(b) ∪ R

Ps(b) ∼ R since f : Ps(b) → R is a similarity

|Ps(b|) = |R| by Lemma 12

Ps(b) ∩ R = ∅ since c 6∈ b

Ps(b) ∈ FINITE by Lemma 17

R ∈ FINITE by Lemma 14

|Ps(b ∪ {c}|) = |Ps(b|) + |R| by Lemma 15

|Ps(b ∪ {c}|) = |Ps(b|) + |Ps(b|) since |Ps(b|) = |R|

Lemma 18. For p ∈ F, if 2p+

∈ F, then 2p+

= 2p + 2p.

Proof. Suppose p ∈ F and 2p+

∈ F. Then

∃u (u ∈ 2p+

) by Lemma 4.7

P1(a) ∈ p+ for some a ∈ p, by definition of exponentiation

u ∈ p+ ∧ q ∈ u for some q, u, by Lemma 15

u ∼ P1(a) by Lemma 9, since both are in p+

w ∈ P1(a) for some w, by Lemma 20

c ∈ a ∧ w = {c} for some c, by definition of P1(a)

P1(a) ∈ FINITE by Lemma 4

a ∈ FINITE by Lemma 10

a ∈ DECIDABLE by Lemma 3
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b := a − {c} definition of b

a = b ∪ {c} since a ∈ DECIDABLE (64)

P1(a) = P1(b) ∪ {{c}} by Lemma 15

Ps(b ∪ {c}) ∈ 2p+

by definition of exponentiation

|Ps(b ∪ {c}| = 2p+

by Lemma 11

|Ps(b ∪ {c})| = |Ps(b)| + |Ps(b)| by Lemma 17 (65)

P1(a) ∈ DECIDABLE by Lemma 3

P1(b) = P1(a) − {{c}} since P1(a) ∈ DECIDABLE

P1(b) ∈ p by Lemma 9

Ps(b) ∈ 2p by the definition of exponentiation

Ps(b) ∈ |Ps(b|) by Lemma 11

Ps(b) ∈ FINITE by Lemma 17

|Ps(b)| ∈ F by Lemma 21

|Ps(b)| = 2p by Lemma 24

Then 2p+

= 2p + 2p as desired, by (65).

Lemma 19. For m ∈ F, 2m = one ↔ m = zero.

Proof. Left to right. We have

2m = one assumption

2two = four by Lemma 8

two ≤ m → 2two ≤ 2m by Lemma 18

two ≤ m → four ≤ one by transitivity of ≤

one < four by Lemma 11

two 6≤ m otherwise one < four ∧ four ≤ one

m < two ∨ two ≤ m by Theorem 5.16

m < two since two 6≤ m

m = zero ∨ m = one by Lemma 13

2one = two by Lemma 7

one 6= two by Lemma 36

m 6= one since 2m = zero

m = zero since m = zero ∨ m = one but m 6= one

Right to left. Suppose m = zero. Then 2m = 2zero = one, by Lemma 6.

Lemma 20. For n, m ∈ F, if 2n = 2m and 2n is inhabited, then n = m.

Remark. The reader is invited to try a direct proof using the definition of exponentiation. It would work if

we had the converse of Lemma 8. The only proof of that converse that we know requires this lemma. Therefore,

we give a more complicated (but correct) proof by induction.
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Proof. We prove by induction on n that for n ∈ F with 2n inhabited, we have

∃u (u ∈ 2n) → ∀m ∈ F (2n = 2m → n = m) (66)

The formula is stratified giving n and m both index 0, so it is legal to proceed by induction.

The base case follows from Lemma 19.

Induction step. Suppose 2n+

= 2m and n+ is inhabited. We have m = zero ∨ m 6= zero, by Lemma 5.17.

Case 1, m = zero. Then by Lemma 19, n+ = zero, contradiction.

Case 2, m 6= zero. Then

∃r ∈ F (m = r+) by Lemma 17

2n+

= 2r+

since 2n+

= 2m

2n + 2n = 2r + 2r by Lemma 18

r < n ∨ r = n ∨ n < r by Theorem 5.16

We argue by cases.

Case 1, r < n. Then

2r ≤ 2n by Lemma 18

2r 6= 2n by the induction hypothesis

2r < 2n by the definition of <

2n+

∈ F by Lemma 5

2r+

= 2r + 2r by Lemma 18

2r + 2r < 2n + 2n by Lemma 11

2n + 2n = 2n+ by Lemma 18

2r+

< 2n+ by Lemma 21

But that contradicts 2n+

= 2r+

. That completes Case 1.

Case 2, n < r, similarly leads to a contradiction. We omit the steps.

Case 3, n = r. Then 2n = 2r. Substituting 2n for 2r in the identity 2r + 2r = 2r + 2r, we have

2n + 2n = 2r + 2r. Then 2n+

= 2r+

= 2m as desired. That completes the induction step.

Lemma 21. Let m, n ∈ F. If m < n and 2n is inhabited, then 2m is inhabited and 2m < 2n.

Proof. Suppose m < n and 2n is inhabited. Then

m ≤ n by the definition of <

2m ≤ 2n by Lemma 18

m 6= n by the definition of <

2m 6= 2n by Lemma 20

2m < 2n by the definition of <

Lemma 22. For p, q ∈ F we have

p ≤ q ↔ ∃k ∈ F (p + k = q).
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Proof. By induction on q. The formula is stratified, giving all variables index 0.

Base case, p ≤ zero ↔ ∃k ∈ F, p + k = zero. Left to right: Suppose p ≤ zero. Then p = zero ∨ p < zero, by

Lemma 19. But p 6< zero by Lemma 29. Hence p = zero. Then p + k = zero + k = zero by Lemma 3. . Right

to left. Suppose p + k = zero. Then by the definition of addition, there exists sets a ∈ p and b ∈ k such that

a ∪ b ∈ zero. By definition of zero, zero = {∅}, so a ∪ b = ∅. Then a = ∅. Then ∅ ∈ p and ∅ ∈ zero. Then

by Lemma 24, p = zero. That completes the base case.

Induction step. Assume q+ is inhabited. We have to show

p ≤ q+ ↔ ∃k ∈ F (p + k = q+).

Left to right: suppose p ≤ q+. Then p = q+ ∨ p ≤ q, by Lemma 32.

Case 1, p ≤ q. Then by the induction hypothesis, there exists k ∈ F such that p + k = q. We have

∃u (u ∈ q+) by hypothesis

∃u u ∈ (p + k)+ since p + k = q

p + (k+) = (p + k)+ = q+ by Lemma 2

∃u (u ∈ k+) by the definition of addition

k+ ∈ F by Lemma 19

That completes Case 1.

Case 2, p = q+. Then taking k = zero we have

p + k = p + zero = p = q+.

That completes Case 2.

Right to left. Suppose k ∈ F and p + k = q+. We have to show p ≤ q+. By definition of addition, there

exist a and b with a ∈ p and b ∈ k, and a ∩ b = ∅ and a ∪ b ∈ q+. Then a is a separable subset of a ∪ b, so

p ≤ q+ by the definition of ≤. That completes the induction step.

Lemma 23. Let p, q ∈ F and p + q ∈ F. Then p ≤ p + q and q ≤ p + q.

Proof. Suppose p, q ∈ F and p + q ∈ F. We have

u ∈ q for some u, by Lemma 4.7

∅ ∈ zero by the definition of zero

∅ ⊆ u ∧ u = ∅ ∪ (u − ∅) by the definitions of subset and difference

zero ≤ q by the definition of ≤

p ≤ p by Lemma 18

p + zero ≤ p + q by Lemma 10

p ≤ p + q by Lemma 2

That is the first assertion of the lemma. By Lemma 3, we have p + q = q + p, so q + p ∈ F and as above we

have q ≤ q + p. Therefore also q ≤ p + q.

Lemma 24. Let p ∈ F. Then

p 6= zero → p 6= one → 2p ∈ F → p+ < 2p.
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Remark. Specker 4.6 says p < 2p. Of course the exponent grows faster than linearly, so larger things can be

put on the left side, at the price of small exceptions.

Proof. By induction on p. For the base case, there is nothing to prove. For the induction step, assume p+ is

inhabited and 2p+

∈ F and p+ 6= zero and p+ 6= one. We have to prove

p++ < 2p+

(67)

We have

p 6= zero since p+ 6= one

Since equality on F is decidable, p = one ∨ p 6= one,

Case 1, p = one. Then

p++ = two
+ = three by definitions of two and three

2p+

= four by Lemma 8

three < four by Lemma 37

p++ < 2p+ since p++ = three and 2p+

= four

That completes the case p = one.

Case 2, p 6= one. Then

p 6= zero since p+ 6= one by hypothesis (68)

2p+

∈ F by hypothesis

2p+

= 2p + 2p by Lemma 18 (69)

p+ ∈ F by Lemma 19

2p < 2p+ by Lemma 21, since 2p+

∈ F and p < p+

2p ∈ F by Lemma 5, since it is inhabited (70)

p+ < 2p by the induction hypothesis and (68) and (70)

p+ + p+ < 2p + 2p by Lemma 11

p+ + p+ < 2p+

by (69)

p++ + p < 2p+

by the law x + y+ = x+ + y

p++ ≤ p++ + p by Lemma 23

p++ is inhabited by the definitions of ≤ and addition

p++ ∈ F by Lemma 19

p++ + p ∈ F by the definition of ≤ and Lemma 6

p++ < 2p+

by Lemma 24

But that is (67), the desired goal. That completes the induction step.

Lemma 25. Let q ∈ F. Then for all n ∈ F and p ∈ F,

n = p + q → zero < q → p < n.

Remark. This lemma links addition and order. It probably can be proved directly from the definitions of

addition and order, but here we prove it by induction. Nevertheless we do have to use the definition of addition

directly at one of the steps.
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Proof. By induction on q, which is legal since the formula is stratified. The formula to be proved includes the

quantifiers on n and p.

Base case. There is nothing to prove because of the hypothesis q 6= zero.

Induction step. Suppose n = p + q+ and zero < q+. As usual in induction proofs, we also assume q+ is

inhabited. Then

n = p+ + q by Lemma 2

q < zero ∨ q = zero ∨ zero < q by Theorem 5.16

Case 1, q < zero is impossible, by Lemma 29.

Case 2, q = zero. Then q+ = one so n = p + one = p+. Then p < n by Lemma 37.

Case 3, zero < q. Then

n is inhabited by Lemma 4.7

p+ is inhabited by the definition of addition, since n p+q

p+ < n by the induction hypothesis, since n = p+ + q

p < p+ by Lemma 37

p < n by transitivity

That completes the induction step.

9 Definition of multiplication

Specker did not make any use of multiplication. If one could manage to prove that F is infinite, one

would need multiplication to interpret HA in iNF. But without knowing that F is infinite, there are technical

difficulties with multiplication. Some care is required to make sure that the equations for multiplication work

without assuming F is finite; the equations must have the property that if one side is in F, so is the other side.

That is, if one side “overflows”, so does the other side. To arrange this, we must first ensure that addition has

the same property. This ultimately goes back to the theorem that successor never takes the value zero, not

just on an integer argument but on any argument whatever. We carried out those details (and they can still

be found in earlier versions of this paper on ArXiv), but we have not included them here.

10 Results about T

Here we constructivize Specker’s §5.

Definition 10.1.

T(κ) = {u : ∃x (x ∈ κ ∧ u ∼ P1(x))}

The formula is stratified, giving x index 0, u and κ index 1. We will use T(κ) only when κ is a finite

cardinal, although that is not required by the definition. Note that T(κ) has one type higher than κ. Thus we

cannot define the graph of T or the graph of T restricted to F.

Lemma 2. If κ ∈ F, then

x ∈ κ ↔ P1(x) ∈ Tκ.
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Proof. Left to right:

x ∈ κ by hypothesis

P1(x) ∼ P1(x) by Lemma 11

P1(x) ∈ T(κ) by Definition 10.1

That completes the left-to-right direction.

Right to left:

P1(x) ∈ Tκ by hypothesis

∃z (z ∈ κ ∧ P1(z) ∼ P1(x)) by definition of T

z ∼ x by Lemma 7

x ∈ κ by Lemma 8

That completes the right-to-left direction.

Lemma 3. If κ ∈ F then for every x ∈ κ, T(κ) = |P1(x|).

Proof. Suppose κ ∈ F. Then κ is inhabited, by Corollary 4.7. Let x ∈ κ. Then

x ∈ FINITE by Lemma 4

P1(x) ∈ FINITE by Lemma 10

|P1(x|) ∈ F by Lemma 21

P1(x) ∈ T(κ) by Lemma 2

P1(x) ∼ P1(x) by Lemma 11

P1(x) ∈ |P1(x|) by Definition 4.10

We remark that we cannot finish the proof at this point by Lemma 24, because we do not yet know T(κ) ∈ F.

Instead: by extensionality it suffices to prove

∀u (u ∈ T(κ) ↔ u ∈ |P1(x|)) (71)

Left to right: Suppose u ∈ T(κ). By definition of T, there exists w ∈ κ with u ∼ P1(w). Then

w ∼ x by Lemma 9, since w ∈ κ and x ∈ κ

P1(w) ∼ P1(x) by Lemma 7

u ∼ P1(x) by Lemma 11 (transitivity of ∼), since u ∼ P1(w)

That completes the proof of the right-to-left direction of (71).

Right to left: Suppose u ∈ |P1(x|). Then u ∼ P1(x). Since x ∈ κ, we have u ∈ T(κ) by the definition of

T.

Lemma 4. If κ ∈ F and x ∈ κ then κ = |x|.

Proof. Let κ ∈ F and x ∈ κ. By extensionality, it suffices to prove that for all u,

u ∈ κ ↔ u ∈ |x|.

Left to right: Suppose u ∈ κ. Then

u ∼ x by Lemma 9

x ∼ u by Lemma 11

u ∈ |x| by Definition 4.10
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Right to left: Suppose u ∈ |x|. Then

u ∼ x by Definition 4.10

u ∈ κ by Lemma 8

Lemma 5. If |x| ∈ F, then T(|x|) = |P1(x|).

Proof. By Lemma 3, with κ = |x|.

Lemma 6. If m ∈ F then T m ∈ F.

Remark. Since the graph of T is not definable, we cannot express the lemma as T : F → F.

Proof. Let m ∈ F. By Corollary 4.7, m is inhabited. Let a ∈ m. Then

P1(a) ∈ Tm by Lemma 2

a ∈ FINITE by Lemma 4

P1(a) ∈ FINITE by Lemma 10

|P1(a|) ∈ F by Lemma 21

Tm ∈ F by Lemma 3

Lemma 7. Every singleton has cardinal one. That is, ∀x (|{x}| = one).

Proof. By definition, one = zero+ and zero = {∅}. Then the members of one are sets of the form ∅ ∪ {r}, by

the definition of successor. But ∅∪{r} = {r}. Hence the members of one are exactly the unit classes. Let x be

given; then by definition of |{x}|, |{x}| contains exactly the sets similar to {x}. By Lemma 3, that is exactly

the unit classes. Hence |{x}| and one have the same members, namely all unit classes. By extensionality,

|{x}| = one.

Lemma 8. For all m ∈ F with an inhabited successor, we have

T(m+) = (Tm)+.

Proof. Since m+ is inhabited, there is an x ∈ m and a 6∈ x (so x ∪ {a} ∈ m+). Then

m+ ∈ F by Lemma 19

T(m+) = |P1(x ∪ {a}|) by Lemma 3

= |P1(x| ∪ {{a}}) by Lemma 15

= (|P1(x|))+ by Lemma 13

= (Tm)+ by Lemma 3

Lemma 9 (Specker 5.2). T(zero) = zero.

Proof. We have P1(∅) = ∅ as there are no singleton subsets of ∅. Since zero = |∅|, by Lemma 5 we have

T(zero) = |P1(∅|) = |∅| = zero.
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Lemma 10 (Specker 5.2). T(one) = one.

Proof.

{∅} ∈ one by definition of one

T(one) = |P1({∅}| by Lemma 3

T(one) = |{{∅}}| since P1({∅}) = {{∅}}

|{{∅}}| = one by Lemma 7

T(one) = one by the two previous lines

Lemma 11 (Specker 5.2). T(two) = two.

Proof. We have

T(two) = T(one
+) since two = one

+

= (T(one))+ by Lemma 8

= one
+ by Lemma 10

= two.

Lemma 12 (Specker 5.5). Let m, n ∈ F. Then

n < m → Tn < Tm.

Remarks. Specker 5.5 asserts that for cardinal numbers p and q we have p ≤ q ↔ Tp ≤ Tq. Specker does not

prove a version of that lemma with strict inequality. We are able to do so, because we deal only with finite

cardinals. (It might fail at limit cardinals.)

Proof. The formula in the lemma is stratified, with the relation < occurring as a parameter. Therefore we can

prove by induction that for n ∈ F,

∀m ∈ F (n < m → Tn < Tm).

Base case, n = zero. Suppose zero < m; we must show Tzero < Tm. Since Tzero = zero, we have to show

zero < Tm. By Theorem 5.16, we have

Tm < zero ∨ Tm = zero ∨ zero < Tm

and only one of the three disjuncts holds. Therefore it suffices to rule out the first two disjuncts, as the third is

the desired conclusion. By Lemma 34, the first one is impossible. We turn to the second. Suppose Tm = zero.

Since m ∈ F, by Lemma 4.7 we have a ∈ m for some a. Then P1(a) ∈ Tm, by definition of T. Since Tm = zero,

we have P1(a) ∈ zero. Since zero = {∅}, we have P1(a) = ∅. Then a = ∅. Since ∅ ∈ zero, by Lemma 24 and

the fact that a ∈ m, we have m = zero. But that contradicts the assumption zero < m, by Lemma 34. That

completes the base case.
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Induction step. Suppose n+ < m and n+ is inhabited. We must show T(n+) < Tm. We have

m 6= zero since n+ < m and nothing is less than zero

m = r+ for some r ∈ F, by Lemma 17

n+ < r+ since n+ < m and m = r+

n < r by Lemma 13

Tn < Tr by the induction hypothesis

∃a (a ∈ m) by Lemma 4.7

∃a (a ∈ r+) since m = r+

(Tr)+ = T(r+) by Lemma 8

∃u (u ∈ n+) by the definition of ≤, since n+ < r+

(Tn)+ = T(n+) by Lemma 8, since n+ is inhabited

T(r+) ∈ F by Lemma 6

T(n+) ∈ F by Lemma 6

∃u (u ∈ T(r+)) by Lemma 4.7

∃u (u ∈ T(n+)) by Lemma 4.7

∃u u ∈ (Tn)+ since (Tn)+ = T(n+)

∃u u ∈ (Tr)+ since (Tr)+ = T(r+)

(Tn)+ < (Tr)+ by Lemma 13

T(n+) < T(r+) since (Tn)+ = T(n+) and (Tr)+ = T(r+)

T(n+) < Tm since r+ = m

That completes the induction step.

Lemma 13 (Specker 5.3). Let m, n ∈ F and suppose n + m ∈ F. Then

T(n + m) = Tn + Tm.

Remark. This theorem can be proved directly from the definitions involved, but we need it only for finite

cardinals, and it is simpler to prove it by induction.

Proof. By induction on m we prove

∀n ∈ F (n + m ∈ F → T(n + m) = Tn + Tm). (72)

The formula is stratified, since T raises indices by one.

Base case, m = zero. We have to prove T(n + zero) = Tn +T(zero). Since T(zero) = zero by Lemma 9, and

n + zero = n by Lemma 2, that reduces to Tn = Tn. That completes the base case.

Induction step. The induction hypothesis is (72). We suppose that m+ is inhabited and that n + m+ ∈ F.

We must prove T(n + m+) = Tn + T(m+). In order to apply the induction hypothesis, we need n + m ∈ F.

Since n + m+ ∈ F, it is inhabited, by Corollary 4.7. By Lemma 2, (n + m)+ is inhabited. Hence it has a

member, which must be of the form x ∪ {a} where x ∈ n + m. Thus n + m is inhabited. Then by Lemma 6,

n + m ∈ F. Therefore, by the induction hypothesis (72), we have

T(n + m) = Tn + Tm.
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Taking the successor of both sides, we have

(T(n + m))+ = (Tn + Tm)+

T((n + m)+) = (Tn + Tm)+ by Lemma 8

T(n + m+) = (Tn + Tm)+ by Lemma 2

= Tn + (Tm)+ by Lemma 2

= Tn + T(m+) by Lemma 8

That is the desired goal. That completes the induction step.

Lemma 14 (Specker 5.8). For m ∈ F, 2Tm is inhabited.

Proof. Let m ∈ F. Then

u ∈ m for some u, by Lemma 4.7

P1(u) ∈ Tm by Definition 10.1

Ps(u) ∈ 2Tm by the definition of exponentiation

Lemma 15. For m ∈ F, 2Tm ∈ F.

Proof. Suppose m ∈ F. Then ∃x (x ∈ 2Tm), by Lemma 14. Then by the definition of exponentiation, for some

u we have

Ps(u) ∈ 2Tm ∧ P1(u) ∈ Tm.

Then

Tm ∈ F by Lemma 6

P1(u) ∈ FINITE by Lemma 4

u ∈ FINITE by Lemma 10

P1(u) ∈ Tm by definition of T

Ps(u) ∈ FINITE by Lemma 17

Ps(u) ∈ 2Tm by Lemma 12

2Tm ∈ F by Lemma 5

Lemma 16. Suppose m ∈ F. Then (Tm)+ ∈ F.

Proof. Suppose m ∈ F. Then

2Tm ∈ F by Lemma 15

Tm ∈ F by Lemma 6

∃u (u ∈ 2Tm) by Lemma 4.7

Tm < 2Tm by Lemma 16

(Tm)+ ∈ F by Lemma 31
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Lemma 17 (Specker 5.9). For m ∈ F, if 2m is inhabited, then 2Tm = T(2m).

Proof. Suppose 2m is inhabited. Then there exists a with P1(a) ∈ m. Then

2m = |Ps(a|) by Lemma 2

Ps(a) ∈ 2m by Lemma 12

P1(Ps(a)) ∈ T(2m) by Lemma 2

P1(P1(a)) ∈ Tm by Lemma 2

T m ∈ F by Lemma 6

Ps(P1(a)) ∈ 2T m by Lemma 12

2m ∈ F by Lemma 5

2T m ∈ F by Lemma 5

|Ps(P1(a|)) = |P1(Ps(a|)) by Lemma 2

2T m = |Ps(P1(a|)) by Lemma 4

T(2m) = |P1(Psa|) by Lemma 3

2T m = T(2m) from the last three equations

Lemma 18. For n, m ∈ F, we have

Tn = Tm → n = m

Proof. Suppose Tn = Tm. By Lemma 4.7, we can find a ∈ n and b ∈ m. Then

P1(a) ∈ Tn by definition of T

P1(b) ∈ Tm by definition of T

Tn = Tm by hypothesis

P1(a) ∈ Tn by the previous two lines

Tm ∈ F by Lemma 6

P1(a) ∼ P1(b) by Lemma 9

a ∼ b by Lemma 7

b ∈ n by Lemma 8

n = m by Lemma 24

Lemma 19 (Converse to Specker 5.3). Let a, b, c ∈ F. Then

Ta + Tb ∈ F → Ta + Tb = Tc → a + b = c.

Remark. It is not assumed that a + b ∈ F. Indeed, that follows from the stated conclusion.

Proof. The formula is stratified, giving a, b, and c all index zero. Therefore we may proceed by induction on b.
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Base case: We have

Ta + Tzero = Tc by assumption

Ta + zero = Tc by Lemma 9

Ta = Tc by Lemma 2

a = c by Lemma 18

a + zero = c by Lemma 2

That completes the base case.

Induction step: We have

Ta + T(b+) = Tc by assumption

∃u (u ∈ b+) by assumption

b+ ∈ F by Lemma 19

T(b+) = (Tb)+ by Lemma 8

Ta + (Tb)+ = Tc by the preceding lines

(Ta + Tb)+ = Tc by Lemma 2

c 6= zero by Lemmas 9 and 16

c = r+ for some r, by Lemma 17

(Ta + Tb)+ = T(r+) by the preceding two lines

(Ta + Tb)+ = (Tr)+ by Lemma 8

Ta + T(b+) ∈ F by assumption

(Ta + Tb)+ ∈ F by Lemmas 8 and 2

∃u (u ∈ (Ta + Tb)+) by Lemma 4.7

∃u (u ∈ (Ta + Tb)) by definition of successor

∃u (u ∈ (Tr)+) by Lemma 4.7

Tr ∈ F by Lemma 6

Ta ∈ F by Lemma 6

Tb ∈ F by Lemma 6

Ta + Tb ∈ F by Lemma 6

Ta + Tb = Tr by Lemma 11

a + b = r by the induction hypothesis

(a + b)+ = r+ by the preceding line

a + b+ = r+ by Lemma 2

a + b+ = c since r+ = c

That completes the induction step.

Lemma 20. For n, m ∈ F, we have

n < m ↔ Tn < Tm.
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Proof. Left to right is Lemma 12.

Right to left. Suppose Tn < Tm. By Theorem 5.16, we have n < m or n = n or m < n. We argue by cases.

Case 1, n < m. Then we are done, since that is the desired conclusion.

Case 2, n = m then Tn = Tm. By Lemma 6, Tn ∈ F and Tm ∈ F, so by Theorem 5.16, Tn = Tm

contradicts Tn < Tm. That completes Case 2.

Case 3, m < n. Then Tm < Tn by Lemma 12.

Lemma 21 (Specker 5.6). Suppose p, q ∈ F and p < Tq. Then there exists r ∈ F such that p = Tr.

Proof. By induction on p we will prove

∀q ∈ F (p < Tq → ∃r ∈ F (p = Tr)) (73)

The formula is stratified, giving q and r index 0 and p index 1, so induction is legal.

Base case, p = 0. Then r = zero satisfies p = Tr, by Lemma 9. That completes the base case.

Induction step. The induction hypothesis is (73). Suppose p+ < Tq and p+ is inhabited. Then

p < p+ by Lemma 26

p < Tq by Lemma 25

p = Tr for some r, by (73)

Now I say that r+ is inhabited. To prove that:

Tr = p < p+ < Tq as already proved

Tr < Tq from the previous line

r < q by Lemma 20

r+ ≤ q by Lemma 30

∃u (u ∈ r+) by the definition of ≤

That completes the proof that r+ is inhabited. Then since p = Tr, we have

p+ = (Tr)+ = T(r+) by Lemma 8

That completes the induction step.

Lemma 22. Suppose p ∈ F and 2p is inhabited. Then p = T q for some q ∈ F.

Proof. Suppose p ∈ F and 2p is inhabited. Then by definition of exponentiation, for some a we have P1(a) ∈ p

and Ps(a) ∈ 2p. By definition of T we have p = T(|a|). By Lemma 21, we have |a| ∈ F.

Lemma 23. For n, m ∈ F, we have

n ≤ m ↔ Tn ≤ Tm.

Proof. We have

n ≤ m ↔ n < m ∨ n = m by Lemma 19

Tn ≤ Tm ↔ Tn < Tm ∨ Tn = Tm by Lemma 19

Now to prove the desired conclusion:

Left to right : if n < m then Tn < Tm by Lemma 20, so Tn ≤ Tm. And if n = m, then Tn = Tm ≤ Tm,

by Lemma 18.

Right to left : if Tn < Tm then n < m by Lemma 20, so n ≤ m. And if Tn = Tm, then n = m by

Lemma 18.
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Lemma 24. Let e ∈ F and e + e ∈ F. Then e+ ∈ F.

Proof. By Theorem 5.17, e = zero ∨ e 6= zero. If e = zero then e+ = one, so we are done by Lemma 20.

Therefore we may assume e 6= zero. By Lemma 4.7, e + e is inhabited. By the definition of <, there exist x

and y with x ∈ e and y ∈ e and x ∩ y = ∅. Then

y 6= ∅ since if y = ∅ then e = zero, by Lemma 24

y ∈ FINITE by Lemma 4

a ∈ y for some a, by Lemma 4

a 6∈ x since x ∩ y = ∅

x ∪ {a} ∈ e+ by definition of successor

e+ ∈ F by Lemma 19

Lemma 25. If Tc is even, then c is even. More precisely, if c, a ∈ F and Tc = a + a and a + a ∈ F, then

there exists b ∈ F with c = b + b.

Proof. The formula is stratified, giving b and c index 0 and a index 1. F is just a parameter, so it does not

need an index. Therefore we can proceed by induction on a.

Base case: Suppose Tc = zero + zero and c ∈ F. We have

zero + zero = zero since x + zero = x

T(zero) = zero by Lemma 9

T(c) = zero since T(c) = zero + zero = zero

c = zero by Lemma 18

∃b (c = b + b) namely, b = zero

Induction step: Suppose a+ is inhabited and a+ ∈ F and Tc = a+ + a+, and a ∈ F and a+ + a+ ∈ F. (The

assumption a+ ∈ F is part of the induction hypothesis, while the assumptions a ∈ F and a+ is inhabited come

with every proof by induction on F.) Then

a+ + a+ = (a + a)++ by Lemma 2

(a + a)++ ∈ F since a+ + a+ ∈ F

I say that

a + a ∈ F (74)

It is surprisingly difficult to prove that. I had to go back to the definition of addition. Since a+ + a+ ∈ F,

there exists x ∈ a+ + a+, by Lemma 4.7. By the definition of addition, x has the form

x = u ∪ v with u ∩ v = ∅ and u ∈ a+ and v ∈ a+

u = z ∪ {p} ∧ v = w ∪ {q} with z ∈ a and w ∈ a, by definition of successor

z ∪ w ∈ a + a by the definition of addition

a + a ∈ F by Lemma 6
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That completes the proof of (74). Similarly, x ∪ u ∈ a+ + a, so

a+ ∈ F by Lemma 19, since a ∈ F and a+ is inhabited

a+ + a ∈ F by Lemma 6

(a + a)+ = a+ + a by Lemma 2

(a + a)+ ∈ F by the preceding lines

Continuing, we have

T c = (a + a)++ by Lemma 2

T c 6= zero by Lemma 16

one 6= (a + a)++ by Lemma 11

T c 6= one since T c = (a + a)++

c 6= zero by Lemma 9

c = r+ for some r ∈ F, by Lemma 17

r 6= zero since if r = zero then r+ = c = one, so T c = one

r = t+ for some t ∈ F, by Lemma 17

c = t++ by the preceding lines

T c = (T t)++ by Lemma 8

(a + a)++ = (T t)++ since Tc = (a + a)++

T t ∈ F by Lemma 6

T t = a + a by Lemma 11

t = e + e for some e ∈ F, by the induction hypothesis

t++ = (e+ + e+) by Lemma 2

c = b + b with b = e+, by the preceding lines

e+ ∈ F by Lemma 24, since e + e = t ∈ F

That completes the induction step.

Lemma 26 (Specker 5.4). Let m ∈ NC. Then

m 6= T(m) + one

Remark. And so on, with one replaced by two or 23, 457, and any number you could name. If Tm 6= m, Tm

must be a non-standard distance away from m.

Proof. We give the proof for one. Recall that m is even if m = p+p for some p ∈ F, and odd if m = p+p+one

for some p ∈ F. Then if m is even, m + one is odd, and vice versa. One can verify by induction that every

integer is either or odd, and not both. Suppose m = Tm + one. If m is even, then Tm is even, by Lemma 25,

so T(m) + one is odd, contradiction. If m is odd, then m = k+ = k + one for some k ∈ F, since zero is even.

Then k is even. Then T(m) = T(k+) = T(k + one) = T(k) + one, which is odd since T(k) is even. Then

T(m) + one is even, contradiction, since m is odd and equal to T(m) + one.

Lemma 27. For all p, q, if p + q = zero then p = zero.

Remark. No additional hypothesis is needed.
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Proof. By definition, zero = {∅}. By the definition of addition, there exist a and b with a ∈ p and b ∈ q and

a ∩ b = ∅, such that a ∪ b ∈ zero. Then a ∪ b = ∅. It follows that a = ∅ and b = ∅. On the other hand, if a

or b had a non-empty member, then by the definition of addition, a + b would have a non-empty member, so

zero would have a non-empty member. Therefore p = q = {∅} = zero.

Lemma 28. For x, y ∈ F, x + x = y + y → x = y.

Proof. The formula is stratified; we prove it by induction on x, in the form

∀y ∈ F (x + x = y + y → x = y).

Base case : Suppose zero + zero = y + y. Then zero = y + y. By Lemma 27, y = zero. That completes the

base case.

Induction step : Suppose x+ +x+ = y +y, and suppose (as always in induction proofs) that x+ is inhabited.

Then

x+ + x+ = (x + x)++ by Lemma 2

y 6= zero by Lemma 16

y = r+ for some r, by Lemma 17

(x + x)++ = (r + r)++ by Lemma 2

x + x = r + r by Lemma 11

x = r by the induction hypothesis

x+ = r+ by the preceding line

x+ = y since y = r+

That completes the induction step.

Lemma 29. Let p ∈ F. Then

2p ∈ F ↔ ∃q ∈ F (p = Tq).

Proof. Suppose p ∈ F. Left to right:

2p ∈ F assumption

∃u (u ∈ 2p) by Lemma 4.7

P1(a) ∈ p for some a, by the definition of exponentiation

P1(a) ∈ FINITE by Lemma 4

a ∈ FINITE by Lemma 10

|a| ∈ F by Lemma 21

a ∈ |a| by Lemma 11

P1(a) ∈ T(|a|) by definition of T

T(|a|) ∈ F by Lemma 6

P1(a) ∈ p ∩ T(|a|) by definition of intersection

p = T(|a|) by Lemma 24

∃q ∈ F (p = Ta) namely q = |a|
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That completes the proof of the left-to-right direction.

Right to left: Suppose p = Tq and q ∈ F. Then

u ∈ q for some u, by Lemma 4.7

P1(u) ∈ Tq by definition of T

Tq ∈ F by Lemma 6

Ps(u) ∈ 2Tq by definition of exponentiation

Ps(u) ∈ 2p since p = Tq

2p ∈ F by Lemma 5

That completes the proof of the right-to-left direction.

Definition 10.30. Let X be any set of cardinals. Then we define

T“(X) = {T(u) : u ∈ X}.

or more explicitly

T“(X) = {T(u) : u ∈ X} = {y : ∃u ∈ X (y = Tu)}.

The formula in the definition is stratified, giving u index 0 and y and X index 1. Actually, X is just a parameter

and does not even need an index. Therefore the definition is legal in iNF. We note that it is not a function

definable in iNF. It is just an abbreviation for a comprehension term. Note also that the set X can be finite

or not, and the cardinals in X can be finite or not.

In general images commute with union. For images under T we have

Lemma 31. T“(X ∪ Y ) = T“(X) ∪ T“(Y ).

Proof. This is proved in a few short steps from the definitions of T “(X) and ∪.

Lemma 32. Let a and b be finite disjoint sets. Then

|a ∪ b| = |a| + |b|.

Proof. Left to right: Suppose t ∈ |a ∪ b|. Then

a ∪ b ∈ |a ∪ b| by Lemma 11

a ∈ |a| by Lemma 11

b ∈ |b| by Lemma 11

a ∩ b = ∅ by hypothesis

a ∪ b ∈ FINITE by Lemma 11

|a| ∈ F by Lemma 21

|b| ∈ F by Lemma 21

|a ∪ b| ∈ F by Lemma 21

|a| + |b| ∈ F by Lemma 6

a ∪ b ∈ |a| + |b| by the definition of addition

|a ∪ b| = |a| + |b| by Lemma 24
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Lemma 33. Let X be a finite set of cardinal numbers. Then

|T“(X |) = T(|X |).

Proof. The displayed formula in the lemma is stratified, giving X index 1; then |X | gets index 2 and T|X | gets

index 3. On the left, the members of T“(X) are Tu for u ∈ X , so u gets index 0, and Tu gets index 1, so T“X

gets index 2, so |T“(X |) gets index 3, the same as the right side of the equation. So it is stratified, as claimed.

The part of the lemma involving X is

∀X (X ∈ FINITE → X ⊂ NC → → |T“(X |) = T(|X |),

and this is also stratified, since FINITE and NC are just parameters. Therefore we can prove it by induction

on finite sets.

Base case, X = ∅. Then |∅| = zero, so T(|∅|) = T(zero) = zero. On the left, T“(∅)) = ∅, so |T“(∅|) = zero.

That completes the base case.

Induction step. Suppose X is finite and c 6∈ X . We have to show

|T“(X ∪ {c}| = T(|X ∪ {c}|.

We have

X ∪ {c} ∈ FINITE by Lemma 7, since c 6∈ X

T“(X ∪ {c}) = T“(X) ∪ {T(c)} by Lemma 31 (75)

|T“(X ∪ {c}|) = |T“(X | ∪ {T(c)}) by the preceding line

Tc 6∈ T“(X) by Lemma 18, since c 6∈ X (76)

|T“(X |) = T(|X |) by the induction hypothesis (77)

|X | ∈ F by Lemma 21, since X ∈ FINITE

T(|X |) ∈ F by Lemma 6

T“(X) ∈ FINITE by Lemma 4

{T(c)} ∈ FINITE by Lemma 9

T“(C) ∩ {T (c)} = ∅ by (76)

|T“(X | ∪ {T(c)})) = |T“(X |) + |{T(c|})) by Lemma 32

|T“(X | ∪ {T(c)})) = |T“(X |) + one by Lemma 7

|T“(X | ∪ {T(c)})) = T(|X |) + one by the induction hypothesis (77)

|T“(X | ∪ {T(c)})) = T(|X |) + T(one) since T(one) = one

|X | + one = |X ∪ {c}| by Lemma 32 since c 6∈ X

|X | + one ∈ F by Lemma 6

|T“(X) ∪ {T(c)})| = T(|X | + one) by Lemma 13

|T“(X) ∪ {T(c)}| = T(|X ∪ {c}|) by the preceding lines

|T“(X ∪ {c})| = T(|X ∪ {c}|) by (75)

That completes the induction step.

Lemma 34. Let X be a finite set of cardinals. Then T“(X) is finite.
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Proof. Let X be a finite set of cardinals. Then

X ⊆ FINITE by hypothesis

T“(X) ∈ FINITE by hypothesis

|T“(X |) = T(|X |) by Lemma 33 (78)

|X |) ∈ F by Lemma 21

T(|X |) ∈ F by Lemma 6 (79)

|T“(X | ∈ F by (78) and (79)

T“(X) ∈ |T“(X |) by Lemma 11

T“(X) ∈ FINITE by Lemma 4

11 Cartesian products

The Cartesian product of two sets is defined as usual; the definition is stratified, so it can be given in iNF.

But because ordered pairs raise the types by two, the cardinality of A×B is not the product of the cardinalities

of A and B, but instead it is the product of T2 of those cardinalities. In this section we provide a proof of this

fact, in the interest of setting down the fundamental facts about the theory of finite sets.

Lemma 1. Let X , Y , and Z be finite sets. Then

(X ∪ Y ) × Z = (X × Z) ∪ (Y × Z).

Proof. This follows in a few steps from extensionality, the definition of ×, and the logical fact that

(P ∨ Q) ∧ R ↔ (P ∧ R) ∨ (Q ∧ R).

Lemma 2. Let Y be a finite set and let a be any set. Then {a}×Y is finite. If κ = |Y | then T2κ = |{a}×Y |.

Proof. Consider the map f : P2
1 (Y ) → {a} × Y defined by

f = {〈{{y}}, 〈a, y〉〉 : y ∈ Y }.

The formula is stratified, giving y and a index 0, so 〈a, y〉 gets index 2, as does {{y}}. Y gets index 1. Since

the formula is stratified, f can be defined in iNF.

One then proves without any surprises that f is a similarity from P2
1 (Y ) to {a} × Y . We omit the

straightforward 196-line verification of that fact.

Then we have

P2
1 (Y ) ∼ {a} × Y since f is a similarity

P1(Y ) ∈ FINITE by Lemma 10

P2
1 (Y ) ∈ FINITE by Lemma 10

{a} × Y ∈ FINITE by Lemma 23

|P2
1 (Y )| = T

2κ by definition of T

|{a} × Y | = T
2κ by Lemma 8
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Lemma 3. Let X and Y be finite sets. Then X × Y is finite. Moreover, if κ = |X | and µ = |Y |, then

T
2(κ) · T2(µ) = |X × Y |.

Remarks. Without T2, the formula is not stratified. It is not necessary to assume that (T2κ) ·T2(µ) ∈ F. That

will, of course, be a consequence, by Lemma 21.

Proof. The formula to be proved is

X ∈ FINITE → ∀Y ∈ FINITE X × Y ∈ FINITE

That formula (and the hypotheses listed before it) are stratified, giving X and Y index 1; then X × Y gets

index 3, |X × Y | gets index 4, κ = |X | gets index 2, and T2(κ) gets index 4; since multiplication is a function,

the whole left-hand side gets index 4. FINITE is just parameter. Therefore we may proceed by induction on

finite sets X .

Base case. We have to show ∅ × Y ∈ FINITE. One shows ∅ × Y = ∅ using the definition of ×, and then

∅ ∈ FINITE by Lemma 6.

Induction step. Assume X is finite and a 6∈ X . The induction hypothesis is

∀Y ∈ FINITE (X × Y ∈ FINITE) (80)

Assume X ∪ {a} ∈ FINITE. We have to prove (X ∪ {a}) × Y ∈ FINITE. We have

X ∈ FINITE by hypothesis

X × Y ∈ FINITE by the induction hypothesis (80)

{a} × Y ∈ FINITE by Lemma 2

(X ∪ {a}) × Y = (X × Y ) ∪ ({a} × Y ) by Lemma 1

(X × Y ) ∩ ({a} × Y ) = ∅ since a 6∈ X

(X ∪ Y ) ∪ ({a} × Y ) ∈ FINITE by Lemma 11

(X ∪ {a}) × Y ∈ FINITE by the preceding lines

That completes the induction step.

Lemma 4. Let X and Y be finite sets. If κ = |X | and µ = |Y |, then

T
2(κ) · T2(µ) = |X × Y |.

Remarks. Without T2, the formula is not stratified. It is not necessary to assume that (T2κ) ·T2(µ) ∈ F. That

will, of course, be a consequence, by Lemma 21.

Proof. By induction on finite sets, like Lemma 3. We omit the proof, since we never use this lemma. It is

included only because it illustrates the general situation that arises from using Kuratowski pairing, which

increases the type.

12 Onto and one-to-one for maps between finite sets

In this section, we prove the well-known theorems that for maps f from a finite set X to itself, f is one-

to-one if it is onto, and vice-versa. These theorems are somewhat more difficult to prove constructively than

classically, but they are provable.
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In treating this subject rigorously one has to distinguish the relevant concepts precisely. Namely, we have

f : X → Y

Rel(f)

f ∈ FUNC

oneone(f, X, Y )

Rel(f) means that all the members of f are ordered pairs. f ∈ FUNC means that two ordered pairs in f with

the same first member have the same second member. (Nothing is said about possible members of f that are

not ordered pairs.) f : X → Y means that if x ∈ X , there is a unique y such that 〈x, y〉 ∈ f and that y is in Y .

(But nothing is said about 〈x, y〉 ∈ f with x 6∈ X .) “f is one-to-one from X to Y ”, or oneone(f, X, Y ), means

f : X → Y and in addition, if 〈x, y〉 ∈ f and 〈u, y〉 ∈ f then x = u, and if y ∈ Y then x ∈ X . (So x = u does

not require y ∈ Y or x ∈ X .) In particular, f : X → Y does not require domX ⊆ X , so the identity function

maps X to X for every X ; but the identity function (on the universe) has to be restricted to X before it is

one-to-one.

Definition 12.1. f is a permutation of a finite set X if and only if f : X → X , and Rel(f) and f ∈ FUNC,

and dom(f) ⊆ X , and f is both one-to-one and onto from X to X .

In this section we will prove that either one of the conditions “one-to-one” and “onto” implies the other, if

all the other conditions are assumed.

Remark. We do not need to specify range(f) ⊆ X , because that follows from dom(f) ⊆ X and f : X → X .

The reader can check that none of the conditions in the definition are superfluous.

Lemma 2. Let A and B be finite sets, and let f be a function with domain A, and f : A → B. Then f is

finite.

Proof. By induction on finite sets A we prove that for all finite sets B, if the domain of f is A and f : A → B,

then f is finite.

Base case. A function with domain ∅ is the empty function, which is finite.

Induction step. Let A and B be finite sets, and let c 6∈ A, and suppose f : A ∪ {c} → B. Then

〈c, y〉 ∈ f for some y ∈ B

Let g := f − {〈c, y〉}. One can verify that g : A → B and the domain of g is A.11 Then by the induction

hypothesis, g is finite. Since A and B are finite, equality on A and B is decidable, so any member of f is either

equal to 〈c, y〉 or not. Therefore

f = g ∪ {〈c, y〉}.

Since g is finite and {〈c, y〉} 6∈ f , f is also finite.

Lemma 3 (Decidable image). Let X and Y be finite sets. Let f : X → Y and suppose the domain of f is

X . Then the set P defined by

f(X) = {y ∈ Y : ∃x ∈ X 〈x, y〉 ∈ f}

is a decidable subset of Y .

11 Formalizing this sort of lemma makes one appreciate the informal functional notation; this lemma took 330 lines of Lean and
several hours. I changed “One can easily verify” to the present “One can verify.”
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Proof. Let y ∈ X . Define

Z := {x ∈ X : ∃y ∈ Y (〈x, y〉 ∈ f)}.

The formula is stratified, giving x and y index 0, f index 3, and X index 1. Therefore the definition is legal.

Then

f ⊆ X × Y since dom(f) = X

f ∈ FINITE by Lemma 2

X ∈ DECIDABLE by Lemma 3

X × Y ∈ FINITE by Lemma 3

f is a separable relation on X by Lemma 18

Z ∈ FINITE by Lemma 21

Z = ∅ ∨ ∃x (x ∈ Z) by Lemma 4

Putting in the definition of Z, we have the formula in the conclusion of the lemma.

Theorem 12.4. Let X be a finite set, and let f : X → X be a one-to-one function. Then f is onto.

Proof. By induction on finite sets, we prove that if f : X → X is one-to-one, then f is onto. By Lemma 3, X

has decidable equality.

Base case: The only function defined on the empty set is the empty function, which is both one-to-one and

onto.

Induction step: Let X = B ∪ {a}, where a 6∈ B, and B is finite. Suppose f : X → X is one-to-one. We

have to prove

∀y ∈ X ∃x ∈ X (〈x, y〉 ∈ f) (81)

By Lemma 3, a ∈ range(f) ∨ a 6∈ range(f). Explicitly,

∃x ∈ X (〈x, a〉 ∈ f) ∨ ¬ ∃x ∈ X (〈x, a〉 ∈ f).

We argue by cases accordingly.

Case 1, ∃x ∈ X (〈x, a〉 ∈ f). Fix c such that c ∈ X and 〈c, a〉 ∈ f . Since X has decidable equality, we have

c = a ∨ c 6= a. We argue by cases.

Case 1a, c = a. Then f : B → B. Let g be f restricted to B. Then g is one-to-one, since f is one-to-one.

By the induction hypothesis, g : B → B is onto. Now let y ∈ X . Then y = a ∨ y ∈ B. If y = a, then 〈a, a〉 ∈ f .

If y ∈ B, then since g is onto, there exists x ∈ B with 〈x, y〉 ∈ B. Then 〈x, y〉 ∈ f . That completes Case 1a.

Case 1b, c 6= a. Since f : X → X , there exists b ∈ X such that 〈a, b〉 ∈ f . Then a 6= b, since 〈c, a〉 ∈ f and

〈a, b〉 ∈ f , so if a = b then 〈a, a〉 ∈ f ; then since f is one-to-one we have a = c, contradiction. Define

g := (f − {〈c, a〉} − 〈a, b〉) ∪ {〈c, b〉}.

We have Rel(g), since by hypothesis Rel(f). I say dom(g) = B. By extensionality, it suffices to show

∃y (〈t, y〉 ∈ g) ↔ t ∈ B (82)

Left to right: Assume 〈t, y〉 ∈ g. Then

(〈t, y〉 ∈ f ∧ 〈t, y〉 6= 〈c, a〉 ∧ 〈t, y〉 6= 〈a, b〉) ∨ (t = c ∧ y = b).



74 Michael Beeson

If the second disjunct holds, then t = c, and c ∈ X but c 6= a, so c ∈ B; so t ∈ B. Therefore we may assume

the first disjunct holds:

(〈t, y〉 ∈ f ∧ 〈t, y〉 6= 〈c, a〉 ∧ 〈t, y〉 6= 〈a, b〉).

Then t ∈ X since dom(f) = X . Since 〈t, y〉 6= 〈a, b〉, we have y 6= b. Since 〈a, b〉 ∈ f and 〈t, y〉 ∈ f it follows

that t 6= a. Since X = B ∪ {a}, we have t ∈ B. That completes the left-to-right direction of (82).

Right to left. Suppose t ∈ B. Since domf = X and B ⊆ X , there exists z such that 〈t, z〉 ∈ f . Unless t = c

or t = a, we have 〈t, z〉 ∈ g. If t = c we can take y = b. Since t ∈ B we do not have t = a. That completes the

proof of (82). That completes the proof that dom(g) = B.

Now I say that g : B → B. Suppose x ∈ B. We must show there exists y with 〈x, y〉 ∈ g. Since f : X → X ,

there exists y ∈ X such that 〈x, y〉 ∈ f . Then x = c ∨ x 6= c. If x 6= c then 〈x, y〉 ∈ g. If x = c then 〈x, b〉 ∈ g.

That completes the proof that ∃y (〈x, y〉 ∈ g). We must also show that if 〈x, y〉 ∈ g and 〈x, z〉 ∈ g then y = z.

If x 6= c then 〈x, y〉 ∈ f and 〈x, z〉 ∈ f , so y = z. If x = c then y = b and z = b, so y = z. That completes the

proof that g : B → B.

Now I say that g is one-to-one. Suppose g(u) = g(v). If u 6= c and v 6= c, then g(u) = f(u) and g(v) = f(v),

so u = v since f is one-to-one. If u = c and v 6= c then g(u) = b. Since v 6= c, g(v) = f(v) = b. Since f is

one-to-one, v = a. But v 6∈ B, so 〈v, b〉 6∈ g, since dom(g) = B. Similarly if v = c and u 6= c. That completes

the proof that g is one-to-one.

By the induction hypothesis, g is onto. Now I say that f is onto. Let y ∈ X . Then if y = a, we have

〈c, y〉 ∈ f . If y = b we have 〈a, y〉 ∈ f . If y 6= a and y 6= b, then y = g(x) = f(x) for some x. Since X has

decidable equality, these cases are exhaustive. That completes Case 1b.

Case 2, ¬ ∃x ∈ X (〈x, a〉 ∈ f). Let g be f restricted to B. Then Rel(g), and dom(g) = B, and g is one-to-

one, and g : B → B. Then by the induction hypothesis, g is onto. Since f : X → X , there exists some b ∈ X

such that 〈a, b〉 ∈ f . By hypothesis b 6= a. Then b ∈ B. Since g is onto, there exists x ∈ B such that 〈x, b〉 ∈ g.

Then 〈x, b〉 ∈ f . Since f is one-to-one, we have x = a. But x ∈ B, while a 6∈ B. That contradiction completes

Case 2.

Lemma 5. Let B ∈ FINITE and a 6∈ B. Then |B ∪ {a}| = (|B|)+.

Proof. We have

B ∈ |B| by Lemma 11

B ∪ {a} ∈ |B ∪ {a}| by Lemma 11

B ∪ {a} ∈ (|B|)+ by definition of successor

B ∪ {a} ∈ FINITE by Lemma 7

|B ∪ {a}| ∈ F by Lemma 21

|B| ∈ F by Lemma 21

(|B|)+ ∈ F by Lemma 19

B ∪ {a} ∈ |B ∪ {a}| ∩ (|B|)+ by the definition of intersection

|B ∪ {a}| = (|B|)+ by Lemma 24

Lemma 6. Let m, n ∈ F and m + n ≤ m+ and m + n ∈ F and n 6= zero. Then n = one.
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Proof.

n = r+ for some r ∈ F, by Lemma 17

m + r+ ≤ m+ since m + n ≤ m+ and n = r+

a ∈ m + n ∧ b ∈ m+ for some a and b, by definition of addition

m+ ∈ F by Lemma 19

m + r+ + k = m+ for some k ∈ F, by Lemma 22

(m + r + k)+ = m+ by Lemma 2

m + r ∈ F by Lemma 8

m + r + k+ = m+ by Lemma 2

m + r + k+ ∈ F since m + r + k+ = m+ ∈ F

m + r + k ∈ F by Lemma 9

m + r + k = m by Lemma 11

r + k + m = zero + m by Lemma 2

m + r ∈ F ∧ r + k ∈ F by Lemm 7

r + k + m ∈ F by commutativity and associativity, since m + r + k ∈ F

r + k = zero by Lemma 16

(m + r)+ ≤ m+ by Lemma 2

m + r+ ∈ F since m + n ∈ F

m + r ∈ F by Lemma 9

m + r = m by Lemma 11

m + r = m + zero by Lemma 2

r = zero by Lemma 16

n = r+ = zero
+ = one since one = zero+

r = zero by Lemma 27

r+ = one by the definition of one

n = one since n = r+

Lemma 7. Let X ∈ FINITE and let Z be a separable subset of X . Then

|Z| ≤ |X |.

Proof. We have

|X | ∈ F by Lemma 21

Z ∈ FINITE by Lemma 19

|Z| ∈ F by Lemma 21

X ∈ |X | by Lemma 11

Z ∈ |Z| by Lemma 11

|Z| ≤ |X | by the definition of ≤
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Theorem 12.8. Let X be a finite set, and let f : X → X be onto, with dom(f) ⊆ X . Then f is one-to-one.

Proof. We prove the more general fact that if X and Y are finite sets with |X | ≤ |Y |, and f : X → Y is onto,

then f is one-to-one. (The theorem follows by taking Y = X). More explicitly, we will prove by induction on

finite sets Y that

∀Y ∈ FINITE ∀X ∈ FINITE (|X | ≤ |Y | → ∀f (f ∈ FUNC

→ Rel(f) → dom(f) ⊆ X

→ ∀x ∈ X ∃y ∈ Y (〈x, y〉 ∈ f)

→ ∀y ∈ Y ∃x ∈ X (〈x, y〉 ∈ f)

→ ∀y ∈ Y ∀x, z ∈ X (〈x, y〉 ∈ f → 〈z, y〉 ∈ f → x = z)))

The formula is stratified, giving x, y, z index 0, f index 3, X and Y index 1, and |X | and |Y | index 2.

FUNC and FINITE are parameters; Rel(f) is stratified giving f index 3; dom(f) ⊆ X can be expressed as

∀x, y (〈x, y〉 ∈ f → x ∈ X), which is stratified. Therefore we may proceed by induction on finite sets Y .

Base case, Y = ∅. Then (in the last line) y ∈ Y is impossible, so the last line holds if the previous lines

are assumed. That completes the base case.

Induction step, Y = B ∪ {a} with a 6∈ B and B ∈ FINITE. Suppose X ∈ FINITE, and f : X → Y is onto,

and f ∈ FUNC and Rel(f) and dom(f) ⊆ X . We must prove f : X → Y is one-to-one. Define

Z := {x ∈ X : 〈x, a〉 ∈ f}. (83)

The formula is stratified, giving x and a index 0 and f index 3, so the definition is legal. Since f is onto, Z is

inhabited. I say that Z is a separable subset of X . That is,

∀x ∈ X (〈x, a〉 ∈ f ∨ 〈x, a〉 6∈ f). (84)

To prove that, let x ∈ X . Since f : X → Y , there exists y ∈ Y with 〈x, y〉 ∈ f . Since f ∈ FUNC, we have

〈x, a〉 ∈ f ↔ y = a. Since Y is finite, we have y = a ∨ y 6= a by Lemma 3. That completes the proof of (84).

Then by Lemma 19, Z ∈ FINITE and X − Z ∈ FINITE.

Let g be f restricted to X − Z. Then g : X − Z → B and g is onto B. I say that

|X − Z| 6= |X | (85)

To prove that, assume |X − Z| = |X |. Then

|X − Z| ∈ F by Lemma 21

|X | ∈ F by Lemma 21

X ∼ X − Z by Lemma 9

u ∈ Z for some u ∈ X , since f is onto Y

X − Z ⊆ X by the definition of Z

X 6= X − Z since u 6∈ X − Z but u ∈ X

Therefore X is similar to a proper subset of X . Then by Definition 3.23, X is infinite. Then by Theorem 3.24,

X is not finite. But that contradicts the hypothesis. That completes the proof of (85).
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Now I say that |X − Z| ≤ |B|. To prove that:

|X − Z| ≤ |X | by Lemma 7

|X − Z| < |X | by (85) and the definition of <

|X | ≤ |B ∪ {a}| by hypothesis

|B ∪ {a}| = (|B|)+ since a 6∈ B

|X − Z| < |B|+ by the previous two lines

|X − Z| ≤ |B| by Lemma 6

Therefore we can apply the induction hypothesis to g. Hence g : X − Z → B is one-to-one. Therefore g is a

similarity. Then

|X − Z| = |B| by Lemma 9 and ten omitted steps

|X | = |X − Z| + |Z| by Lemma 15

|X | = |B| + |Z| by the previous two lines

|X | ≤ |Y | by hypothesis

|B| + |Z| ≤ |Y | by the previous two lines

|Y | = |B|+ since Y = B ∪ {a} and a 6∈ B

|B| + |Z| ≤ |B|+ by the previous two lines

|Z| = one by Lemma 6

By Lemma 5, Z is a unit class {c} for some c. By (83),

∀x (〈x, a〉 ∈ f ↔ x = c).

I say that f is one-to-one. To prove that, let u, v ∈ X and 〈u, y〉 ∈ f and 〈v, y〉 ∈ f . We must prove u = v.

Since Y has decidable equality, we have y = a ∨ y 6= a. We argue by cases accordingly.

Case 1, y = a. Then u ∈ Z and v ∈ Z. Then u = c and v = c, so u = v. That completes Case 1.

Case 2, y 6= a. Then u 6∈ Z and v 6∈ Z, so 〈u, y〉 ∈ g and 〈v, y〉 ∈ g. Since g is one-to-one, we have u = v as

desired. That completes Case 2. That completes the induction step.

Theorem 12.9. Let X and Y be finite sets, and suppose f : X → Y is onto, and the domain of f is X .

Then |Y | ≤ |X |.

Proof. By induction on finite sets X , we prove the theorem for all Y .

Base case. If f : ∅ → Y has domain ∅ and is onto Y then Y = ∅, so

|X | = |Y | = |∅| = zero.

Induction step. Suppose c 6∈ X and f has domain X ∪ {c}, and f : X ∪ {c} → Y is onto. Let g be f restricted

to X , which is conveniently defined as f ∩ X × Y . Then the domain of g is exactly X .

We have f : X ∪ {c} → Y , from which it follows in a few steps that also g : X → Y . Then by Lemma 3, the

image g(X) of X under g is a decidable subset of Y . (That lemma requires that the domain of g be exactly

X , not larger, which is why we had to use g instead of f .) That is,

(∃x ∈ X g(x) = f(c)) ∨ ¬ ∃x ∈ X g(x) = f(c).

We argue by cases, as justified by that disjunction.
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Case 1, ∃x ∈ X g(x) = f(c). Then g : X → Y is onto. Then

|Y | ≤ |X | by the induction hypothesis

|X | < |X |+ by Lemma 26

|X |+ = |X ∪ {c}| by Lemma 13

|Y | ≤ |X ∪ {c}| by the preceding lines

That completes Case 1.

Case 2, ¬ ∃x ∈ X g(x) = f(c). Let t = f(c). Then g : X → Y − {t} is onto. We have

Y − {t} ∈ FINITE by Lemma 31

g : X → Y − {t} and g is onto as one can check

and the domain of g is X . Then by the induction hypothesis,

|Y − {t}| ≤ |X |.

We want to take the successor of both sides, but to do that we have to check that those successors are inhabited.

Y has decidable equality by Lemma 3

(Y − {t}) ∪ {t} = Y by decidable equality on Y

∃u (u ∈ |X |+) namely u = X ∪ {c}

∃u (u ∈ |Y − {t}|+) namely u = (Y − {t}) ∪ {t} = Y

|X |+ ∈ F by Lemma 19

|Y − {t}|+ ∈ F by Lemma 19

Now we can take the successors:

|Y − {t}|+ ≤ |X |+ by Lemma 10 (86)

Y ∈ |Y | by Lemma 11

(Y − {t}) ∪ {t} ∈ |Y − {t}|+ by definition of successor

Y ∈ |Y − {t}|+ since (Y − {t}) ∪ {t} = Y

|Y − {t}|+ = |Y | by Lemma 24

|Y | ≤ |X |+ by (86) and the preceding line

|X ∪ {c}| = |X |+ by Lemma 13

|Y | ≤ |X ∪ {c}| since |Y | ≤ |X |+ = |X ∪ {c}|

That completes the induction step.

Lemma 10. Let A and B be finite sets, and let f be a function mapping A onto B. Then |B| ≤ |A|.

Proof. We may assume without loss of generality that A is the domain of f . Then

f ∈ FINITE by Lemma 2

A × B ∈ FINITE by Lemma 3

f ∈ FINITE by Lemma 2

f ∈ Ps(A × B) by Lemma 18
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That is, f is a decidable relation on A × B. Define

Z := {s ∈ B : ∃b ∈ A (〈b, s〉 ∈ f).

By Lemma 3, since f is a decidable relation on A × B, Z is a separable subset of B. That is,

∀t ∈ B (t ∈ Z ∨ t 6∈ Z) (87)

Now we will proceed by induction on finite sets A to prove that for all finite sets B and all g : A → B onto,

|B| ≤ |A|.

Base case: If g : ∅ → B is onto, then B = ∅, so |A| = |B| = |∅|.

Induction step: Let g : A ∪ {c} → B be onto, where c 6∈ A. Let t = g(c) and let f = g − {〈c, t〉}. Then

f : A → B. By (87), t ∈ Z ∨ t 6∈ Z. That is,

∃b ∈ A (〈b, t〉 ∈ f) ∨ ¬∃b ∈ A (〈b, t〉 ∈ f).

We may therefore argue by these two cases.

Case 1. If there exists b ∈ A with f(b) = t, then f : A → B is onto, so by the induction hypothesis

|B| ≤ |A| < (|A|)+ = |A ∪ c|

as desired.

Case 2. If there does not exist such a b then f : A → (B − {t}) is onto. Also B − {t} is a finite set, by

Lemma 20. Hence by the induction hypothesis, |B − {t}| ≤ |A|. Then

B = (B − {t}) ∪ {t}

since equality on the finite set B is decidable, so

|B| = |B − {t}|+

|B − {t}|+ ≤ (|A|)+ by Lemma 10

|B| ≤ (|A|)+ by the previous two lines

|A|+ = |A ∪ {c}| by Lemma 13, since c 6∈ A

|B| ≤ |A ∪ {c}| by the previous two lines

That completes Case 2, and that completes the induction step.

Lemma 11. Let X be a finite set and let a and b be finite subsets of X . Then a ∪ b is finite.

Remark. We cannot prove the union of two finite sets is finite without some additional hypothesis, for consider

{p} ∪ {q}, where we do not know whether p = q or not, e.g., p = ∅ and q = {x : x = ∅ ∧ P }, where P is

Goldbach’s conjecture or the Riemann hypothesis. Does the union contain one or two elements?

Proof. We have

a ∈ Ps(X) by Lemma 18

b ∈ Ps(X) by Lemma 18

∀x ∈ X (x ∈ a ∨ x 6∈ a) by the definition of Ps(X)

∀x ∈ X (x ∈ b ∨ x 6∈ b) by the definition of Ps(X)

∀x ∈ X (x ∈ a ∪ b ∨ x 6∈ a ∪ b) by the preceding lines and logic

a ∪ b ⊂ X by the definition of ⊆

a ∪ b ∈ Ps(X) by the definition of Ps(X)

a ∪ b ∈ FINITE by Lemma 19
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Lemma 12. Let X be a finite set and let y be a finite subset of Ps(X) (that is, the members of y are

separable subsets of X). Then the union of y is a finite set. That is,
⋃

y ∈ FINITE.

Proof. By induction on finite sets y (for fixed X).

Base case. When y = ∅, the union of y is also ∅, which is finite.

Induction step. Suppose c 6∈ y and y ∪ {c} ⊆ Ps(X). Then we have (in a few steps from the definitions of
⋃

and ∪)

⋃

(y ∪ {c}) =
(

⋃

y
)

∪ c (88)

Then
⋃

y ∈ FINITE by the induction hypothesis

c ∈ Ps(X) since y ∪ {c} ⊆ Ps(X)

c ∈ FINITE by Lemma 19

y ⊆ Ps(X) since y ∪ {c} ⊆ Ps(X)
⋃

y ⊆ X since y ⊆ Ps(X)
⋃

y ∪ c ∈ FINITE by Lemma 11
⋃

(y ∪ {c}) ∈ FINITE by (88)

That completes the induction step.

13 The initial segments of F

Next we begin to investigate the possible cardinalities of finite sets. The set of integers less than a given

integer is a canonical example of a finite set.

Definition 13.1. For k ∈ F, we define

J(k) = {x ∈ F : x < k}

J̄(k) = {x ∈ F : x ≤ k}.

The definition is stratified, so J(k) can be defined, but J(k) gets index 1 if x gets index 0, so J is not

definable as a function on F.

Lemma 2. For each m ∈ F, if m+ ∈ F then

J(m+) = J(m) ∪ {m}

J̄(m+) = J̄(m) ∪ {m+}.

Proof. By the definitions of J and J̄, and the fact that for x ∈ F we have

x < m+ ↔ x < m ∨ x = m,

by Lemma 33.
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Lemma 3. For m ∈ F, J(m) and J̄(m) are finite sets.

Proof. By induction on m. The formulas to be proved, namely

∀m (m ∈ F → J(m) ∈ FINITE)

and similarly for J̄, are stratified, giving m index 0. F and FINITE are parameters and do not require an index.

Base case, m = zero. Then J(zero) = ∅, by Lemma 34. By Lemma 6, ∅ ∈ FINITE. That completes the

base case for J. For J̄ , we have x ≤ zero ↔ x = zero, so J̄(zero) = {zero}, which is finite by Lemma 7. That

completes the base case.

Induction step. Suppose m ∈ F and m+ is inhabited. By induction hypothesis, J(m) and J̄(m) are finite.

By Lemma 2, J(m+) = J(m) ∪ {m}, so by Lemma 7, J(m+) ∈ FINITE. Similarly for J̄(m). That completes

the induction step.

Lemma 4. Suppose m ∈ F. Then |J(m|) = T2m.

Proof. The formula of the lemma is stratified, giving m index 0, since then T2m gets index 2, while J(m) gets

index 1 and |J(m|) gets index 2, so the two sides of the equation both get index 2. Therefore the lemma may

be proved by induction.

Base case: J(zero) = ∅, by Lemma 29. We have |∅| = zero, by Lemma 11 and the definition of zero. By

Lemma 9, we have T2zero = zero. That completes the base case.

Induction step: We have

J(m+) = J(m) ∪ {m+} by Lemma 2

|J(m|) = T
2m by the induction hypothesis

J(m) ∈ T
2m by Lemma 11

∃u (u ∈ m+) assumed for proof by induction

m+ ∈ F by Lemma 19

m 6∈ J(m) by definition of J(m)

J(m) ∪ {m} ∈ (T2m)+ by definition of successor

(Tm)+ = T(m+) by Lemma 8

T(m+) ∈ F by Lemma 6

(Tm)+ ∈ F by the preceding two lines

∃u (u ∈ (Tm)+) by Lemma 4.7

(T2m)+ = T
2(m+) by Lemma 8

J(m+) ∈ T
2(m+) by the preceding lines

J(m+) ∈ |J(m+|) by Lemma 11

J(m+) ∈ T
2(m+) ∩ |J(m+|) by definition of intersection

|J(m+|) = T
2(m+) by Lemma 4.7

That completes the induction step.

14 Rosser’s Counting Axiom

Rosser introduced the “counting axiom”, which is

m ∈ F → J(m) ∈ m.
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(See [16], p. 485.) In view of Lemma 4, that is equivalent to

m ∈ F → Tm = m.

Since 2Tm is always defined for m ∈ F, the counting axiom implies that 2m is always defined for m ∈ F. In

particular then the set of iterated powers of 2 starting from zero is an infinite set. That is the conclusion of

Specker’s proof (but without assuming the counting axiom). The point here is that the counting axiom elimi-

nates the need to constructivize Specker’s proof: if we assume it, there remain only surmountable difficulties

to interpreting HA in iNF. But the counting axiom is stronger than NF [13], so this observation does not help

with the problem of finiteness in iNF.

15 Infinity in intuitionistic NF

We use Dedekind’s definition, that a set is infinite if it is similar to a proper subset. The “axiom of infinity”

says there is an infinite set. Before going further, we remind the reader that with intuitionistic logic, “not

finite” does not imply “infinite”. There are two obvious candidates for infinite sets: V and F. Specker showed

that, with classical logic, V is not finite; we will discuss that proof below.

If F is finite, then by Lemma 35, there is a maximal finite cardinal m. Then by Lemma 4.7, m has a

member U , and by Lemma 21, U is finite. If we could find some c 6∈ U , then m+ would be inhabited and hence

in F, contradicting the maximality of m. Therefore ∀x ¬¬ (x ∈ U); that is, V is the double complement of U .

However unlikely this may seem, nobody has yet been able to find anything contradictory about it, without

using classical logic. The following lemma states this remarkable result, so we can cite it below.

Lemma 1. Suppose m is a maximal element of F, and U ∈ m. Then ∀x ¬¬ (x ∈ U).

Lemma 2. Let m is a maximal element of F and n ∈ F. Then Tm < n implies 2n = ∅.

Proof. Suppose Tm < n and 2n is inhabited; we must derive a contradiction.

P1(u) ∈ n for some u, by definition of exponentiation

u ∈ |u| by Lemma 11

P1(u) ∈ T(|u|) by definition of T

Tn = T(|u|) by Lemma 24

Tm < T(|u|) since Tm < n

m < |u| by Lemma 20

But that contradicts the maximality of m.

Lemma 3. If V is infinite then F is not finite.

Remark. Note that Specker’s proof shows V is not finite, but not that V is infinite, which is stronger.

Proof. Suppose V is infinite and F is finite, with maximal integer m and U ∈ m and f : V → V with c not in

the range of f . Then

∀x ¬¬ x ∈ U since U ∈ m

∀x (x ∈ U → ¬¬ (f(x) ∈ U)) by the previous line

¬¬∀x (x ∈ U → f(x) ∈ U) by Lemma 28

¬¬ (f : U → U) by definition of f : U → U

¬¬ (c ∈ U) since ∀x ¬¬ x ∈ U

That implies that U is not not infinite. But since U is finite, it is not infinite, by Theorem 3.24.
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Lemma 4. With classical logic, if V is not finite then F is not finite.

Proof. Suppose V is not finite and F is finite. Let m be the maximal integer and U ∈ m. Then U is finite and

∀x ¬¬ (x ∈ U). Then by classical logic, V = U , contradiction, since U is finite and V is not.

But constructively, the situation is more complicated: we can prove V is not finite, but it is an open problem

whether F is finite or not.

To prove F is infinite, we would hope to prove that successor maps F into F, so it is of some interest whether

that follows from the apparently weaker proposition that F is not finite. We cannot answer that question: it

is an open problem whether

F ∈ FINITE → ∀x ∈ F (x+ ∈ F).

In other words, as far as we know, it might be that ∀ U ∈ FINITE (V − U 6= ∅), but nevertheless we cannot

prove ∀ U ∈ FINITE ∃x (x ∈ V − U). The former is equivalent to successor being nonempty on F, the latter

to successor being inhabited on F. We cannot shift the double negation left through ¬¬. (We shall see below

that FINITE is not finite, so Lemma 28 is no use here.)

Nevertheless, if we did somehow prove that F is finite, we could prove that Heyting’s arithmetic HA is

interpretable in iNF. Here is how we would do that:

Recall that F is the least set containing zero and closed under inhabited successor. Now define H to be the

least set containing zero and closed under nonempty successor. Then we can prove things using H-induction,

in which at the induction step one is allowed to assume x+ 6= ∅, instead of the usual ∃u (u ∈ x+). Assume

that F is not finite. We do not give all the details, but here is a sketch: First we prove F ⊆ H, by F-induction.

Then by H-induction, we prove ∀x ∈ H (¬¬ x ∈ F), then ∅ 6∈ H; then that H is closed under successor and has

decidable equality, and that successor is one to one on H. Then we could use H as the interpretation of the

variables of HA. But that would still not prove that F is closed under successor!

In the sea of open problems, there is an island: the theorem of Specker that V is not finite. This theorem,

proved classically in [17], is widely acknowledged as constructively correct, for reasons I will now explain. Let

P be any stratified formula and let XP = {x ∈ {∅} : P }. Then XP is zero or ∅ according as P or ¬P . If

V is finite then V has decidable equality, so by deciding whether XP = ∅ or not, we decide P ∨ ¬P . Then,

folklore has it, Specker’s proof of infinity uses classical logic only for stratified formulas, so it will go through

under the assumption that V is finite, and produce a contradiction.

While this metamathematical argument is appealing, it still requires checking the details of Specker’s proof

to ensure that classical logic is used only for stratified formulas. I studied Specker’s proof, trying to make

it constructive, and using Lean to check my proofs. Assume there is a maximal integer m. Then m has a

member U , which is “unenlargeable”, as discussed above. I thought that perhaps U could be made to play the

role that V plays in Specker’s proof. That plan did not succeed, unless we assume V is finite, in which case

Specker’s proof does provide a Lean-checkable proof that V is not finite. I chose not to present it here.12

Rosser, in an appendix to [16] (but not the first edition [15]), gave another proof that V is not finite, in

which Specker’s ideas are recognizable. Rosser proves V is not finite and then immediately concludes that F is

not finite, since classically m ∈ F and U ∈ m, U is finite so V− U is inhabited, so m+ is inhabited. The proof

that V is not finite might well be constructive. I did not check it in Lean, since I already checked Specker’s

proof in Lean.

Once we know that V is not finite, we can try to prove other sets are not finite. For example, FINITE is

not finite, as we shall prove soon.

Lemma 5. ∀x (x ∈ FINITE → x ∈ P1(V) ∨ x 6∈ P1(V)).

12 It is not very short; the details are in no doubt; it leads to an even lengthier discussion of the problem of infinity, but not to
a solution of that problem.
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Proof. A set x is a singleton if and only if |x| = one. That is,

∀x (x ∈ P1(V) ↔ |x| = one) by the definitions of P1 and one

Since equality on F is decidable, it is decidable whether a finite set is a singleton or not. Therefore

∀x (x ∈ FINITE → x ∈ P1(V) ∨ x 6∈ P1(V))

Lemma 6. FINITE is not finite.

Remark. This depends on the fact the V is not finite, which we do not list as a hypothesis, since it is a theorem,

even if the proof has not been presented here.

Proof. Assume FINITE is finite. We must derive a contradiction. We have

P1(V) ⊆ FINITE by Lemma 9

P1(V) ∈ Ps(FINITE) by Lemma 5

P1(V) ∈ FINITE by Lemma 19, since FINITE ∈ FINITE

V ∈ FINITE by Lemma 10

16 Conclusions

This paper lays the foundations for future studies of intuitionistic NF set theory iNF, by providing coherent

definitions for the basic concepts, including order, exponentiation, addition, finite sets, and T. The concept of

separability plays an important role in order and power set, and hence in exponentiation as well. The theory

presented here—if supplemented by a proof that the set of integers is not finite—would serve well as a basis for

formalizing constructive mathematics in the style of Bishop. These basic theorems will surely be both useful

and necessary for deeper investigations of the metamathematical properties of iNF. That subject has yet to

begin, as at present we cannot even show that the law of the excluded middle is not provable in iNF.
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