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Abstract.  NF set theory using intuitionistic logic is called iNF. We develop the theories of finite sets
and their power sets and mappings, finite cardinals and their ordering, cardinal exponentiation, addi-
tion, and multiplication. We follow Rosser and Specker with appropriate constructive modifications,
especially replacing “arbitrary subset” by “separable subset” in the definitions of exponentiation and
order. It is not known whether ¢{NF proves that the set of finite cardinals is infinite, so the whole
development must allow for the possibility that there is a maximum integer; arithmetical computa-
tions might “overflow” as in a computer or odometer, and theorems about them must be carefully
stated to allow for this possibility. The work presented here is intended as a substrate for further
investigations of {NF, including the development of Bishop-style constructive mathematics in iNF.

1 Introduction

Quine’s NF set theory is a first-order theory whose language contains only the binary predicate symbol €,
and whose axioms are two in number: extensionality and stratified comprehension. The definition of these
axioms will be reviewed below; full details can be found in [16]. Intuitionistic NF, or {NF| is the theory with the
same language and axioms as NF, but with intuitionistic logic instead of classical.! Here we intend to provide
a coherent infrastructure of definitions, theorems, and Lean-checked proofs on which further investigations can
be based.?

The “axiom” of infinity is a theorem of NF, proved by Rosser [14; 16] and Specker [17]. These proofs use
classical logic in an apparently essential way. It is still an open question whether iNF proves the existence of
an infinite set. The Stanford Encyclopedia of Philosophy article on NF says [6]

The only known proof (Specker’s) of the axiom of infinity in NF has too little constructive content
to allow a demonstration that iNF admits an implementation of Heyting arithmetic.

In attempting to determine whether the quoted statement is true, I found that I first needed to develop enough
basic mathematics in iINF to tackle Specker’s proof. That mathematical infrastructure is presented in this
paper.® The purpose of this development is to provide a basis on which one can:
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L 4NF is briefly mentioned in Forster’s thesis [8]; next mentioned in [4], [5], and [3], where the focus is on intuitionistic type

theories. The initial development of {NF may be in [7], which first called attention to the problem of interpreting HA in iNF.

2 The development of NF and its variants has been surveyed by Forster [9], and a comprehensive online bibliography of research

on set theories with a universal set is maintained by Holmes [11].

3 Eventually I came to the conclusion that the quoted statement is true; that is beyond the scope of this paper, but see a short

discussion near the end.
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e investigate iNF further;
e develop Bishop-style constructive mathematics in iNF
(after proving or assuming infinity).

The following questions about iNF remain open:*

o Is the set I of finite cardinals finite? Is it infinite?

e (Can one point to any specific instance of the law of the excluded middle that is not provable in iNF
(even assuming NF is consistent)?

e Is ¢NF consistent?

e Is there any double-negation interpretation from NF to iNF?

e Is Church’s thesis consistent with iNF? Markov’s principle?

o Is iNF closed under Church’s rule?

Regarding whether F is finite: For all we know, there might be a largest finite cardinal m, which would
contain a finite set U that is “unenlargeable”; in the sense that we cannot find any x that is not a member of
U. Classically, that would imply U = V|, which is a contradiction, since V is not finite. But intuitionistically,
it is an open question.

Each of the lemmas and theorems in this paper is provable in ¢{NF. An important reference for NF is
Rosser’s book [15; 16].5 But the logical apparatus of Rosser’s system includes a Hilbert-style epsilon-operator,
which is not compatible with an intuitionistic version, and also, we do not wish to assume the axiom of infinity.
Since all of Rosser’s results are obtained using classical logic, we cannot rely on Rosser.

It should be noted that the consistency of classical NF has been proved [12], and the proof has been checked
in Lean. This result implies, of course, that the subtheory iNF considered here is also consistent; but it is
otherwise not directly relevant.

Notational issues. There is no traditional, universally accepted notation for some of the notions central
to NF. Rosser [16] and Specker [17] are two of the original sources. Both of these were written prior to the
advent of TEX and KTEX, and for the most part were limited to characters found on a typewriter keyboard.
Forster [9] used different notation, making use of TEX. Now, however, keyboard characters are back in style,
because they are easier to use in computer proof-checking. Lean, for example, goes to great lengths to support
complicated typography—but one cannot search for those symbols, which is quite annoying.

I therefore used Specker’s notation when using Lean and in pre-publication versions of this paper; but the
referee asked me to change it, so I did. The following table compares the notational styles of Specker and this
paper. It may prove useful if anyone wants to compare this paper to Specker or Rosser, or to the Lean proofs,
or to readers who know one style or the other already.

Table 1: Notation

Specker  This paper

USC(z) Pi(x)
SSC(z) Pu(x)

SC(z)  Pl)
Ne(z) |z
A o)

Use of computer proof-checking. All the proofs in this paper have been checked in the proof assistant Lean.
Could there still be errors? The possible sources of error are

4 The terms used in these questions can be looked up in the index of [1].

5  The two editions are identical except for the Appendices added to the second edition, one of which contains Rosser’s proof of
infinity.
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e Use of an unstratified definition

e Lean proof and paper proof might not exactly correspond

e Lean might have smuggled in classical logic, i.e., used it without telling me.
e Perhaps the order of theorems in the paper is not strictly the logical order.

Regarding the smuggling: Lean’s underlying theorem is intuitionistic, but the library is classical, and even
though I didn’t use the library, and even though Lean experts helped me, the possibility theoretically exists.
Regarding the correspondence: if there are such problems, they are just typos. Regarding stratification: I
allowed the full comprehension axiom, but used only stratified instances. I used a computer script ez post facto
to check stratification.® Regarding the order of theorems: At least no lemma or theorem is cited before it is
proved. Of course in Lean, the logical order is enforced, but that is often not the best order for presentation.

The reader who is worried about errors in Lean has the option to forget it was ever mentioned, and just
read the proofs, which are here presented in complete human-readable detail.

Acknowledgements. Thanks to Thomas Forster for asking me (once a year for twenty years) about the
strength of ¢{NF. Thanks to Randall Holmes, Albert Visser, and Thomas Forster for many emails on this
subject. Thanks to the creators of the proof assistant Lean [2], which has enabled me to state with high
confidence that there are no errors in this paper. Thanks to the users of Lean who helped me acquire sufficient
expertise in using Lean by answering my questions, especially Mario Carneiro.

2 Axioms of NF, ordered pairs, and functions

NF has exactly two axioms: extensionality and stratified comprehension. The axiom of extensionality
says that two sets with the same elements are equal. The axiom schema of stratified comprehension says
that {x : p(x)} exists, if ¢ is a stratified formula. A formula is stratified, or stratifiable, if each of its
variables (both bound and free) can be assigned a non-negative integer (“index” or “type”) such that (i) in
every subformula 2 € y, y gets an index one greater than x gets, and (ii) every occurrence of each variable
gets the same index.

Thus, the “universe” V can be defined as

V={z:z=ua}

but the Russell set {z : z € x} cannot be defined.

We write (z,y) for the (Wiener-Kuratowski) ordered pair {{z}, {z,y}}. The ordered pair and the corre-
sponding projection functions are defined by stratified formulas. To wit, the formula that expresses z = (z,y)
is

uezeVweu(w=z)VVweu(w=zVw=y),

which is stratifiable. Note that the ordered pair gets an index 2 more than the indices of the paired elements.”
Then we have the basic property

Lemma 1. (z,y) = (a,b) <>z =a AN y=b.

Proof. Straightforward application of the definition and extensionality. We omit the approximately 70-step
proof. O

6 Originally I intended to use a finite axiomatization. But it is often quite complicated to derive simple definitions from a finite

axiomatization; and then one still has to worry if the finite axiomatization is really correct.

7 The axiom of infinity is needed to construct an ordered pair that does not raise the type level. See [16], p. 280.



4 Michael Beeson

As usual, a function is a univalent set of ordered pairs. We note that being a function in NF is a strong
condition. For example, {z} exists for every z, but the map = — {z} is not a function in NF, since to stratify
an expression involving ordered pairs, the elements 2 and y of (x,y) must be given the same index, while in
the example, {2} must get one higher index than x.

Because the ordered pair raises types by two levels, we define ordered triples by

Definition 2.2 (Ordered triples).

(@,y,2) = {{z,9), {{z}})-

Then a function of two variables is definable in ¢NF if its graph forms a set of ordered triples (x,y, f(x,y)).

We can conservatively add function symbols for binary union zUy and intersection zNy, union, intersection,
set difference  — y, and generally we can add a function symbol ¢, for any stratified formula ¢, so that
x € cy(y) ¢ ¢(z,y). For a detailed discussion of the logical underpinnings of this step, see [10]. Function
symbols for {z}, {z,y}, and (z,y) are also special cases of the c,; we can add these function symbols even
though the “functions” they denote are not functions in the sense that their graphs are definable in {NF. Thus
for example we have

Lemma 3. Forall z,u: v € {z} <> u=2x

Proof. This is the defining axiom for the function symbol {z}, which is really just {u : u = x}; that is, the
function symbol is ¢, where p(u,z) is u = . O

Lemma 4. Foralla,bz(x€a—b+ xcanx¢b).

Proof. This can be taken as the defining axiom for a — b; or it may be derived in a finite axiomatization from
other axioms. O

Lemma 5. For all z,y, {2} ={y} < z=1y.

Proof. Right to left is just equality substitution. Ad left to right: Suppose {z} = {y}. Then

u€ {a} < ue{y} by extensionality
U=T U=y by Lemma 3
rT=1y by equality axioms

Technical details about stratification

In practice we need to use stratified comprehension in the presence of function symbols and parameters;
the notion of stratification has to be extended to cover these situations. We define the notion of a formula ¢
being “stratified with respect to #”. The variables of p(x) are of three kinds: x (the “eigenvariable”), variables
other than z that occur only on the right of € (“parameters”), and all other variables. An assignment of
natural numbers (indices) to the variables that are not parameters is said to stratify ¢ with respect to x if
for each atomic formula z € y, y is assigned an index one larger than the index assigned to z. Note that the
assignment is to variables, rather than occurrences of variable, so every occurrence of z gets the same index.
Note also that parameters need not be assigned an index.

Now when terms are allowed, built up from constants and function symbols that are introduced by defi-
nitions, an assignment of indices must be extended from variables to terms. When we introduce a function
symbol, we must tell how to do this. For example, the ordered pair (x,y) must have z and y assigned the
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same index, and then the pair gets an index 2 greater. The singleton {2} must get an index one more than x,
and so on. Stratified comprehension in the extended language says that {z : ®(x)} exists, when ® is stratified
with respect to x. The set so defined will depend on any free variables of ® besides z, some of which may be
parameters and some not.

It is “well-known” that stratified comprehension, so defined, is conservative over NF, but it does not seem
to proved in the standard references on NF; and besides, we need that result for {NF as well. The algorithm in
[10] meets the need: it will unwind the function symbols in favor of their definitions, preserving stratification.
The confused reader is advised to work this out on paper for the example of the binary function symbol (z,y).

In our work, we repeatedly assert that certain formulas are stratifiable, and then we apply comprehension,
either directly or indirectly by using mathematical induction or induction on finite sets. The question then
arises of ensuring that only correctly stratified instances of comprehension are used. One approach is to use
a finite axiomatization of {NF. (It is easy to write one down following well-known examples for classical NF.)
But that just pushes the problem back to verifying the correctness of that axiomatization; moreover it is
technically difficult to reduce given particular instances of comprehension to a finite axiomatization. Instead,
we just made a list of each instance of comprehension that we needed. There were at some point 154 instances
of comprehension in that list (which includes more than just the instances used in this paper). The Lean
proof assistant does not check that those instances are stratified. If one is not satisfied with a manual check
of those 154 formulas, then one has to write a computer program to check that they are stratified. We did
write one and those 154 formulas passed; since this paper is being presented as human-readable, we rely here
on the human reader to check each stratification as it is presented; we shall not go into the technicalities of
computer-checking stratification.

Functions and functional notation

Definition 2.6. f: X — Y (“f maps X to Y”) means for every x € X there exists a unique y € Y such
that (z,y) € f. “f is a function” means

(zy € f AN (z,2)ef = y=2

The domain and range of f are defined as usual, so f is a function if and only if it maps its domain to its
range.

When f is a function, one writes f(x) for that unique y. It is time to justify that practice in the context
of iNF.® Here is how to do that. We introduce a function symbol Ap (with the idea that we will abbreviate
Ap(f,x) to f(x) informally).

Definition 2.7.
Ap(f,x) ={u:Jy(z,y) € f N uey}

It is legal to introduce Ap because it is a special case of a stratified comprehension term. One can actually
introduce the symbol Ap formally, or one can regard Ap as an informal abbreviation for the comprehension
term in the definition. Informally we are going to abbreviate Ap(f,x) by f(x) anyway, so Ap will be invisible
in the informal development anyway. This procedure is justified by the following lemma:

Lemma 8. If f is a function and (z,y) € f, then y = Ap(f, x).

8  Rosser’s version of classical NF has Hilbert-style choice operator, which gives us “some y such that (x,y) € f” But iNF does

not and cannot have such an operator, so a different formal treatment is needed.
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Proof. Suppose f is a function and (z,y) € f. We must prove y = Ap(f,z). By extensionality it suffices to
show that for all ¢,

tey < te Ap(f,x) (1)

Left to right: Suppose t € y. Then by the definition of Ap, we have t € Ap(f,x).

Right to left: Suppose t € Ap(f,x). Then by the definition of Ap, for some z we have (z,z) € f and ¢ € z.
Since f is a function, y = z. Then t € y. That completes the right-to-left direction. [l

One-to-one, onto, and similarities

The function f: X — Y is one-to-one if
yeY AN{x,y)ef—oaeX

and for x,z € X we have

If f: X — Y is one-to-one then we define

fil ={<y,x> : <$ay> € f}'

The definition of f~! can be given by a stratified formula, so it is legal in iNF.
Remark. We could also consider the notion of “weakly one-to-one”:

r,ye X N £y — f(x) # fy).

The two notions are not equivalent unless equality on X and Y is stable, meaning -——z =y — = = y. Since
equality on finite sets is decidable, the two notions do coincide on finite sets, but we need the stronger notion
in general, in particular, to make the notion of “similarity” in the next definition be an equivalence relation.
The point is that the stronger notion is needed for the following lemma.

Lemma 9. The inverse of a one-to-one function from X onto Y is a one-to-one function from Y onto X.
That is, if f: X — Y is one-to-one, then f~!':Y — X and f~! is one-to-one and onto.

Proof. Let f: X — Y be one-to-one and onto. Since f is one-to-one, for each y € Y there is a unique x such
that (z,y) € f. Then by definition of function, f~! : y — 2. Since f : X — Y, for each x € X there is a
unique y € Y such that (z,y) € f.

Isay f71:Y — X. Let y € Y. Since f is one-to-one, there exists a unique 2 € X such that (z,y) € f.
That is, (y,x) € f~1. Therefore f~!:Y — X, as claimed.

I say f~! is one-to-one from Y to X. Let # € X; since f : X — Y there is y € Y such that (z,y) € f.
Then (y,x) € f~1. Suppose also (z,x) € f~1 with z € Y. Then (z,z) € f. Since f : X — Y, we have x = z.
Therefore f~! is one-to-one, as claimed.

Isay f~! maps Y onto X. Let # € X. Let y = f(x). Then (z,y) € f. Then (y,z) € f~1. Therefore f~!
is onto, as claimed. O

Definition 2.10. The relation “z is similar to y” is defined by
x~y <« Af(f:x—y A [ is one-to-one and onto).
In that case, f is a similarity from z to y.

The defining formula is stratified giving x and y the same type, so the relation is definable in iNF.
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Lemma 11. The relation x ~ y is an equivalence relation.

Proof. Ad reflexivity: = ~ 2 because the identity map from z to z is one-to-one and onto.

Ad symmetry: Let o ~ y. Then there exists a one-to-one function f : x — y. By Lemma 9, there exists a
function f=!:y — x that is one-to-one and onto. Hence y ~ x. That completes the proof of symmetry.

Ad transitivity: Let x ~ y and y ~ z. Then there exist f and g such that f : x — y is one-to-one and
onto, and ¢ : y — z is one-to-one and onto. Then fog:x — z is one-to-one and onto. Therefore x ~ z. That
completes the proof of transitivity. O

Lemma 12. For all x,
T~ & r=J.

Proof. Left to right: suppose x ~ @. Let f : x — @ be a similarity. Suppose u € z. Then for some v,
(u,v) € fand v € @. But v ¢ @. Hence u ¢ x. Since u was arbitrary, z = &, as desired.

Right to left: Suppose x = &. We have to show @ ~ @. But @ : & — @ is a similarity. O

Lemma 13. aCb A bCa<+ra=0b.

Proof. By the definition of C and the axiom of extensionality. O

3 Finite sets

Definition 3.1. The set FINITE of finite sets is defined as the intersection of all X such that X contains the
empty set @ and

ueXNzdu—uU{z}eX.

The formula in the definition can be stratified by giving w index 1, z index 0, and X index 2, so the
definition can be given in {NF.

This definition was introduced in [5] as “N-finite.””
Definition 3.2. The set X has decidable equality if
Ve,y € X(x=yVa#y).
The class DECIDABLE is the class of all sets having decidable equality.
The formula defining decidable equality is stratified, so the class DECIDABLE can be proved to exist.
Lemma 3. Every finite set has decidable equality. That is, FINITE C DECIDABLE.

Proof. Let Z be the set of finite sets with decidable equality. I say that Z satisfies the closure conditions in the
definition of FINITE, Definition 3.1. The empty set has decidable equality, so the first condition holds. Now
suppose Y = X U {a}, where X € Z and a ¢ X. We must showY € Z. Let 2,y € Y. Thenz € X Vz =a
and y € X Vy = a. There are thus four cases to consider: If both x and y are in X, then by the induction
hypothesis, we have the desired x = y V & # y. If one of x,y is in X and the other is a, then x # y, since
a € X; hence x = y V x # y. Finally if both are equal to a, then x = y and hence x = y V x # y. Therefore,
as claimed, Z satisfies the closure conditions. Hence every finite set belongs to Z. [l

9 He also defined other notions of “finite”; for example K-finite drops the requirement z ¢ u from the definition. That notion,

and the other notion considered op. cit., do not satisfy the property that the cardinality of a finite set is a finite cardinal, i.e., an
integer. For example, {c} will be K-finite, even if we do not know whether or not ¢ is inhabited, so we cannot assign {c} a finite
cardinal.
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Lemma 4. A finite set is empty or it is inhabited (has a member).
Proof. Define
Z={X€FINITE : X =02 VvV Ju(ueX)}.

We will show Z satisfies the closure conditions in the definition of FINITE. Evidently @ € Z. Now suppose
XeZandY = X U{a} with a ¢ X. We must show Y € Z. Since X € Z, X is finite. Therefore Y is finite.
Since a € Y we have Y € Z. O

Corollary 3.5 (Finite Markov’s principle). For every finite set X
= Ju(u e X)— Ju(ueX).

Proof. Let X be a finite set. Suppose =—3Ju(u € X). That is, X is nonempty. By Lemma 4, X has a
member. O

Lemma 6. @ € FINITE.

Proof. & belongs to every set W containing @ and containing u U {e} whenever u € W and e ¢ W. Since
FINITE is the intersection of such sets W, @ € FINITE. [l

Lemma 7. If 2 € FINITE and ¢ € x, then 2 U {c} € FINITE.

Proof. Let x € FINITE. Then z belongs to every set W containing @ and containing u U {e} whenever u € W
and e ¢ W. Let W be any such set. Then 2 U {c} € W. Since W was arbitrary, U {c} € FINITE. O

Lemma 8. If z € FINITE, then z = @ or there exist € FINITE and ¢ ¢ « such that z = 2 U {c}.

Proof. The formula is stratified, giving ¢ index 0, and = and z index 1. FINITE is a parameter. We prove the
formula by induction on finite sets. Both the base case (when z = @) and the induction step are immediate. O

Lemma 9. Every unit class {z} is finite.

Proof. We have

@ € FINITE by Lemma 6
o] by the definition of &
U {x} e FINITE by Lemma 7
{z} =oU{z} by the definitions of U and @
{z} € FINITE by the preceding two lines
O
Lemma 10. P;(z) is finite if and only if z is finite.
Proof. Left-to-right: we have to prove
Vy € FINITEVz (y = P1(z) — = € FINITE) (2)

The formula is weakly stratified with respect to y, as we are allowed to give the two occurrences of FINITE
different types. So we may prove the formula by induction on finite sets y.

Base case. When y = @ = Py (z) we have x = &, so « € FINITE.
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Induction step. Suppose y € FINITE has the form y = z U {w} = P1(z) and w ¢ z, and z € FINITE. Then
w = {c} for some ¢ € x. The induction hypothesis is

YVw (z = P1(w) — w € FINITE) (3)
Then
z = y—A{w} since y = z U {w}

= Pi(x) —{{c}} since y = Py (x) and w = {c}

= Pilz—{c}).
Since y € FINITE and {c} € y, we have

gey »q={c} vV q#{c} by Lemma 3

ue€x — {u} ={c} vV {u} #{c} since y = P (x)

ueEr >u=cV u#c
It follows that
(z—{ch)U{c} = = (4)
By the induction hypothesis (3), with  — {c} substituted for w, we have

x — {c} € FINITE
(x — {c})uU{c} € FINITE by definition of FINITE
« € FINITE by (4)

That completes the induction step. That completes the proof of the left-to-right implication.
Right-to-left: We have to prove

x € FINITE — Py (z) € FINITE (5)

Again the formula is weakly stratified since FINITE is a parameter. We proceed by induction on finite sets x.
Base case: P1(2) = @ € FINITE.

Induction step: We have for any x and ¢ ¢ =,

Pi(zU{c}h) = Pi(z) U {{c}}.

Let ¢ ¢ 2 and = € FINITE. By the induction hypothesis (5), Pi(x) is finite, and since ¢ ¢ x, we have
{c} € Pi(z). Then Pi(z) U {{c}} is finite. Then P;(x U {c}) is finite. That completes the induction step. [

Lemma 11. The union of two disjoint finite sets is finite.
Proof. We prove by induction on finite sets X that
VY e FINITE(XNY =2 — X UY € FINITE).

Base case: @ UY =Y is finite.
Induction step: Suppose X = Z U {b} with b ¢ Z and Y N (Z U {b}) = @ and Z finite. Then
XUY = (ZuY)u{b}
XUY = ZUYuib} (6)
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Since Y N (ZU{b}) =@, b ¢ Y. Then by the definition of FINITE, Y U {b} is finite. We have
ZNY u{b})=YnZu{b}) =2.

Then by the induction hypothesis, Z U (Y U {b}) is finite. Then by (6), X UY is finite. That completes the
induction step. [l

Lemma 12. If x has decidable equality, and x ~ y, then y has decidable equality.

Proof. Suppose x ~ y. Then there exists f :  — y with f one-to-one and onto. By Lemma 9, f~! : y — x is
a one-to-one function. Then we have for u,v € vy,

u=v ¢ fl(u) =7 (v). (7)
Since « has decidable equality, we have
fHu)=f"1w) v fHu) # FH ().
By (7),
u=v V u#v.

Therefore y has decidable equality. O

Lemma 13. Let f:zU{c} — y be one-to-one and onto. Suppose ¢ & z, and let g be f restricted to z. Then
g:z—y—{f(c)} is one-to-one and onto.

Remark. Somewhat surprisingly, it is not necessary to assume that z U {c} has decidable equality. That is not
important as decidable equality is available when we use this lemma.

Proof. Let ¢ = f(¢). Then g : z — y — {q}. Suppose g(u) = g(v). Then f(u) = f(v). Since f is one-to-one,
u = v. Hence g is one-to-one. Suppose v € y — {q}. Since f is onto, v = f(u) for some u € z U {c}; but u # ¢
since if u = ¢ then v = f(u) = ¢, but v # ¢ since v € y — {¢}. Then u € z. Hence g is onto. O

Lemma 14. A set that is similar to a finite set is finite.

Proof. We prove by induction on finite sets x that
Yy (y ~x — y € FINITE).

The formula is stratified, so induction is legal.
Base case: When x = @. Suppose y ~ &. Then y = @, so y € FINITE. That completes the base case.

Induction step: Suppose the finite set « has the form z = z U {¢} with ¢ € z, and  ~ y. By Lemma 3, z
has decidable equality. Then by Lemma 12, y has decidable equality. Let f: zU{c} — y be f one-to-one and
onto. Let ¢ = f(c). Then (c,z) € f. Let g be f restricted to z. By Lemma 13, g: z — y — {¢} is one-to-one
and onto. Then by the induction hypothesis, y — {¢} is finite. Then (y—{q})U{q} € FINITE, by the definition
of FINITE. But since y has decidable equality, we have

y=(y—{d) u{n}
Therefore y € FINITE. That completes the induction step. O
Definition 3.15. The power set of a set X is defined as the set of subclasses of X:

P(X)={Y:Y C X}
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We shall not make use of P(X), because there are “too many” subclasses of X. Consider, by contrast, the
separable subclasses of X:

Definition 3.16. We define the set of separable subclasses of X by
Po(X)={u:uCX AN X=uU(X—u)}

That is, u is a separable subclass (or subset, which is synonymous) of X ifand only if Vy € X (y € u V y & u).
Classically, of course, every subset is separable, so we have Ps(X) = P(X), but that is not something we can
assert constructively. The formula in the definition is stratified, so the definition can be given in {NF. When
working with finite sets, Ps(X) is a good constructive substitute for SC(X). We illustrate this by proving
some facts about SC(X), before returning to the question of the proper constructive substitute for SC(X)
when X is not necessarily finite.

Lemma 17. Let 2 be a finite set. Then Py(x) is also a finite set.
Remark. We cannot prove this with SC(x) in place of Py(x).
Proof. The formula to be proved is

x € FINITE — P4(z) € FINITE.

The formula is weakly stratified because the two occurrences of the parameter FINITE may receive different
indices. Therefore we can proceed by induction on finite sets x.

Base case: Ps(@) = {@} is finite.

Induction step: Suppose z is finite and consider x U {¢} with ¢ ¢ x. Then a U {¢} is finite and hence, by
Lemma 3, it has decidable equality.
By the induction hypothesis, Py(x) € FINITE. I say that the map u — w U {c} is definable in iNF:

f={uy):uePs(x) N y=uU{c}.}

The formula can be stratified by giving ¢ index 0, u and y index 1, Ps(z) index 2; then (u,y) has index 3 and
we can give f index 4. Hence f is definable in ¢{NF as claimed. f is a function since y is uniquely determined
as u U {c} when u is given. Also f is one-to-one, since if u C z and v C z and ¢ ¢ x, and w U {c} = v U {c},
then u = v. Define

A := Range(f).
Then
A={uU{c}:u e Pyx)} (8)

Then Pg(x) ~ A, because f : Ps(x) — A is one-to-one and onto. Since Py(x) is finite (by the induction
hypothesis), by Lemma 3, Ps(x) has decidable equality. Then A has decidable equality, by Lemma 12. Since
A has decidable equality, and is similar to the finite set Ps(x), A is finite, by Lemma 14.

I say that

Ps(xU{c}) = AUPs(z). (9)

By extensionality, it suffices to show that the two sides of (9) have the same members.
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Left-to-right: Let v € Ps(x U {c}). Then v is a separable subset of z U {c}. Thencev V cgv. If c v
then v € Py(x). If ce v

xU{c} € FINITE since € FINITE and ¢ € =
x U {c} has decidable equality by Lemma 3
v has decidable equality since v C z U {c}
v=(v—{c})U{c} sincex €v—s>z=c V x#c

We have v — {c} € Ps(z), since v C U {c} and v has decidable equality. Then f(v — {c}) € Range(f) = A.
But f(v—{c}) = (v —{c})U{c} = v. Therefore v € A. Therefore v € AU P4(x), as desired. That completes
the proof of the left-to-right direction of (9).

Right-to-left. Let v € AUP;s(x). Thenv e A V v € Py(x).

Case 1, v € A. Then by (8), v has the form v = u U {c} for some u € Ps(z). Then vU {c} € Ps(zU{c}) as
required.

Case 2, v € Ps(x). First we note that if ¢ ¢ = then
Ps(z) C Ps(xU{c})

Therefore, since v € Ps(z), we have v € Ps(z U {c}). That completes the proof of (9).

Note that A and Ps(x) are disjoint, since every member of A contains ¢, and no member of Ps(z) contains
¢, since ¢ € x. Then by Lemma 11 and (9), Ps(x U {c}) € FINITE, as desired. O

Lemma 18. A finite subset of a finite set is a separable subset.
Proof. Let a € FINITE. By induction on finite sets b we prove
beFINITE—=bCa—a=(a—b)Ub. (10)

The formula is stratified, so induction is legal.

Base case: Suppose b = &. Then b C a, so we have to prove a = (a — &) U &, which is immediate. That
completes the base case.

Induction step: Suppose b € FINITE and ¢ € b and bU {c} C a. We must show
a = (a=(ObU{ch))U®uUic})
By extensionality, it suffices to show that
r€a < z€(a—(bU{chUU{c}) (11)

Since a is finite, a has decidable equality, by Lemma 3.
Ad left-to-right of (11): Let 2 € a. Then by decidable equality on a, we have

r=cV x#c (12)
By the induction hypothesis (10), we have

rTEbLV &b (13)
By (12) and (13) we have

rebU{ct V xgbU{c} (14)
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Therefore
x € (a—(bU{chHUBbU{c}).
That completes the left-to-right implication in (11).
Ad right-to-left: Suppose
z€(a—(OU{c})UbU{c}).

We must show z € a. If z € (a — (bU {c}) then z € a. If z € (bU {c}) then x € a, since by hypothesis
bU{c} C a. That completes the right-to-left direction. That completes the induction step. [l

Lemma 19. Every separable subset of a finite set is finite.

Proof. By induction on finite sets X. When X is the empty set, every subset of X is the empty set, so every
subset of X is empty, and hence finite. Now let X =Y U{a} with a ¢ Y and Y finite, and let U be a separable
subset of X; that is,

V2eX(zeU V z¢U). (15)
We have to show U is finite. Since U is separable, a € U V a € U; we argue by cases accordingly.

Case 1: a € U. Then U CY, so by the induction hypothesis, U is finite.
Case 2: a € U. Let V. =U — {a}. Then V C Y. I say that V is a separable subset of Y; that is,

VzeY(zeV VvV z¢V) (16)

Let z € Y. Since U is a separable subset of X, z € UV z € U. By Lemma 3, X has decidable equality, so
z=aV z # a. Therefore z € VV z ¢ V, as claimed in (16). Then, by the induction hypothesis, V' is finite.
Since a ¢ V, also V U {a} is finite. I say that VU {a} =U. If x € VU {a} then € U, since V C U and
a € U. Conversely if € U then z = a V z # a, since a and x both are members of X and X has decidable
equality by Lemma 3. If z = a then z € {a} and if x # a then = € V| so in either case x € V U{a}. Therefore
VU {a} = U as claimed. Since V is finite and a € V, V U {a} is finite. Since U = V' U {a}, U is finite. That
completes the induction step. O

Lemma 20. Let a and b be finite sets with b € a. Then a — b is also a finite set.
Proof. We first prove the special case when b is a singleton, b = {¢}. That is,
a € FINITE A c€ea — a—{c} € FINITE (17)

By Lemma 3, a has decidable equality. Hence a — {c} is a separable subset of a. Then by Lemma 19, it is
finite. That completes the proof of (17).

We now turn to the proof of the theorem proper. By induction on finite sets a we prove
Vb € FINITE(b Ca — (a —b) € FINITE).

Base case: @ — b = & is finite.

Induction step. Let a = p U {c}, with ¢ € p. Let b be a finite subset of a. We have ¢ € b V¢ ¢ b by
Lemma 18. We argue by cases accordingly.

Case 1: ¢ € b. Then

a—>b

pU{c}t—b
p—>b
p—(b—{c}) since cZpand c€ b
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Since b is finite, also b — {c} is finite, by (17). Since b — {c} C p, by the induction hypothesis we have
p— (b—{c}) € FINITE.

Therefore p — b € FINITE. Therefore a — b € FINITE. That completes Case 1.
Case 2: ¢ € b. Then b C p, so by the induction hypothesis p — b is finite.

a—b = (pUich—b
= (p—-byU{c} since ¢ € b

Therefore a — b is finite. That completes Case 2. That completes the induction step. O

Lemma 21 (Bounded quantification). Let X be any set with decidable equality, and B a finite subset of X.
Let Y be any set, with R a separable subset of X x Y Let P be defined by

ze€P+ze€X AN JueBlu,z)€ER
Then P is a separable subset of X. With complete precision:

Vu,v € X (u=v V u#v) A
BeFINITEA BCX AVueXVzeY ((u,z) € RV —{u,z) €R)
—VzeX(FueB(u,z) € RV —-Jue Bu,z) €R)

Remark. We may express the lemma informally as “The decidable sets are closed under bounded quantification.

Proof. The formula to be proved is stratified, with FINITE as a parameter, giving v and z index 0, B index 1,
and R index 3. Therefore it is legal to prove it by induction on finite sets B.

Base case: B=@. Then X xY =@, s0o R=&. Then Vz—-3u € B (u, z) € R, and therefore
Vze X (Jue Bu,z) € R V =3u € B{u,z) €R).

That completes the base case.

Induction step. Suppose B = AU {c} with A finite and ¢ ¢ A. Then
Vze X (ueB{u,z) e R + (FueAlu,z) €R) V {¢,z) €R) (18)
We have to prove
(Jue B{u,z) € R) V = (Ju € B{u,z) € R) (19)
By (18), that is equivalent to

(Gue A{u,z) e R V (¢,z) €R) V = (Fue€ A{u,z) € R V {(¢,2) € R)
(Fue A{u,z) e R V (¢,z) € R) V (- (FJue A{u,z) € R) A (¢,z) € R))
(Fue A{u,z) e R V-Jue A{u,z) € R V{c,z) € R)
AN(FueA{u,z) e R V-3due A(u,z) € R V—={c,z) €R)

<~
—

Since (¢,z) € R V —{c,z) € R, the last formula is equivalent to
Jue A{u,z) € R V-TJue€ Alu,z) €R.

But by the induction hypothesis, that holds. That completes the induction step. O
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Lemma 22 (swap similarity). Let X have decidable equality and let U C X and b,c € X with b € U and
c¢U. Let Y =U —{b} U{c}. ThenU ~ Y.

Proof. Since b € U and ¢ ¢ U, we have b # c. Define f: U — Y by

c ifx=5

fz) =

T otherwise

Since X has decidable equality, f is well-defined on X, and from the definitions of f and Y we see that
f:U — Y and f is onto. Ad one-to-one: suppose f(u) = f(v). Since X has decidable equality, u and v are
either equal or not. If u = v, we are done. If u # v then exactly one of u, v is equal to b, say u = b and v # b.
Then xf(u) = ¢ and f(v) =wv. Since f(u) = f(v) we have v = ¢. But v € U and ¢ ¢ U, contradiction. O

Definition 3.23 (Dedekind).
The class X is infinite if X ~ Y for some Y C X with Y # X .10

Theorem 3.24. Let X be infinite, in the sense that it is similar to some Y C X with Y # X. Then X is
not finite.

Remark. We expressed the theorem as “infinite implies not finite”, but of course it is logically equivalent to
“finite implies not infinite”, since both forms amount to “not both finite and infinite.”

Proof. 1t suffices to show that every finite set is not infinite. The formula to be proved is
XeEFNITE-YW Y CX - X~Y > X=Y)}
That formula is stratified, giving X and Y index 1, since the similarity relation can be defined in {NF. Therefore

induction is legal.

Base case, X = @. The only subset of @ is &, so any subset of X is equal to X. That completes the base
case.

Induction step. Suppose X = AU {b}, with A € FINITE and b ¢ A. Then

YCX by hypothesis
X € FINITE by Lemma 7
X € DECIDABLE by Lemma 3
X~Y ANYCX assumption
f: X—=Y with f one-to-one and onto, by definition of X ~Y
Y € FINITE by Lemma 14
Y € DECIDABLE by Lemma 3

Let ¢ = f(b) and U =Y — {c}. Let g be f restricted to A. Then g: A — U is one-to-one and onto (140 steps
omitted). Thus A ~ U.

Since X has decidable equality, b = ¢ V b # ¢. By Lemma 18, Y is a separable subset of X. Therefore
beY Vb&Y. We can therefore argue by three cases: b=c,orb#candbe€Y,orb#cand b¢Y.

Case 1, b = ¢. Then U C A. By the induction hypothesis, we have A =U. Then X = AU{b} = U U{b} =
UU{c} =Y. That completes Case 1.

10 Alternate definitions one might consider: X is infinite if there is a similarity from X to a subset of X that omits a value; X
is infinite if X — A is inhabited, for every finite set A. Whether Dedekind infinite implies these properties is not known.
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Case 2, b # cand b € Y. Then

flp)=2» for some p € AU {b}, since f is onto Y
p#b since f(b) = ¢ # b, and f is one-to-one

Define
g=(f—{,a} {0} u{p}

Then one can check that g : A — Y — {b} is one-to-one and onto. (It requires more than six hundred inference
steps, here omitted.) We note that A U {b} is finite, and therefore has decidable equality, which allows us to
argue by cases whether 2 = b or not, and whether 2 = p or not.) Then

A~Y —{b} since ¢ is a similarity

Y-{b}CA since X = AU {b} and Y CX

Thus A is similar to its subset Y — {b}. Then by the induction hypothesis,
A=Y — {b} (20)

Therefore Y = AU {b} = X. That completes Case 2.
Case3: b#cand b Y. SinceY C X = AU{b},and b €Y, we have Y C A. Then f: A=Y — {c} C A
Then by the induction hypothesis,
Y —{c} = A (21)

Then ¢ ¢ A. But X = AU {b}, and ¢ = f(b) € Y C A, so ¢ € A. That contradiction completes Case 3, and
that completes the proof of the induction step. [l

Lemma 25. A finite union of finite disjoint sets is finite. That is,

z € FINITE A Vu(u € x — u € FINITE)
AYu,v€x(u#v—unNv=0)
— | Jz € FINITE.

Proof. By induction on the finite set x. Base case, x = @. Then | Jx = &, which is finite.

Induction step, = y U {c} with ¢ € y. The induction hypothesis is that if all members of y are finite, and
any two distinct members of y are disjoint, then |Jy is finite. We have to prove that if all members of x are
finite and any two distinct members of a are disjoint, then | J2 € FINITE. Assume all members of = are finite
and any two distinct members of = are disjoint. Since the members of y are members of x, all the members of
y are finite, and any two distinct members of y are disjoing. Then by the induction hypothesis, |y is finite.
A short argument from the definitions of union and binary union proves

Uwuieh = (Uy)ue

Since x = y U {c}, we have

Ux = (Uy)Uc (22)

Now c is finite, since every member of z is finite and ¢ € z. We have | Jy N ¢ = &, since if p belongs to both
Uy and ¢, then for some w € y we have p € wNe, contradicting the hypothesis that any two distinct members
of z = y U {c} are disjoint. Then |Jy U c is finite, by Lemma 11. Then |Jz is finite, by (22). That completes
the induction step. O
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Lemma 26. Suppose ¢ & x. Then
Ps(x) C Ps(xU{c}).
Proof. About 30 straightforward steps, which we choose to omit here. O

Lemma 27. Let A be any set. Then the intersection and union of two separable subsets of A are also
separable subsets of A.

Proof. Let X and Y be two separable subsets of A. Let u € A. By definition of separability, we have
(weXVugX) N (ueYVugY).
I say that X NY is a separable subset of A. To prove that, we must prove
veXNY VugXNY. (23)

This can be proved by cases; there are four cases according to whether w is in X or not, and whether u is in Y
or not. In each case, (23) is immediate. Hence X NY is a separable subset of A, as claimed. Similarly, X UY
is a separable subset of A. O

Lemma 28 (Finite DNS). For every finite set B we have
VP (Vx € B(——x € P)) - ~—Vz € B(z € P).

Remark. DNS stands for “double negation shift.” Generally it is not correct to move a double negation leftward
through Vz; but this lemma shows that it is OK to do so when the quantifier is bounded by a finite set.

Proof. The formula of the lemma is stratified, giving « index 0, B index 1, and P index 1. Therefore we may
proceed by induction on finite sets B. (Notice that the statement being proved by induction is universally
quantified over P—that is important because in the induction step we need to substitute a different set for P;
the proof does not work with P a parameter.)

Base case, B = @. The conclusion Vx € @ x € P holds since x € & is false.
Induction step. Suppose ¢ ¢ B and B € FINITE and

Ve € BU{c} (——z € P).

By Lemma 4, B is empty or inhabited. We argue by cases.
Case 1, B is empty. Then B U {c} = {c}, so we must prove

Ve (x € {c} - ~—x€P)— ~Ve(re€{c} - z€P)
That is equivalent to
Ve(x=c¢c— —ax€P)—> ~Ve(r=c—xz€P)

That is, -—c € P — == ¢ € P, which is logically valid. That completes case 1.
Case 2, B is inhabited. Fix u with v € B. Then

Vo € B(——xz € P)
—-—cec P

Since x does not occur in ¢ € P we have

Vee B(m——ax € P AN -—ceP)
Vee B-—(x€P A ceP)
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Define @ = {z:x € P N ¢ € P}, which is legal since the defining formula is stratified. Then
Vo e B(-—z € Q) (24)

Since P is quantified in the formula being proved by induction, we are allowed to substitute @ for P in the
induction hypothesis; then with (24) we have

-—Vz € B(z €Q) by the induction hypothesis
——~VxeB(xeP A ceP) by the definition of @ (25)
Now we would like to infer
= ((Vx € B(x € P)) N c€ P), (26)

which seems plausible as = does not occur in ‘c € P’ In fact we have the equivalence of (25) and 26), since
B is inhabited. (That was why we had to break the proof into cases according as B is empty or inhabited.)
Then indeed (26) follows. By the definitions of union and unit class we have

(Ve B(xeP)) N ceP < Vee(BU{c}) (zeP).
Applying that equivalence to (26), we have the desired conclusion,
-=Vx € (BU{c}) (x € P).
That completes the induction step. [l
Lemma 29. Every subset of a finite set is not-not separable and not-not finite.

Remark. We already know that separable subsets of a finite set are finite, and finite subsets of finite set are
separable, but one cannot hope to prove every subset of a finite set is finite, because of sets like {z € {&} : P}.
That set is finite if and only if P V =P, by Lemma 4.

Proof. Let X be a finite set, and A C X. By Lemma 19, if A is a separable subset of X then A is finite.
Double-negating that implication, if A is not-not separable, then it is not-not finite. Hence, it suffices to prove
that not-not A is a separable subset of X. More formally, we must prove

X =AU(X - A4) (27)
We have
Vie X ——(te AV tgA) by logic
—Vte Xte AV tg A) by Lemma 28
—X =AU (X - A) by the definitions of union and difference
That is (27). O

Lemma 30. Let 2 € FINITE and y € FINITE. Then —— (x Uy € FINITE).

Remark. Lemma 11 shows the double negation can be dropped if x and y are assumed to be disjoint. It cannot
be dropped in general, as {a} U {b} € FINITE implies a = b V a # b, so if we could drop the double negation
in this lemma, then every set would have decidable equality.
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Proof. The formula is stratified, so we can prove it by induction on finite sets y, for a fixed finite set x.
Base case, y = @. We have x U @ = x, which is finite by hypothesis. That completes the base case.
Induction step. Suppose y € FINITE, z Uy € FINITE, and ¢ ¢ y. Then I say

cgx— xU(yU{c}) € FINITE (28)
To prove that:
xU(yU{c}) =(xUy)U{c} by definition of union
cgxUy since ¢ € x

2 U (yU{c}) € FINITE

That completes the proof of (28).

We also have
cex—xU(yU{c}) € FINITE (29)

since (zUy) U {c} =x Uy € FINITE.

We have by intuitionistic logic
-—(cex V cgux).
and by the induction hypothesis we have =—2 Uy € FINITE. Then by (28) and (29), we have
-=(zUy)U{c} € FINITE.
That completes the induction step. (I

Lemma 31. Let X be a finite set and ¢ € X. Then X — {¢} is finite.

Proof.
X has decidable equality by Lemma 3
X — {c} is a separable subset of X by the definition of separable
X —{c} € FINITE by Lemma 19

O

Before leaving this section, we shall state a technical lemma about similarities, arising from the details of
the definitions of “maps” and “similarity”. The issue is that f : X — Y does not require that the domain of f
be exactly X it is allowed to be larger. That is generally a good thing, as once we have defined X and proved
it maps X to Y, it automatically maps subsets of X to Y. But to be a similarity from X to Y, the domain of
f must be exactly X and the range exactly Y. The following lemma is the price we must pay for allowing the
domain of f to be larger in “maps”. Stating it here allows us to cite it, without revisiting this issue in future
work.

Lemma 32. Suppose f: A — B and f is one to one and onto B. Let R be the range of f. Suppose R C B
and the domain of f is A. Then f is a similarity from A to R.

Proof. We omit the proof, which takes 111 lines of Lean, because it is just a straightforward unwinding of the
definitions involved. O
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4 Frege cardinals

The formula in the following definition is stratifiable, so the definition can be given in ¢{NF. Specifically, we
can give @ index 0, z and z index 1, and x index 2. Then 1 gets index 2, so the successor function x +— x*
is a function in ¢NF.

Definition 4.1. The successor of any set x, denoted k™, is defined as
kt={z:3za(z€rNadzNr=2U{a})}.
Definition 4.2.
zero = {o}

Definition 4.3. The set F of finite Frege cardinals is the least set containing zero = {@} and containing ™"
whenever it contains x and xT is inhabited. More precisely,

KEF & Vw(zerocw A Vu(pew A 3z(zeph)) = ut €w) = Kk €w).

Remarks. The formula defining F is stratified, so the definition can be given in iNF. According to that
definition, if there were a largest finite cardinal x, then x* would be the empty set, not Frege zero, which
is {&}. So in that case, the successor of the largest finite cardinal x would not belong to F, which does not
contain @. Instead, in that case the result would be that successor does not map F — F. Of course @+ = &,
so once that happened, more applications of successor would do nothing more. Note also that in general a
finite cardinal is not a finite set; rather, the members of a finite cardinal are finite sets.

Lemma 4. Let x € F and z € k. Then z is a finite set.
Proof. Define
Z={zeF:VYyecax(y<cFINITE)}.

The formula in the definition is stratifiable, so the definition is legal. We will show that Z is closed under the
conditions defining F. First, Frege zero = {&} is in Z, since & is finite. To verify the second condition, assume
k € Z and k7 is inhabited; we must show k™ € Z. Let u € k. Then there exists € x and there exists a
such that u = x U {a}. Since k € Z, x is finite. Then by definition of FINITE, w is finite. That completes the
proof that Z satisfies the second condition. Hence F C Z.

Lemma 5 (Stratified induction). Let ¢ be a stratified formula (or weakly stratified with respect to x), so
{z : p(x)} exists. Then

(p(zero) A Vz(o(x) ABu(ue zb) = p(zh))) = Vz o(z).
Proof. Z :={x: p(x)} is definable and satisfies the closure conditions that define F. Therefore F C Z. O

Remark. When carrying out a proof by induction, during the induction step we get to assume that =7 is
inhabited.

We follow Rosser ([15], p. 372) in defining cardinal numbers: a cardinal number, or just “cardinal”, is an
equivalence class of the similarity relation x ~ y of one-to-one correspondence:

Definition 4.6. The class NC of cardinal numbers is defined by

NC={k: Yue kY (vEK <> u~wv)}
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Remark. It would not do to use Ju instead of Vu, since then @ would not be a cardinal, but allow for that
possibility. We note that Rosser’s definition requires cardinals to be inhabited. In the work presented here, it
makes no difference, as we work only with finite cardinals.

The following two lemmas show that the members of F are indeed cardinals in that sense.
Corollary 4.7. Every finite cardinal is inhabited.

Proof. Lemma 5 justifies us in proving Ju (v € ) by induction on .
Base case: zero = {@} is inhabited.

Induction step: Suppose £V is inhabited. Then T is inhabited. (We do not even need to use the induction
hypothesis.) O

Lemma 8. Ifk € Fand z € k and x ~ y, then y € k.

Remarks. This lemma shows that finite cardinals are cardinals, in the sense of equivalence classes under
similarity.

Proof. Define
Z={keF:VeerVylx~y —yck)l

That formula can be stratified, since we have already shown that x ~ y is definable in iNF. Therefore the
definition of Z is legal.

We will show Z contains Frege zero and is closed under Frege successor. Z contains Frege zero since the
only member of Frege zero is the empty set, and the only set in one-to-one correspondence with the empty set
is @ itself.

Ad the closure under Frege successor: Suppose k € Z, and x € k*, and f : x — y is one-to-one and onto.
Then x = v U {a} for some u € k and a & u. Let g be f restricted to u, and let v be the range of g. Then
g : u — v is one-to-one and onto. Since k € Z and u € K, we have v € k. Let b = f(a). Then b & v, since f is
one-to-one. Then v U {b} € k™.

I say that v U {b} = y. Let p € y. Then p = f(q) for some ¢ € z, since f maps x onto y. By Lemma 4,
since x € k1, x is finite. Since z is finite, it has decidable equality by Lemma 3. Therefore ¢ = a V q # a.
If ¢ = a then p = f(a) = b € {b}. If ¢ # a then since ¢ € v = uwU {a} and g € z, we have ¢ € u. Then by
definition of v, p = f(q) € v. Therefore p € v U {b}. Since p was an arbitrary member of y, we have proved
y CoU{b}. But v U{b} C y is immediate, since v C y and b € y. Therefore v U {b} = y, as claimed.

Since v € k, it follows that y € k™ as desired. Thus Z is closed under Frege successor. By the definition of
F, we have F C Z. [l

Lemma 9. Let k € Fand z,y € k. Then z ~ y.

Proof. By induction on k. Similarity is defined by a stratified formula, so induction is legal. The base case is
immediate as Frege zero has only one member. For the induction step, let x and y belong to k™. Then there
exist u,v,a,b such that u,v € k and a € v and b € v and x = wU {a} and y = v U {b}. By the induction
hypothesis, there is a one-to-one correspondence g : © — v. We define f : x — y by

g(x) ifxeu
flz) =
b ifr=a
By Lemma 4, x is finite. Since x is finite, it has decidable equality by Lemma 3. Since a & u, f is a function.
Hence the domain of f is z. By Lemma 4, y is finite. Therefore by Lemma 3, y has decidable equality, so the
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range of f is y. I say that f is one-to-one. Suppose f(z) = f(z). We must show z = z. Since y has decidable
equality, we may argue by the following cases:

Case 1: f(x) = f(z) = b. Then since b € v, x and z are not in u, so © = a and z = a. Then z = z as
desired.

Case 2: f(z) = g(z) and f(2) = g(z). Then g(x) = g(z). Since g is one-to-one, we have z = z as desired.

Therefore f is one-to-one, as claimed. Therefore x ~ y. That completes the induction step. O
Definition 4.10. Following Rosser, we define the cardinal of = to be
|z] ={u:u~ax}.

Then the inhabited cardinals, that is, the inhabited members of NC, are exactly the sets of the form ||
for some .

Lemma 11. For all z, x € |z

lemma By Lemma 11, we have  ~ x. Then « € |z| by Definition 4.10. O
Lemma 12. |z| = |y| if and only if = ~ y.
Proof. By Lemma 11, which says that the relation ~ is an equivalence relation. O

Lemma 13. c¢z — |z U{c} = |z|*.

Proof. By extensionality, it suffices to show that the two sides have the same members. That is, we must show,
under the assumption ¢ ¢ x,

u~razU{c < dobdv AN v~z A u=vU{b}). (30)

Ad right-to-left: Suppose b € v and v ~ x and w = v U {b}. Let f : v — = be a similarity, and extend it to
g defined by g = f U {(b,¢)}. Then g is a similarity from v U {b} to U {c}. That completes the right-to-left
direction. f Ad left-to-right: Suppose f : u — x U {c} is a similarity. Since f is onto, there exists b € = with
f(b) =c. Let v = u — {b}. Use this b and v on the right. Then g = f — {(b,¢)} is a similarity from v to z. It
remains to show v = v U {b} = (u — {b}) U {b}. That is,

zEU—>ZEU—>ZFbV z=0.

Let z € u. Since f is a similarity from u to z U {c}, there is a unique y € = U {c¢} such that (z,y) € f. Then
z=b<y=c Sincecgx,andy € xU{c},y=c V y # c. Therefore z =0 V z # b, as desired. Note that
it is not necessary that z have decidable equality. That completes the left-to-right direction. O

Lemma 14. || = zero.

Proof. By Definition 4.2, zero = {@}. By definition, |&| contains exactly the sets similar to @. By Lemma 12,
@ is the only set similar to @. Therefore || = {@}. Then |&| = zero since both are equal to {@}. O

Lemma 15. For every set , if T is inhabited, then T contains an inhabited set, and every member of kT
is inhabited.

Remark. Note that  is not assumed to be a finite cardinal, or even a cardinal. Successor cannot take the
value zero = {@} on any set.
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Proof. By definition the members of £* are exactly the sets of the form x U {a} with # € x and a & x. (That
is true whether or not there are any such members.) But if k¥ is inhabited, then there is at least one such
member, and each such member z U {a} is inhabited, since it contains a. O

Lemma 16. Frege successor does not take the value Frege zero on any set at all: Va (z1 # zero).

Remark. This does not depend on the finiteness or not-finiteness of F. If F is finite then eventually x™ is &,
rather than zero, which is {@}, so even in that case Frege zero does not occur as a successor.

Proof. If k™ = {@} then k™ is inhabited, but contains no inhabited set, contradicting Lemma 15. O
Lemma 17. Every finite cardinal is either equal to Frege zero or is the successor of an element of F.

Proof. Theset Z ={k € F: k=zero V Ju(n € F A k= p")} is definable in iNF, since its defining formula
is stratified. Z contains Frege zero and is closed under successor. Therefore, by definition of F, F C Z. O

Lemma 18. zero € F.

Proof. Let W be one of the sets whose intersection defines F, i.e., W contains zero and is closed under inhabited
successor. Then W contains zero. Since W was arbitrary, zero € F. O

Lemma 19. F is closed under inhabited successor.

Proof. Suppose k € F and 7 is inhabited. Let W be one of the sets whose intersection defines F, i.e., W
contains zero and is closed under inhabited successor. By induction on s, we can prove x € W. Since W is
closed under inhabited successor, and x € W, and 7 is inhabited, we have k¥ € W. Since F is the intersection
of all such sets W, and k* belongs to every such W, we have x* € IF as desired. O

Lemma 20. onecF.

Proof.
zero € F by Lemma 18
one = zero™ by the definition of one
J € zero by the definition of zero
zero ¢ zero since zero = {@} and zero # &
@ U {zero} € zero™ by definition of successor
Ju (u € one) since one = zero™
onecF by Lemma 19

Lemma 21. The cardinal of a finite set is a finite cardinal. That is,
Va € FINITE (|z| € F).
Proof. The formula to be proved is stratified, so we can prove it by induction on finite sets.

Base case: By Lemma 14, |&| = zero. By Lemma 19, zero € F.

Induction step: Let x € FINITE and ¢ ¢ z. Consider |[zU{c}|, which by Lemma 13 is |z|*. By the induction
hypothesis, |z| € F. By definition of F, |z|T € F. That completes the induction step. [l

Lemma 22. Every member of F is inhabited.
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Proof. By induction we prove
VYm(m e€F — Ju(u € m)).

The formula is stratified, giving « index 0 and m index 1. For the base case, zero = {&} by definition, so zero
is inhabited. For the induction step, we always suppose m* is inhabited, so there is nothing more to prove. [

To put the proof directly: the set of inhabited members of F contains zero and is closed under inhabited
successor, so it contains .

Lemma 23. A set similar to a finite set is finite.

Proof. Let a be finite and a ~ b. Let x = |a|. Then

kel by Lemma 21
a~a by Lemma 11
ack by definition of |al
bekr by Lemma 8

b € FINITE by Lemma 4

Lemma 24.
(i) If two finite cardinals have a common member, then they are equal.
(ii) Two distinct finite cardinals are disjoint.

Proof. Part (ii) is the contrapositive of (i), so it suffices to prove (i). Let x and u belong to F. Suppose x
belongs to both x and . We must show k = u. By extensionality, it suffices to show that x and p have the
same members. Let y € k. Then by Lemma 9, y ~ z. By Lemma 8, y € u. Therefore k C p. Similarly
nC k. O

Lemma 25. Let x and y be finite sets. Then
e~y = 2| =yl

Proof. Assume x € FINITE and y € FINITE and = ~ y. Then

x € |z] by Lemma 11
y € |y by Lemma 11
|z| e F by Lemma 21
ly| e F by Lemma 21
y € |z by Lemma 8
|z = |y| by Lemma 24

5 Order on the cardinals

In this section, k, u, and A will always be cardinals. We start with Rosser’s classical definition (which is
not the one we use).
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Definition 5.1 (Rosser).

k<p = Fa,bla€r Nbepu AN aCh)
K<p = K< pu AN KF#p.

For constructive use, we need to add the requirement b = aU (b— a), which says that b is a separable subset
of a. Classically, every subset is separable, so the definition is classically equivalent to Rosser’s.

Definition 5.2. For cardinals x and p:

k<p = Fablacrk Nbepu NaCb A b=aU(b—a))
kK<p = K< pu A KF U

Definition 5.3. The image of a under f, written f“a, is defined by
f¢a := Range(f N (a x V)).
If f is a function then f“a is the set of values f(z) for z € a.

Lemma 4. The image of a separable subset under a similarity is a separable subset. More precisely, let
f 1 b — ¢be asimilarity and suppose b = aU(b—a). Let e = f“a be the image of @ under f. Then ¢ = eU(c—e).

Proof. We have

eU(c—e) C ¢ (31)
since e C ¢ and ¢ — e C ¢. We have

¢c C eU(c—e) (32)
since if ¢ € ¢ then ¢ = f(p) for some p € b,and p €a V p € b—a, since b =aU (b—a), and if p € a then
q € e, while if p € b — a then ¢ € ¢ — e. Combining (31) and (32), we have ¢ = e U (¢ — e) as desired. O
Lemma 5. Let f:a — b be a similarity, and let x C a. Let g be f restricted to x. Then g : z — f“x is a
similarity.
Proof. Straightforward; requires about 75 inferences that we choose to omit here. O

Lemma 6. The ordering relation < is transitive on F.

Proof. Suppose k < A and A < pu. We must show k < p. Since k < A and A < p, there exist a € K, b,c € A,
and d € p such that a Cband ¢ Cd, and b =aU (b—a), and d = cU (d — ¢). By Lemma 9, b ~ ¢, since
both belong to A. Let f : b — ¢ be one-to-one and onto. Let e = f“a. Then e C cand a ~ e. So e € k, by
Lemma 8. Then e C d. By Lemma 4 we have

¢c = eU(c—e) (33)
Now I say that d = e U (d — e).
eU(d—e) = eU((cU(d—c))—e) since d = cU (d — ¢)
eU(c—e)U((d—c)—e) since (pUqg)—r=(p—r)U(g—r)
cU((d—c)—e) by (33)
cU(d—rc) since e C ¢
= d since d = cU (d — ¢)

as desired. Then xk < p as desired. O
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Lemma 7. For finite cardinals x and p,
k<pedrylrer Nyep NaxCy AN y=xzU(y—ux)).

Proof. Left to right: Suppose k < u. Then by definition of <, k < p and k # p. By definition of <, there
exist z and y with z € k, y € u, and  Cy and y = 2 U (y — z). By Lemma 24, which applies because k # p,
we have = # y. Therefore x C y as desired. That completes the proof of the left-to-right implication.

Right to left: Suppose x € k and y € pand © C y and y = 2 U (y — x). Then x < p by definition. We
must show k # p. If K = p then y ~ 2, by Lemma 9. Then y is similar to a proper subset of y, namely .
Since y € p and p € F, by Lemma 4, y is finite. Since y is similar to a proper subset of itself (namely x),
Theorem 3.24 implies that y is not finite, which is a contradiction. O

Lemma 8. Let x,p € F, with p inhabited. Then
k<p<vVbepdack(alhb A b=aU(b—a)).
Proof. Left-to-right. Suppose £ < . Then by definition of <, there exist = € kK and y € u with x C y and
y = 2U@-a) (34)

Let b € p; we must show there exists a € kK with a Cband b =a U (b — a).

We have b ~ y by Lemma 9. So y ~ b. Let f:y — b be one-to-one and onto. Let a = f“(x). Then a C b
and x ~ a. By Lemma 8, a € k. By Lemma 4 and (34), we have b = a U (b — a). That completes the proof of
the left-to-right implication.

Right-to-left. Suppose Vb € p3a € k(@ Cb A b=aU(b—a)). Since p is a inhabited, there exists b € p.
Then Ja € k(@ Cb A b=aU (b—a)). O

Lemma 9. Suppose k € F and 2 € kT and ¢ € z. Then z — {c} € k.

Remark. We will use this in the proof that successor is one to one, so we cannot use that fact to prove this
lemma.

Proof. Since x € kT, there exists z € k and a ¢ z such that © = 2 U {a}. Since ¢ € ¥, we have c € 2 V ¢ =a.
If ¢ = a then z =  — {c} € k and we are done. Therefore we may assume ¢ € z and ¢ # a.
Since a # ¢ we have

(zU{a}) —{e} = (z = {c}) U{a} (35)

Since x € kT, z is finite, by Lemma 4. By Lemma 3, z has decidable equality. Then
z ~ (z—{ch)U{a} by Lemma 22
= (zU{a}) —{c} by (39)
Then by Lemma 8 and the fact that z € x, we have
(zU{a}) —{c} €r (36)

Since z U {a} = z, that implies  — {c} € «, which is the conclusion of the lemma. O
Lemma 10. For finite cardinals x and g, if 4 is inhabited, we have

K<p e st <pt



Finite sets, mappings, cardinals, and arithmetic in intuitionistic NF 27

Proof. Left to right. Suppose £ < p. Since uT is inhabited, there is some y € p and some ¢ € y, so yU{c} € p*.
By Lemma 8, there is a separable subset # C y with € k. Then 2z U {c} € k* and z U {c} C y U {c}. We
have to show that

yu{ch = (eU{chUyU{ct - (xU{c})). (37)

Left-to-right of (37): Suppose v € y U {c}. Then u € y or u = ¢. If u = ¢ then u € z U {c}, so u belongs
to the right side of (37). Now y U {c} is finite (by Lemma 4), and hence has decidable equality by Lemma 3.
Therefore u = ¢ V u # ¢; so we can assume u # c¢. If u € y then, sincey =zU (y—2z),u€x V u gz If
u € x then u € zU{c} and hence u belongs to the right side of (37). If u ¢ = then u € yU{c} — (xU{c}), and
hence u belongs to the right side of (37). That completes the proof of the left-to-right direction of (37).

Right-to-left of (37). Since z C y we have
xU{c} CyU{c}
and

yUict = (zU{c}) CyU{c}

Hence the right side of (37) is a subset of the left side. That completes the proof of (37).
Therefore kT < uT. That completes the proof of the left-to-right direction of the lemma.

Right-to-left. Suppose ™ < ™. Then there exist z € kT and y € p* with z Cy and y =2 U (y — z). By
Lemma 15, x is inhabited, so there exists ¢ € z. Since x C y, also ¢ € y. Then by Lemma 9, z — {c} € k and
y —{c} € p. Since y € pu, y is finite, by Lemma 4. By Lemma 3, y has decidable equality. Then

ueEy—su=cV u#c (38)

Since y = 2 U (y — z), we have
ueEy s>ucx V ugx (39)

Then by (38) and (39), we have
uey > u€(x—{c}) VvV udg(xz—{c}). (40)

It follows from (40) that
y—{ct = ((w—Ac}) —(@—A{c})u(z—{c})
Therefore K < p. (|
Lemma 11. For A and p in F, if AT and p™ are inhabited, then
A=p < At =pu.

Proof. Left to right is immediate. We take up the right to left implication. Suppose k™ = u™. By Lemma 24,
it suffices to show that kN is inhabited. Since ™ is inhabited, there exists y € k™. By definition of successor,
y has the form y = z U {a} for some z € x and a ¢ z. We will prove x € u. Since u™ = k* we have
xU{a} € uT. Then by Lemma 9, z U {a} — {a} € p. Since x U {a} € u™, x U {a} is finite, by Lemma 4. By
Lemma 3, z U {a} has decidable equality. Then 2 U {a} — {a} = x, so € u. Then = € K N as claimed. O

Lemma 12. Let a be a separable subset of y, that is, s Cyandy=2U (y — ). Theny —2z =& + y = .
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Proof. Suppose © C y and y = x U (y — ). Left to right: suppose y — x = &; we must show y = z. If u € =
then by y = 2 U (y — «) we have u € y. Conversely, if u € y then u € x V v € z. If u € x we are done. If
u & x then u € y—x, so u € y. That completes the left-to-right direction. Right to left: Suppose y = x. Then
y—r=x—x=4»O. O

Lemma 13. For finite cardinals x and g, if k™ and pu* are inhabited we
K< U< kT < u"'.

Proof. Left-to-right. Suppose x < u. By definition that means x < g and & # pu. By Lemma 10, s < pt.
We have to show k™ # u*. Suppose k™ = pt. Since u* is inhabited, there is an element y U {c} of u™ with
y € pand ¢ € y. Since kT = pt, we also have y U {c} € k™. Since y € u, by Lemma 4, y is finite. Since p* is
inhabited, u is also inhabited. Since k < p, by Lemma 8, there exists a separable subset x of y with z € k. By
Lemma 4, z is finite. By Lemma 20, y — x is finite. Since k # u, we have x # y, by Lemma 24. Then, since x
is a separable subset of y, y — x is not empty, by Lemma 12. Since it is finite, by Lemma 4, y — x is inhabited.
Hence there exists some b € y with b & z. Then x U {b} € ™. Then z U {b} and y U {c} both belong to x™.
Note that x U {b} and y U {c} are finite (by Lemma 4), and hence have decidable equality (by Lemma 3).
Hence y = (y U {c}) — {c}; then by Lemma 9 we have y € k. But from the start we had y € u. Then by
Lemma 24, we have x = u, contradicting the hypothesis x < u. Hence the assumption k¥ = uT has led to a
contradiction. Hence k™ < pu+. That completes the proof of the left-to-right direction of the lemma.
Right-to-left: Suppose k™ < pu*. Then x* < u+ and kT # p™. By Lemma 10, x < p, and since successor
is a function, k # p. O

Definition 5.14. We define names for the first few integers (repeating the definition of zero, which has
already been given).

zero = {o}
one = zero"
two = one"

three = two™
four = three®

Lemma 15. We have
Vk € F(k = zero V K # zero).

Proof. By induction on k. More explicitly, define
W :=FnN ((F — {zero}) U {zero}).

We will show that W satisfies the conditions defining F. Specifically 0 € W (which is immediate from the
definitions of W and union), and W is closed under (inhabited) Frege successor. Suppose k € W and 7 is
inhabited. We have to show k™ € W. By Lemma 16, s # zero. By definition of W, x € F. By definition of
F, kT € IF; therefore k™ € F — {zero}. Therefore k™ € W, as claimed.

Then by definition of F (or, if you prefer, “by induction on «”), F C W. Then by the definition of union,
k €F — kK =zero V k # zero. O

Theorem 5.16. For finite cardinals £ and p, we have
K< puVE=puVu<kK
and

(k< pu A p<k).
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Proof. We prove by induction on  that for all © we have the assertion in the statement of the lemma. Lemma 5
justifies this method of proof. The formula is stratified since the relation = < y is definable.

Base case: We have to prove
zero< pn V zero=pu V p < zero

and exactly one of the three holds. If i < zero, then we would have = € p and x a separable subset of y and
y € zero; but the only member of zero is &, so * = y = @. Then @ € p and @ € zero, so by Lemma 24,
= zero. Thus p < zero is impossible and p < zero if and only if u = zero. If 1 € F then by Lemma 15,
1 = zero V p # zero; and if p # zero then zero < p, since @ is a separable subset of any x € p.

Induction step: Suppose % is inhabited. We have to prove
kP <pu Vv et=pvpu<kt (41)
By Lemma 15, we have u = zero V pu # zero. If u = zero, we are done by the base case. If u # zero, then by
Lemma 17, u = AT for some X € F. By Corollary 4.7, A" is inhabited. We have to prove
kT <At veT =pt v out < AT (42)
By the induction hypothesis we have
E<AVE=p V <\

and exactly one of the three holds. By Lemma 13 and Lemma 11, each disjunct is equivalent to one of the
disjuncts of (42). That completes the induction step. O

Corollary 5.17. F has decidable equality. Precisely,

Ve, une€F(k=pn V Kk # p).

Proof. Let K, € F. We must show k =y V k # . By Theorem 5.16, we have Kk < p or Kk = p or u < K, and
exactly one of the disjuncts holds. Therefore k # p is equivalent to k < p V pu < k. O

Lemma 18. For all k € F, we have k < k.

Proof. Suppose k € F. By Corollary 4.7, « is inhabited. Let a € k. Since a is a separable subset of a, we have
Kk < Kk by the definition of <. O

Lemma 19. For k,p € F we have
K<pur < V K=/
Proof. Suppose k,u € F. By Theorem 5.16 we have kK < u V k= pu V pu < k, and exactly one of the three

disjuncts holds.

Left to right: Suppose x < p. By Definition 5.2, there exist a and b with a € k, b € u, a C b, and
b=aU(b—a). By Lemma 4, a and b are finite. By Lemma 20, b — a is finite. By Lemma 4, b — a is empty or
inhabited.

Case 1, b — a = @. I say b = a. By extensionality, it suffices to prove t € b <+ t € a. Left to right: assume
teb. Sinceb=aU(b—a)wehavet€a V t€b—a. Butt & b— a, since b— a = @. Therefore t € a. Right
to left: assume t € a. Since a C b we have ¢ € b. Therefore b = a as claimed.

Then a € kN . Then by Corollary 24, k = u. That completes Case 1.

Case 2, b — a is inhabited. Then a is a proper subset of b. By Lemma 7, k < p. That completes Case 2.
That completes the left to right direction.

Right to left: Suppose x < p. Then by definition of <, we have x < u. On the other hand, if kK = p then
< by Lemma 18. O
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Lemma 20. For k,p € F we have
KRS N p<K—=K=/U.
Proof. By Lemma 19, it suffices to prove
(k<pV E=p AN (B<KVAE=K)—K=pu. (43)
By Theorem 5.16,
K<pu NV E=puV pulk

and exactly one of the three disjuncts holds. Now (43) follows by propositional logic. O

We next prove two variations on trichotomy that are frequently useful.
Lemma 21. Suppose k < p < A\, where g, u, A\ € F. Then x < \.

Proof. By Lemma 6, we have kK < A. We must show x # A. Suppose k = A. Since k < p we have \ < p.
Hence A < p. By hypothesis p < A. By Lemma 20, = A, contradicting u < A. (|

Lemma 22. Let x,u € F. Then
K< puVp <k
Proof.
E<p NV k=pV p<k by Theorem 5.16 (44)

Case 1, k < p. Then we are done.
Case 2, k = p. Then k£ < p by Lemma 18.
Case 3, i < k. Then p < k by the definition of <. O

Lemma 23. Let x,u € F. Then
K< puVp<K.
Proof.
E<pu NV E=uV u<k by Theorem 5.16 (45)

Case 1, k < p. Then k <y by the definition of <.
Case 2, k = p. Then k < p by Lemma 18.

Case 3, i < k. Then we are done. O
Lemma 24. Let s, A\, u € F and suppose kK < A < u. Then k < pu.

Proof. By Lemma 6, we have k < p. Since k < pu is defined as k < p and k # p, it only remains to show
Kk # p. Suppose k = . Then £ < X and A < k. By Theorem 5.16, we have x = A, contradiction. O

Lemma 25. Let s, A\, u € F and suppose k < A < u. Then k < pu.
Proof. Since k < A we have k < A\, by the definition of <. Then by Lemma 21, x < pu. (|

Lemma 26. Let xT € F. Suppose 1 is inhabited. Then x < &¥.
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Proof. Since kT € F and T is inhabited, there exists x € k. Then z = y U {c} for some y € k and ¢ € x.
Then z —y = {c}. By Lemma 4, since € k™, x is finite. By Lemma 3, x has decidable equality. Therefore
x=yU{c} =yU(x —y). Then y C z. It is a proper subset, since ¢ € x but ¢ ¢ y. Now, we will use the
right-to-left direction of Lemma 7. k < x™, substituting ™ for u. That gives us

TArCyAy=azU(y—z) = r<rh).

Jr,y(x €k N yER
Then take (y,z) for (x,y) in the hypothesis. That yields
yer Nzert ANycaz Ax=yU@—y) = r<rt.

Since we have verified all four hypotheses, we may conclude xk < k7. O

Lemma 27. For all m € F, we do not have m™ < m.

Proof. Suppose m € F and m™ < m. By the definition of <, m™ is inhabited. Then by Lemma 26, we have
m < m¥, which contradicts Theorem 5.16, since m* < m. (I

Lemma 28. Forz €F, z £ x.

Proof. Immediate from Theorem 5.16, since = = x. O

Lemma 29. For x € F we have z £ zero.

Proof. Suppose x < zero. We will derive a contradiction.

x < zero by definition of <
a€xNaCbAbe zero for some a, b, by definition of <
be{o} since zero = {@}
b=g by Lemma 3
a=g since a C b
& € x N zero by definition of intersection
T = zero by Lemma 24
zero < zero since x < zero
—zero < zero by Lemma 28
That is the desired contradiction. (|

Lemma 30. For s, € F,if kK < p, then s+ < p.

Proof. Suppose k < p. Then there exists a € k and b € p such that b=a U (b — a). Then

be FINITE A a € FINITE by Lemma 4
b—a € FINITE by Lemma 20
b—a=92 VIu(ueb—a) by Lemma 4

We argue by cases.

Case 1,b—a= . Then b=a, so a € kN pu, so by Lemma 24, kK = pu, contradicting x < u.
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Case 2, Jc(c € b—a). Fix ¢. Then

aU{c}er™ by the definition of successor
aU{c}Ch since c € b
b=(aU{c})U (- (aU{c})) by Lemma 5.17
kT < L by the definition of <.

Lemma 31. Ifa < banda,b €T, then at € F.

Proof. Suppose a < b and a,b € F. By the definition of <, we have a < b and a # b. By the definition of <,
there exists v € b and u € a with v € P,s(v). Then

v € FINITE by Lemma 4
u € FINITE by Lemma 19
v—u € FINITE by Lemma 20
v—uF# D by Lemma 24, since a # b
de(cev—u) by Lemma 4
ceEv—u fixing ¢
uU{c} €a’ by definition of successor
at €F by Lemma 19

Lemma 32. For k,pu € F, we have

k<pt = Kw<pu VvV k=pt.

If we also assume p+ € IF then we have

m§u+<—>/@§u\/f@:,u+.

Remark. We cannot replace the — with < without the extra assumption, because if x < p there is no
guarantee that u™ € F.

Proof. Suppose £ < uT. Then by Lemma 19,
K< ;ﬁ VK= ;ﬁ.

If K = ™ we are done; so we may suppose k < u*. Then

kT <put by Lemma 30
Ju (u € ph) by the definition of <
Ju (u € k™) by the definition of <

k< by Lemma 10
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Lemma 33. For x,pu € F, we have

/i<u+%/i<u V K= .
If we also assume p+ € F then we have

/i<u+<—>/i<u V K= .

Proof. Left to right. Suppose x < p+. Then by the definition of <, k < u™ and k # p+. By Lemma 32, x < p.
By Lemma 19, K < i V Kk = p as desired.

Right to left. Assume p* € F. Then p* is inhabited, by Lemma 4.7. If & = u then x < pu™ by Lemma 26.
If K < p then k < pu+ by Lemma 25. O

Lemma 34. Vm € F (- (m < zero)).

Proof. By definition, zero = {&}. Suppose m € F and m < zero. By definition of <, m < zero and m # zero.
By definition of <, there exist a and b with a € m and b € zero and a € P4(b). Since zero = {@} we have
b = @. The only separable subset of @ is &, so a = &. Then by Lemma 24, m = zero. But that contradicts
m # zero. Therefore the assumptions m € F and m < zero are untenable. (|

Lemma 35. Every nonempty finite subset of F has a maximal element.
Remark. By Lemma 4, it does not matter whether use “nonempty” or “inhabited” to state this lemma.

Proof. The formula to be proved is
Ve €FINITE(x CF w2 #4 0 — ImeaVt(t €z — t <m))
The formula is stratified, giving m and ¢t index 0 and = index 1. F and FINITE are parameters, and do not
require an index. Therefore we may proceed by induction on finite sets.
Base case: immediate, since @ # @.

Induction step. Let x be a finite subset of F and ¢ € F —z. By Lemma 4, = is empty or inhabited. If x = &,
then ¢ is the maximal element of x U {c}, and we are done. So we may assume x is inhabited. Then by the
induction hypothesis,  has a maximal element m. By Theorem 5.16, ¢ < m or m < c. If ¢ < m, then m is the
maximal element of x U {c}. If m < ¢, then ¢ is the maximal element of z U {c}, by the transitivity of <. O

Lemma 36. For x € F and 2+ € F, we have x # x 7.

Proof. Suppose x = x*; then

zeaxt for some z, by Lemma 4.7
z=uU{c} for some u € ¢ and ¢ € u, by definition of successor
uU{c} € at by the previous two lines
uU{c}ex since x = z™
uU{c} € FINITE by Lemma 4
u~uU{c} by Lemma 9
uU{c} #u since ¢ € u

Now uU{c} is a finite set, similar to a proper subset of itself (namely «). Then by definition, ©U{c} is infinite.
By Theorem 3.24, it is not finite. But it is finite. That contradiction shows x # x. O

Lemma 37. For z € F and 2+ € F, we have x < x™.

Proof. Let w € x and wU {c} € 27, with ¢ € z. Then by definition of < we have x < 2. By Lemma 36, we
have x # xT. Then by definition of <, we have z < z7T. O
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6 Power sets and similarity

We will replace Rosser and Specker’s use of the full power set SC by the separable power set P;. In
this section we prove some lemmas from Specker §2, and some other similar lemmas. For finite sets a, since
finite sets have decidable equality, every unit subclass is separable, which is helpful. We begin with Specker’s
Lemma 2.6, which we take in two steps with the next two lemmas, and after that Specker 2.4 and 2.3.

Lemma 1. Let y € Ps(P1(a)). Then there exists z € Ps(a) such that y = Py (2).
Proof. Suppose y € Ps(P1(a)). Define
z:={u:{u} €y} (46)

That definition is legal since the formula is stratified giving u index 0 and y index 2. Then y = P;(z) since
the members of y are the singletons of the members of z. I say that z C a: Suppose u € z. Then

{uf ey by (46)
{u} € Pi(a) since y C P4 (a)
u€a by definition of P;(a)

Therefore z C a, as claimed. It remains to show that z is a separable subset of a; it suffices to show that for
u € a, we have u € z V u ¢ z. Suppose u € a. Then by (46),

uez Vuégz
o fupey Viup ¢y
and that is true since y is a separable subset of Py (a). O

Lemma 2 (Specker 2.6). |Ps(Pi(a))| = |P1(Ps(a))].

Remarks. Or course Specker has P instead of Ps. We follow the proof from [15], p. 368, that Specker cites,
checking it constructively with Py in place of P. But fundamentally, this lemma is just about shuffling brackets.
We have {{p},{q},{r}} € Ps(Pi(a)) corresponding to {{p,q,7}} € P1(Ps(a)). It is a useful result but not a
deep one.

Proof. Let

W= {u:3z(u= {z},Pi(2)))}

The definition is stratified giving z index 1, so {z} and P;(z) both get index 2, and u gets index 4. It follows
that W is a relation (contains only ordered pairs) and

(,y) e W > z(xz ={z} N y="Pi(2)). (47)

I say that W is (the graph of) a one-one-function mapping P;(Ps(a)) onto Ps(P1(a)). (Formally there is no
distinction between a function and its graph.) For if 2 is given, then z is uniquely determined, so y is uniquely
determined; and if y is given with y = P;(z), then z = [Jy is unique, so * = {z} is unique. Hence W is a
function and one-to-one. It remains to show that W is onto. Let y € Ps(Py(a)). By Lemma 1, there exists
z € Ps(a) such that y = Pi(z). Then ({z},y) € W. Hence y is in the range of W. Since y was an arbitrary
member of Ps(P1(a)), it follows that W is onto.

We have shown that W is a similarity from Ps(P1(a)) to P1(Ps(a)). Therefore those two sets have the
same cardinal. O
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Lemma 3. Any two unit classes are similar.

Proof. Let {a} and {b} be unit classes. Define f = {(a,b)}. One can verify that f : {a} — {b} is a similarity.
We omit the 75 inferences required to do so. (I

Lemma 4. Any set similar to a unit class is a unit class.

Proof. Let  ~ {a}. Then let f : x — {a} be a similarity. Since f is onto, there exists ¢ € x with f(c) = a
Let e € z. Then f(e) € {a}, so f(e) = a. Since f is one to one, e = ¢. Then x = {c}. O

Lemma 5. We have
u € one <+ Ja (u = {a}).
Proof. By definition, one = zero™ and zero = {&}. For any a, we have a € &, so
@ U{a} = {a} € zero™ = one.
Conversely, if u € one, then u = @ U {a} for some a, by definition of successor, so u = {a}. O
Lemma 6. Suppose a and b are finite sets. Then
a € Ps(b) — Pi1(a) € Ps(Ps(D)).

Proof. Suppose a € Ps(b). Since b is finite, it has decidable equality, by Lemma 3. Therefore P;(b) C Py(b).
Since P1(a) € P1(b), we have

Pi(a) C Ps(b) (48)
It remains to show that Pj(a) is a separable subset of Ps(b); that is,
Ps(b) = P1(a) U (Ps(b) — P1(a)).
By extensionality and the definitions of subset and union, it suffices to show
tePs(b) < tePi(a) V (t€Ps(b) AN tEPi(a)) (49)

Right to left: It suffices to show ¢ € Pi(a) — t € Ps(b). Let t € Pi(a). Then ¢t = {c} for some ¢ € a. Since b
has decidable equality, t is a separable subset of b. That completes the right-to-left direction.

Left to right: suppose t € Ps(b). Then ¢t € FINITE, by Lemma 19. Then |¢| € F, by Lemma 21. Then by
Lemma 5.17,

[t| = one V |t| # one.
Case 1, |t| = one. By Lemma 5, t is a unit class. Since a € P,(b), we have
reEb—x€a V x¢&a.
Since t € Py(a) if and only if for some x we have t = {z} A x € a, we have
t € Ps(b) >t €Pi(a) V t&Pi(a).

That completes Case 1.

Case 2,|t| # one. Then |t| is not a unit class, by Lemma 5 and Lemma 24, so the second disjunct on the
right holds. O
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Lemma 7 (Specker 2.4). For any sets a and b
a~b<+ ’Pl(a) ~ 7)1(())
Proof. Left-to-right. Suppose f : a — b is a similarity. Let g be the singleton image of f, namely

9= {{u}{v}): (w,0) € f.

The definition is legal since the formula is stratified, giving u and v the same index. Then g : Pi(a) — P1(b)
is a similarity. We omit the straightforward proof.

Right-to-left. Let ¢ : P1(a) — P1(b) be a similarity. Define
fi={lw,v) s ({u}, {v}) € g}

Again the definition is legal since the formula is stratified, giving  and v the same index. Then f:a — bis a
similarity. We omit the proof. O

Lemma 8 (Specker 2.3). For any sets a and b
a~b— Ps(a) ~ Ps(b).
Proof. Let f :a — b be a similarity. Define
9= {(u, f*u) : u € Ps(a)}

where f“u is the image of w under f, i.e., the range of the restriction of f to u. Then g : Ps(a) — Ps(b).
The fact that the values of g are separable subsets of b follows from Lemma 4. We omit the proof that ¢ is
one-to-one. To prove ¢ is onto, let y € Ps(b). Then define

r={uca:Fv(vey A (u,v) € f)}

The formula is stratified, giving v and v index 0 and x and y index 1. Hence x can be defined. We omit the
proof that g(z) = y. (x can also be defined using the operations of domain and inverse relation, which in turn
can be defined by stratified comprehension.) O

Lemma 9. If a has decidable equality, then Py (a) C Ps(a).

Proof. Let € Py1(a). Then x = {u} for some v € a. Then x C a. We must show a = 2 U (a — z). By
extensionality, that follows from

Vu(u€ea+ruexr V u€a—urx),
which in turn follows from decidable equality on a. O
Lemma 10. For all a,b,
a Cb <+ Pila) CP1(b),

Proof. Left to right. Suppose a C b and t € P;1(a). We must show ¢ € Py(b). Then t = {z} for some = € a.
Since a C b we have z € b. Then t € UCS(b). That completes the left-to-right direction.

Right to left. Suppose Pi(a) C Pi(b) and t € a. We must prove ¢ € b. Since t € a we have {t} € Pi(a).
Then {t} € P1(b). Then {t} = {¢} for some ¢ € b. Then t = q. Then ¢ € b as desired. O

Lemma 11. For all a,b,

a € Py(b) <» UCS(a) € Ps(P1(b)).
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Proof. Left to right. Suppose a € Ps(b). Then a C b and
b = aU(b—a). (50)
By Lemma 10,
P1(a) C P1(b) (51)
It remains to show that UCS(a) is a stable subset of Py (b); that is,
Pi(b) = Pi(a) U (Pi(b) = Pi(a)). (52)
By extensionality and the definitions of union and set difference, that is equivalent to
tePi(b) < tePi(a) V (tePi(b) A t&Pi(a)). (53)

Then we need only consider unit classes ¢ = {z}, and using the fact that {x} € P1(b) +> t € b, and {z} €
Pi(a) <> t € a, (53) follows from (51). O

Lemma 12. For all a,b, we have
a € Py(b) < Ps(a) C Ps(b).
Proof. Left to right: Suppose a € Ps(b). Then a C b and
b = aU(—a) (54)

Now let = € Ps(a). We must show x € Py(b). Since x € Ps(a), we have z C a. Since a C b we have x C b. We
have

x € Ps(a)
a=xzU(a—1x) by definition of Ps(a)
b=(zU(a—2)U(b—(xU(a—1x))) by (54)
b=xzU(b—x)
x € Ps(b) by definition of P, (b)

That completes the left-to-right direction.

Right to left: Suppose Ps(a) C Ps(b). We have to show a € P, (b); but that follows from a € Ps(a) and the
definition of subset. That completes the right to left direction. O

Lemma 13. Let b be a finite set. Then the subset relation on Ps(b) is decidable. That is,
Vo,y € Ps(b) (x Sy V z Ly).
Proof. Assume b € FINITE. By Lemma 17, P,(b) € FINITE. Then by Lemma 3,
Ps(b) € DECIDABLE (55)
We will prove by induction on finite sets y that
y € Ps(b) 5 Ve ePs(b)(x Cy V = Zy). (56)

It is legal to proceed by induction, since the formula is stratified.

Base case. When y = @, we will prove

Vo € Py(b) (x COVa € D).
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Assume x € Py(b). We have  C @ if and only if & = &, so it suffices to prove z = & V x # &. But that
follows from (55). That completes the base case.
Induction step. Let y = zU{c}, with ¢ € z and z € P;s(b) and y C b. Then ¢ € b The induction hypothesis is

z€Ps(b) = Vx ePs(b)(x Cz V z ¢ z). (57)
We have to prove
YyEPs(b) > Vo ePy(b)(zCy V xZy) (58)

Assume y € P,(b) and € Py(b). We have to prove z Cy V = € y. That is,

xCzU{c} Ve ZzU{c}

We have

y € Ps(b) assumed above
zU{c} € Ps(b) since y = z U {c}

I say that z € Ps(b). To prove that, let u € z. Since z U {c} € Py(b), u € zU{c} V u ¢ zU{c}. Since ¢ ¢ z,
u # c. Therefore u € zVu & z. Then z € Py(b) as claimed.

I say that also z — {c} € Ps(b). Since b is finite, it has decidable equality by Lemma 3. Then for y € b,
we have y = ¢ V y # c. Since © € Py(b) we have y € x V y & x. Then a short argument by cases shows
yex—{c} V y&ax{c}. Then x — {c} € Ps(b), as claimed.

By (57) and z € Ps(b), we have
Vo e Ps(b) (x Cz V z ¢ 2). (59)

Since x € Py(b), we have c € x V ¢ & x. We argue by cases accordingly.

Case 1: ¢ € . Then z C zU {c} if and only if  — {¢} C z. By (59), instantiated to & — {¢} in place of x
(which is allowed since  — {c} € P4(b)), we have

x—{c}Cz V x—{c} <=

That completes Case 1.

Case 2: ¢ € . Then x C zU {c} <» z C z, so (58) follows from the induction hypothesis (57). That
completes Case 1. That completes the induction step. (I

Lemma 14. Suppose a and b are finite sets. Then
a € Ps(b) = Ps(a) € Ps(Ps(b)).
Proof. Suppose a € Ps(b). By Lemma 12,
Ps(a) € Ps(b) (60)
It remains to show that Ps(a) is a separable subset of P,(b); that is,

Ps(b) = Ps(a) U (Ps(b) — Ps(a)).
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By extensionality and the definitions of subset and union, it suffices to show
tePs(b) <« tePsla) V (tePs(b) ANt Ps(a)) (61)

The right-to-left direction follows logically from (60) and the definition of subset.
Ad the left-to-right direction of (61): suppose t € Ps(b). Then ¢t C b. By Lemma 13,

tCaVvtdZa. (62)

It remains to prove the left-to-right direction of (61). Suppose ¢t € Ps(b). We argue by cases using (62).
Case 1: ¢t C a. It suffices to prove ¢t € Ps(a). It remains to prove a =t U (a —t). We have

Vuebuet V uégt) since t € P4(b)
Vuca(luet V udgt) since a C b

Then a =t U (a — t) by the definitions of union and set difference. That completes Case 1.

Case 2: t € a. Then t ¢ Ps(a). Since t € Py(b), the second disjunct on the right of (61) holds. That
completes Case 2. O

Lemma 15. For all a and ¢ & a, we have
Pi(aU{c}) = Pi(a) U{{c}}.

Proof. By extensionality it suffices to verify the two sides have the same members.

Left to right: Let 2 € P1(aU{c}). Then x = {u} for some u € aU{c}. Thenu € a V a=c. If u € a then
2 € P1(a) and hence x € Py(a) U {{c}}. That completes the left-to-right direction.

Right to left: Let x € Py(a) U {{c}}. Then x € Pi(a) V x = {c}. If x € Py(a), then = € P1(aU {c}) by
Lemma 10. If © = {c}, then « € Pi(a U {c}) by definition of P;. O

Lemma 16. For all a,b we have
Pl(a — b) = Pl(a) - P1(b)

Proof. By the definitions of P; and set difference, using about 50 straightforward inferences, which we choose
to omit. O

Lemma 17. Pi(9) = 2.

Proof. Suppose x € P1(2). By definition of Py, there exists a € @ such that = {a}. But that contradicts
the definition of @. O

Lemma 18. For every x and a,
x €a <+ {z} € Pi(a).

Proof. Left to right, by definition of P;(a). Right to left: if {x} € Pi(a), then for some y € a, {z} = {y}.
Then by extensionality z = y. O

Lemma 19. P,(2) = {2}.
Proof. The only subset of @ is @, and it is a separable subset. O

Lemma 20. Suppose a ~ b and a is inhabited. Then b is inhabited.
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Proof. Let f :a — b be a similarity. Since a is inhabited, there exists some ¢ € a. Fix ¢. Then f(c) € b. Hence
b is inhabited. O

Lemma 21 (Bounded DNS). Let P be any set, and let y € F. Then
Vz(r eFsax<y—axeP)eoVe(reFsao<y— ——ae€P)

Remarks. This lemma is closely related to Lemma 28, and can be derived from that lemma, but here we just
prove it directly.

Proof. The left-to-right direction is logically valid. We prove the right-to-left implication by induction on y.
The formula to be proved is stratified, giving x and y index 0, so induction is legal.

Base case: by Lemma 29, z < 0 can never hold. That completes the base case.

Induction step: The key fact will be Lemma 33:
<yt o r<y Var=y. (63)

Assume y* is inhabited (as for any proof by induction). Then

Ve(z €F w2 <yt — ——z€P) assumption
Vi(zeF—(x<y V x=y) - —zeP) by (63)
Ve(x€eF = (z <y —» -2z e€P) AN (t=y = —x€P)) by logic
Ve(x € F - (z <y - -—ax€P) AN -myeP by logic
-—Vz(zeF - (r<y—xzeP) N —yeP induction hyp.
Ve (reF—>ax<y—>xzeP) by (63)
That completes the induction step. [l

7 Cardinal exponentiation

Specker 4.1 follows Rosser in defining 2" for cardinals m. They define 2™ to be the cardinal of P(a) where
P1(a) € m. That definition requires some modification to be of use constructively. It is separable subsets of a
that correspond to functions from a to 2, so it makes sense to use Ps(a), the class of separable subsets of a,
instead of P(a).

Definition 7.1. For finite cardinals m, we define
2" ={u:3a(Pi(a) €em A u~ Psla))}.
The following lemma shows that our definition is classically equivalent to Specker’s definition.
Lemma 2. Let m € F and Py(a) € m. Then Ps(a) € 2™, and 2™ = |Ps(al).

Remark. This is Specker’s definition of 2™, but our definition avoids a case distinction as to whether m does
or does not contain a set of the form P (a).

Proof. Suppose m € F and P;(a) € m. I say that 2™ is a cardinal, i.e., it is closed under similarity. Suppose
u and v are members of 2. Then there exist a and b such that P;(a) and P;(b) are both in m and u ~ Ps(a)
and v ~ Pg(b). Then by Lemma 9, Pi(a) ~ Py(b). By Lemma 7, a ~ b. By Lemma 8, Ps(a) ~ Ps(b). By
Lemma 11, u ~ v. Hence, as claimed, 2™ is a cardinal.

Therefore 2™ and |Ps(a|) are both closed under similarity. Since they both contain P,(a), they each consist
of all sets similar to Ps(a). Hence by extensionality, they are equal. O
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Remark. We note that 2™ # & does not a priori imply that 2 is inhabited, so we must carefully distinguish
these two statements as hypotheses of lemmas. 2™ is inhabited if m contains a set of the form P;(a). 2™ # &
means not-not m contains such a set.

Discussion. It is possible, of course, to investigate what happens if we use intuitionistic logic, but keep the
classical definitions of order and exponentiation. The most obvious difficulty with this approach is that the
integers F are not closed under exponentiation. For example, let us calculate what 2°"¢ would be. We have
{{@}} = P1({@}) € one. So 27 would be the cardinal of SC({@)}, instead of the cardinal of Ps({&}). But
SC({@}) contains every set of the form Xp = {x : 2 = & A P}, where P is a stratified formula not containing
the variable x. Unless we can prove or refute P, we cannot prove that Xp is one of the two members of
Ps(2), and in fact there is no hope of proving 2°" is an integer. Hence this notion is useless for constructive
mathematics in NF. Still we did investigate the matter further, as there was the possibility that this approach
might help analyze Specker’s proof. In short, it did not help. Without the axiom of choice, one can prove
nothing useful about large cardinals. For example, one cannot prove 27 = 2¥ — x = y for cardinals; there
might even be incomparable x,y such that 27 = 2¥. That might even be the case with 27 = 2" = k, where &
is the cardinal of V. We consider this subject no further.

Lemma 3. The graph of the exponentiation function
{{m,2™) : m € F}
is definable in ¢NF.

Proof. We have to show that the relation is definable by a formula that can be stratified, giving the two
members of ordered pairs the same index. The formula in Definition 7.1 is

2" ={u:3a(Pi(a) em N u~ Pgla)}.

Stratify it, giving @ index 0, P;(a) and Ps(a) and v index 1, m index 2. Then 2™ gets one index higher than
u, namely 2, which is the same index that m gets. O

Lemma 4. If 2™ is inhabited, then there exists a such that P;(a) € m and Py(a) € 2™.

Proof. Suppose 2™ is inhabited. Then by Definition 7.1, there exists a with P;(a) € m, and 2™ contains any
set similar to Ps(a). Since Ps(a) ~ Ps(a), by Lemma 11, we have Pg(a) € 2™. O

Lemma 5. Let m be a finite cardinal. If 2" is inhabited, then 2™ is a finite cardinal.

Proof. Suppose m is a finite cardinal and 2™ is inhabited. By Definition 7.1, there exists a such that P;(a) € m
and Ps(a) € 2. Then |Ps(a]) = 2™, by Definition 7.1. We have

Pi(a) € FINITE by Lemma 4
a € FINITE by Lemma 10
Ps(a) € FINITE by Lemma 17
|Ps(al) € F by Lemma 21
2meF since |Ps(al) = 2™

Lemma 6. 27¢™ = one.

Proof. zero = {@}. It therefore contains @ = P;(&). Hence 27¢™ is inhabited and contains Ps(2). But @ has
only one subset, namely &, which is a separable subset, so Ps(@) = {@} = zero. Thus 27¢° = |zero| = one. O
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Lemma 7. 2°" = two.

Proof. one is the set of all singletons. It therefore contains {zero} = P;(zero). Then 2°"® contains P(zero).
There are exactly two subsets of {@}, namely @ and {@}, and both are separable. Hence 2°™ contains the
two-element set Pg(zero) = {@,{@}}. That set belongs to two = one™ since it is equal to {{&}} U {@}, and
the singleton {{@}} belongs to one and {@} & {{@}}. Therefore 2°™ and one™ have a common element. Both
are cardinals, by Lemma 5. Then by Lemma 24, 2°™ = two. (|

Lemma 8. 2™° = four.

Proof. By definition, four = three™ = twot*. One can show (but we omit the details) that
Py ({one, two}) = {{one}, {two}} € two

Therefore, by the definition of exponentiation,

Ps({one, two}) = {@, {one}, {two}, {one, two}} € 2™°

One can explicitly exhibit the ordered pairs of a similarity between the last-mentioned set and the element
{one, two, three, four} of four. We omit the details. Then by Lemma 8, 2™° = four. (|

Lemma 9. We have
u € two <> Ja,b(a#b N u={a,b}).

Proof. We have two = one™. If a # b then by Lemma 5, {a} € one, and {a} U {b} = {a,b} € two. Conversely,
If u € two then v = v U {b}, where v € one and b ¢ v. By Lemma 5, v = {a} for some a, so u = {a,b}. O

Lemma 10. We have
u € three <» Ja,b,c(a#b ANb#c Na#c AN u=/{a,b,c}).

Proof. We have three = two™. Assume a, b, ¢ are pairwise distinct. Then by Lemma 9, {a,b} € two. Since
three = twot, {a,b} U {c} = {a,b,c} € three. Conversely, If u € three then v = v U {c}, where v € two and
¢ ¢ v. By Lemma 9, v = {a, b} for some a,b with a # b. Since ¢ € v, a # ¢ and b # c. Therefore u = {a,b,c}
with a, b, ¢ pairwise distinct. O

Lemma 11. We have zero < one < two < three < four.

Proof. Since each of these numbers is defined as the successor of the one listed just before it, the lemma is a
consequence of Lemma, 37. O

Lemma 12. For m € FF, we have m < one <> m = zero.

Proof. Let m € F and m < one. By Theorem 5.16, m < zero V. = zero V zero < m. By Lemma 29, m < zero
is ruled out. It remains to rule out zero < m. Assume zero < m. Then

m < one by hypothesis
mT < one by Lemma 30
mT < zero™ since zerot = one
m < zero by Lemma 10
zero < zero by Lemma 21, since zero < m < zero
zero &£ zero by Lemma 29
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Lemma 13. For m € F, we have

m < two <+ m = zero V m = one.

Proof. Left to right. Assume m < two. We have

zero # one by Lemma 36
{zero, one} € two by Lemma 9
m < two by Definition 5.2
a € mAa € Ps({zero,one}) for some a, by Lemma 8
a # {zero,one} since m # two
zero €aVzero € a since a € Py({zero,one})
one€aVoneda since a € P4({zero,one})

An argument by cases (about 170 steps, which we omit) shows that a = &, or a = {zero}, or a = {one}. Then
a = zero or one, by Lemma 24. That completes the left to right direction.

Right to left: we have zero < two and one < two by Lemma 11. [l

Lemma 14. For all a, a is a unit class if and only if P;(a) is a unit class.

Proof. Left to right. Suppose a = {z}. Then the only unit subset of a is {a}, so P;(a) is a unit class.

Right to left. Suppose Pi(a) = {u}. Then u € a. Let t € a. Then {t} € Pi(a), so {t} = u. Hence every
element of a is equal to u. Hence a = {u}. O

Lemma 15. Forall z € F, x < zero — = = zero.

Proof. Suppose = € F and « < zero. By the definition of <, there exists a,b such that a € =, b € zero, a C b,
and b = (aUb) — a. Then

b=o by definition of zero
a=o since a C b
g € xNzero by definition of N
T = zero by Lemma 24

Lemma 16 (Specker 4.6).
If m is a finite cardinal and 2™ is inhabited, then m < 2.

Remark. This version of Specker 4.6 phrases the matter positively, so it is constructively stronger.

Proof. Since F has decidable equality, by Corollary 5.17
m =zero V. m =oneV (m # zero A m # one.)

We argue by cases.

Case 1, m = zero. Then by Lemma 6, 2" = one, and we have to show zero < one, which follows from the
definition of < by exhibiting the separable subset & of the set {@}, and noting that & € zero while {@} € one.



44 Michael Beeson

Case 2, m = one. Then by Lemma 7, 2" = two, and we have to show one < two, which follows from
zero < one by Corollary 4.7 and Lemma 10, or more directly, from the definition of < by exhibiting the
separable subset {&} of {{@}, @}, the former of which belongs to one while the latter belongs to two.

Case 3, m # zero and m # one. By hypothesis, 2™ is inhabited. Then there exists a such that P;(a) € m.
Since m € F, we have

P1(a) € FINITE by Lemma 4
a € FINITE by Lemma 10

Ps(a) € FINITE by Lemma 17

a € DECIDABLE by Lemma 3

Then by Lemma 18, P;(a) is a separable subset of Ps(a). Now with u = Py (a) and v = Ps(a) we have proved
that u is a separable subset of v and u € m and v € 2. Then by Definition 5.2 we have m < 2™.

By definition m < 2™ means m < 2" and m # 2™. It remains to prove that m # 2. Suppose m = 2™.
As just proved, we have Py(a) C Ps(a). I say that it is a proper subset, Pi(a) C Ps(a). It suffices to prove
P1(a) # Ps(a). We have to produce an element of Ps(a) that does not belong to P;(a). We propose a as this
element. We have a € Py(a) since a is a separable subset of itself. It remains to show that a € P;(a). Assume
a € P1(a). Then a is a unit class. By Lemma 14, P;(a) is also a unit class. Any two unit classes are similar, so
P1(a) ~ zero. Since zero € one, P;(a) € one, by Lemma 8. Then m N one is inhabited, since it contains Py (a).
Then by Lemma 24, m = one, contradiction. That completes the proof that P;(a) is a proper subset of Ps(a).

We have

Pi(a) C Ps(a) as proved above
Pi(a) ~ Ps(a) by Lemma 9, since Pi(a) € m and Ps(a) € 2™
Ps(a) is infinite since Pg(a) ~ P1(a) C Ps(a)
= (Ps(a) € FINITE) by Theorem 3.24
Ps(a) € FINITE by Lemma 17, since a € FINITE
That is a contradiction. g

Lemma 17. Forallm €T,
Ju (u € 2™) — m*T < 2™,

Proof. Suppose m € F and Ju (u € 2™). Then

m < 2™ by Lemma 16
2m e by Lemma 5
mt < 2m by Lemma 30

O
Lemma 18 (Specker 4.8). Let m,n € F. If m < n and 2" is inhabited, then 2™ is inhabited and 2™ < 2.
Proof. Suppose m < n and 2" is inhabited. Then

Ju (u € n) by Corollary 4.7
b (P1(b) € n) by Lemma 4
b (P1(b) € m) by Lemma 4
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Since m < n, by Lemma 8 there is a separable subset x of P;(b) such that 2 € m. Let a = [Jz. Then
using the definitions of | J and Py, we have x = Py(a). Therefore 2™ is inhabited. Now 2™ = NC(Ps(a)) and
2" = NC(Ps(b)).

I say that b is finite. We have

P1 (b) cn
P1(b) € FINITE by Lemma 4
b e FINITE by Lemma 10
I say that a is also finite. We have
x € FINITE by Lemma 4, since z € m

Every member of x is a unit class, since = Pi(a)). Every unit class is finite. Therefore every member of z
is finite. Moreover, since the members of x are unit classes, distinct members of x are disjoint. Since z is also
finite, a = (Jx is a finite union of disjoint finite sets. Hence « is finite, by Lemma 25.

Since = P4 (a) is a separable subset of P;(b), we have

P1 (a) € Ps (Pl (b))
a € Ps(b) by Lemma 11 (right to left)
Ps(a) € Ps(Ps(b)) by Lemma 14, since a and b are finite

Then Ps(a) belongs to 2™, and is a separable subset of P4(b), which belongs to 2". Therefore, by Definition 5.2,
2m <27, O

8 Addition

Specker uses addition in §5 of his paper, and relies on Rosser for its associativity and commutativity. Those
properties can be proved (as is very well-known) by induction from the two fundamental “defining equations”:

z+yt = (z+y)"

xr+zero = x

In the present context, where the main point of the paper is to prove that there are infinitely many finite
cardinals, we need to bear in mind the possibility that successor or addition may “overflow”. We have arranged
that successor is always defined (for any argument whatever); and if there is a largest natural number then
when we take its successor we get the empty set, which can be thought of as the computer scientist’s “not a
number.” We need to define addition with similar behavior; if  + y should “overflow”, it should produce “not
a number”, but still be defined. Then the equations above should be valid without further qualification, i.e.,
without insisting that x and y should be members of F. If we assume only that those equations are valid for
z,y € F, then the inductive proofs of associativity and commutativity do not go through.
The proofs of associativity and commutativity proceed via another important property, “successor shift”:

:cher::EerJr

Normally this property is proved by induction from the “defining equations.” In the present context, that
does not work, because if x and y are restricted to F, then when we try to use successor shift to prove the
associative law, we need =z + y € F, which we do not want to assume, as the statement of the associative
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law should cover the case when x + y overflows. Therefore, we prove below that successor shift is generally
valid, i.e., without restricting  and y to F. Once we have these three equations generally valid, then the usual
proofs of associativity and commutativity by induction go through without difficulty. But in fact, it is simpler
and more general to verify them directly from the definition of addition, and then we have associativity and
commutativity of addition for all sets, not just finite cardinals.

Definition 8.1 (Specker 3.1, Rosser 373). For any sets z and y we define
r+y:={z:Fu,v(u€ex ANvey ANunNnv=a A z=uUv)}

The formula in the definition is stratified, giving u, v, and z index 1 and x and y index 2. Then x,y, and
z all get the same index, so addition is definable as a function in ¢{NF. (See Definition 2.2 for ordered triples.)

Lemma 2. Addition satisfies the “defining equations” and successor shift:
Tr+zero =
r+yt = (z+y)"
z+y" 4y

Remark. Addition is defined on any arguments, not just on F.

Proof. Ad x + zero = x. By extensionality, it suffices to show z € x + zero <> z € x. Left to right: suppose
z € x + zero. Then z = uw U v, where u and v are disjoint and u €  and v € zero. Since zero = {&}, we have
v=A\,80 2z =uU =u € x. That completes the left-to-right implication.

Right-to-left: Let z € . Then z U @ € x + zero, by the definition of addition. Since z U @ = z, we have
z € x + zero as desired. That completes the proof of x + zero = z.

Ad x4+ yT = (z +y)T. By extensionality, it suffices to show the two sides have the same members. Left to

right: We have

zex+yt
z=uUv
v=wU{c}
z=(uUw)U{c}
uUwex+y
cduUw
z€(x+y)t

That completes the left to right implication.

Right to left:

z€(x+y)t
z=wU{c}
w=uUv
z=uU(vU{c})
cgv

vU{c}ey"
uN(vU{c}) =2
uU@U{c}) €ex+y"
(wuv)U{clexz+y"
z€x+y"

assumption

where u € z and v € yT and unov =@
where w € y and ¢ € w, by definition of y™
by associativity of union

by definition of addition

since c¢ wand uNov =

by definition of successor

assumption

where c¢ wand w e x +y

where u € x and v eyand uNov =9
by the associativity of union
since c g w=uUv

by definition of successor

sinceuNv =@ and ¢ € u

by definition of addition

by the associativity of union

since z =wU {c} = (uUv) U{c}
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That completes the proof of the right to left direction. That completes the proof of x + y* = (z +y)*.

Ad successor shift. We must prove

z€x+y+<—>z€x++y.

Left to right:

zexr+ y+ assumption
z=uU(vU{c}) where u € z, v €y, and ¢ € v, and uN (vU {c}) = @
z=(uU{c})Uv by the associativity and commutativity of union
cEu since uN (vU{c}) = o
wU{c} €xt by the definition of successor
(wU{chNuv=g by the associativity and commutativity of union
ze€xt +y by the definition of addition

That completes the left to right direction.
Right to left:

zext + Y assumption
z=(uU{c})Uv where u € z, v €y, c € u, and (uU {c})Nv =0
z=(uUv)U{c} by the associativity and commutativity of union
c¢&uUv since ¢ ¢ w and (uU {c})Nov &
wUv ex+y by the definition of addition
z€(x+y)t by the definition of successor
That completes the right to left direction. O

Lemma 3. Addition obeys the associative and commutative laws and left identity (without restriction to IF)

zero+xr = x
(z+y)+z = z+(y+2)
r+y = y+tx

Remark. We call attention to the fact that, even when x,y, z are assumed to be in F, the expressions in the
equations might “overflow”, and the equations contain implicitly the assertion that the overflows “match”, i.e.,
one side overflows if and only if the other does. Here “overflow” means to have the value &.

Proof. These laws are immediate consequences of the definition of addition, via the associative and
commutative laws of set union. We omit the proofs. (I

Lemma 4. For all m € F, we have m™ = m + one.

Proof. We have

m + one = m + zero™ by definition of one
m + one = m™ + zero by Lemma 2
Jr

m+one=m by Lemma 2
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Lemma 5. one+ one = two.

Proof.

+

two = one by definition of two

two = one + one by Lemma 4

Lemma 6. Suppose x,u € F, and x + p is inhabited. Then x + u € F.

Remark. This lemma addresses the problem of possible “overflow” of addition. If there are enough elements
to find disjoint members of k and u then adding « and g will not overflow.
Proof. By induction on pu, which is legal since the formula is stratified.

Base case: k + zero = k is in F because k € F.

Induction step: Suppose s + p* is inhabited and p is inhabited. Then & + u* = (k + p)T is inhabited.
By the induction hypothesis, k + p € F. Then by Lemma 19, (k + p)™ € F. Since (k + )™ = k + pT, we have
k + puT € F. That completes the induction step. O

Lemma 7. Suppose p,q,7 € Fand p+q+r € F. Then p+q and ¢+ are also in F. Similarly, if p,q,r,s € F
andp+qg+r+seF, thenp+q+reF.

Proof. By Corollary 4.7, p+q—+r is inhabited. Let u € p+¢+r. Then by the definition of addition, u = aUbUc
with a € p, b € q, c € r, and a, b, ¢ pairwise disjoint. Then aUb € p+ g and bUc € g+ r. Then by Lemma 6,
p+q € F and ¢+ r € F. That completes the proof of the three summand case. The case of four summands is
treated similarly. We omit the details. (|

Lemma 8. If pc Fand p+q" €F, then p* € F.
Remark. Tt is not assumed that g € F.

Proof. Suppose p € F and p+ ¢ € F. By Corollary 4.7, there exists u € p+¢*. Then by Definition 8.1, there
exist a and b with @ € p and b € ¢7 and a Nb = &. By definition of successor, b = z U {c} for some z and c,
so ¢ € b. Since aNb = &, we have ¢ € a. Then a U{c} € p*. Then p* € F. O

Lemma 9. Ifp,g€Fandp+qT €F, then p+qcF.

Proof. We have

p+qt eF by hypothesis
p+q+oneelF by definition of one and Lemma 2
p+qelF by Lemma 7

Lemma 10. For a,b,p,q € F,if b+ q € F we have

a<bANp<qg—a+p<b+tg
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Proof. Suppose a,b,p,q € F and b+ g € F. Suppose also a < b, p < ¢q. Then
wEb+q for some w, by Lemma 4.7, since b+ q € F

By the definition of addition, there exist u,v with w =uUwv, u € b, v € ¢, and uNv = &. By Lemma 8, since
a < b there exists r € a with r € Py(u). By Lemma 8, since p < ¢, there exists s € p with s € Py(v). Then
one can verify that r Us € Pg(uUwv). (We omit the details of that verification.) Since uUv = w we have
rUs € Ps(w). We have rNs =&, sincer Cu, s Cv,and uNv=g. Then r Us € a+ p, by the definition of
addition. Then a +p < b+ ¢, as witnessed by rUs € a+p, r Us € Ps(w), and w € b+ q. (|

Lemma 11. For a,p,b,q € F, if b+ q € F we have
a<bANp<qg—=a+p<b+gq

Remark. It is not assumed that a + p € F, which would make the proof easier.

Proof. Suppose a < b and p < ¢q. Then

at <b by Lemma 30
Ju(u € a™) by the definition of addition
at €F by Lemma 19
at+p<b+gq by Lemma 10
(a+p)T <b+q by Lemma 3
Ju(u € (a+p)h) by the definition of <
Ju(u € a+p) by definition of successor
a+pelF by Lemma 6
(a+p)t €F by Lemma 19
a+p<(at+p)t by Lemma 37
a+p<b+q by Lemma 21

Lemma 12. For m € F we have
Pi(x) € m — Ps(z) € 2™.

Proof. Suppose P1(z) € m. By Definition 7.1, 2™ contains all sets similar to Ps(z). By Lemma 11, Py(x) is
one of those sets, so P,(z) € 2™. O

Lemma 13. For all z we have 2% # zero.

Proof. Suppose 2% = zero. Then

& € zero by Definition 5.14
e 2* since 2% = zero
& ~Ps(a) N Pi(a) €x by Definition 7.1
Psla) =2 since only @ is similar to &

But a € P,(a), contradiction. O
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Lemma 14. Suppose x ~y, and a € z and b ¢ y. Then
xU{a} ~yU{b}.
Proof. Extend a similarity f : 2 — y by defining f(a) = b. We omit the details. O
Lemma 15. Let p and ¢ be disjoint finite sets. Then |p U ¢| = |p| + |q]-
Proof. We have

pUq € FINITE by Lemma 11
[pUgql€F by Lemma 21
lp| € F by Lemma 21
lg) € F by Lemma 21
pUqE|pUd| by Lemma 11
p € Ipl by Lemma 11
q € lq| by Lemma 11

pUgq € |p| + g by the definition of addition

lpUgq|Npl+ lq| # @ since both contain p U ¢
Ip|+ ¢l € F by Lemma 6

lpUq| = Ip|+ql by Lemma 24

Lemma 16. For p,q,r € F, if ¢+ p € F we have
g+p = r+p—qg=r
ptq = ptr—ogqg=r.

Proof. The two formulas are equivalent, by Lemma 3. We prove the first one by induction on p, which is legal
since the formula is stratified. More precisely we prove by induction on p that

Vg,r e Fg+p€eF = q+p=r+p—qg=r).

Base case, p = 0. Suppose ¢ + 0 = r 4+ 0. Then g = r by the right identity property of addition, Lemma 2.
That completes the base case.

Induction step. Suppose ¢+ p* =r +p* and ¢ + p*T € F. Then

(g+p)t=@+pt by Lemma 2
qgtpel by Lemma 9
r+peF by Lemma 9

Ju(u € qg+p) by Lemma 4.7
Ju(u€r+p) by Lemma 4.7
(@+p)t=q+p* by Lemma 2
(r+p)" =r+p* by Lemma 2
(g+p)T €F equality substitution
(r+p)t eF equality substitution
Ju(ue (g+p)h) by Lemma 4.7

Ju(u € (r+p)h) by Lemma 4.7
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g+p=r+p by Lemma 11, since (¢ +p)* = (r +p)™
q=r by the induction hypothesis
That completes the induction step. (I

Lemma 17. Let b € FINITE and ¢ € b. Then
[Ps(bU {c})| = [Ps(b)] + [Ps(D)].
Proof. Define
R:={xU{c}: 2z € Psb)}.

The definition can be rewritten in stratified form, so R can be defined in ¢{NF. Define f : z — x U {c}, which
can also be defined in ¢NF:

f={{z,zU{c}): x € Ps(b)}.
The formula is stratified, since all the occurrences of x can be given index 0, and {c} and Ps(b) are just
parameters. Then f : P(b) — R is a similarity. (We omit the 150 steps required to prove that.)

We first note that if z € Ps(bU {c}) and ¢ € z, then z = (x — ¢) U {c}, since z is finite and therefore has
decidable equality. Similarly b U {c} has decidable equality, so every x € Py(bU {c}) either contains ¢ or not.
If ¢ € 2 then « € R. If ¢ &  then x € Py(b). Therefore

Ps(bU{c})=Ps(b)UR

Ps(b) ~ R since f : Ps(b) — R is a similarity
|Ps(b]) = |R] by Lemma 12
Psb)NR =2 since c € b
Ps(b) € FINITE by Lemma 17
R € FINITE by Lemma 14

|Ps(bU {c}|) = |Ps(b]) + |R| by Lemma 15
[Ps(bU{c}]) = |Ps(b]) + [Ps(b]) since [Ps(b]) = |R]|

Lemma 18. For p € F, if 27" € F, then 2P = 2P 4 2P,

Proof. Suppose p € F and 2r" € F. Then

Ju(u € 2r") by Lemma 4.7
P1(a) € p* for some a € p, by definition of exponentiation
wueEpT Ageu for some ¢, u, by Lemma 15
u~ P1(a) by Lemma 9, since both are in p™*
w € Pi(a) for some w, by Lemma 20
ceahw=/A{c} for some ¢, by definition of P;(a)
P1(a) € FINITE by Lemma 4
a € FINITE by Lemma 10

a € DECIDABLE by Lemma 3
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b:=a—{c}

definition of b

a=bU{c} since a € DECIDABLE (64)
Pi(a) = P1(b) U {{c}} by Lemma 15
Ps(bU{c}) € or" by definition of exponentiation
Po(bU {c}| = 2" by Lemma 11
[Ps(bU {c}H)| = |Ps(b)| + |Ps(b)] by Lemma 17 (65)
P1(a) € DECIDABLE by Lemma 3
P1(b) = P1(a) — {{c}} since P;(a) € DECIDABLE
Pi(b) ep by Lemma 9
Ps(b) € 2P by the definition of exponentiation
Ps(b) € |Ps(b]) by Lemma 11
Ps(b) € FINITE by Lemma 17
|Ps(b)] € F by Lemma 21
|Ps(b)| = 27 by Lemma 24
Then 27" = 27 + 27 as desired, by (65). O
Lemma 19. For m € F, 2™ = one <» m = zero.
Proof. Left to right. We have
2™ = one assumption
2™e — four by Lemma 8
two < m — 2™° < 2™ by Lemma 18
two < m — four < one by transitivity of <
one < four by Lemma 11
two £ m otherwise one < four A four < one
m < two V two < m by Theorem 5.16
m < two since two £ m
m =zero V m = one by Lemma 13
2°" = two by Lemma 7
one # two by Lemma 36
m # one since 2™ = zero
m = zero since m = zero V. m = one but m # one
Right to left. Suppose m = zero. Then 2™ = 27*° = one, by Lemma 6. O

Lemma 20. For n,m € F, if 2" = 2™ and 2" is inhabited, then n = m.

Remark. The reader is invited to try a direct proof using the definition of exponentiation. It would work if

we had the converse of Lemma 8. The only proof of that converse that we know requires this lemma. Therefore,

we give a more complicated (but correct) proof by induction.
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Proof. We prove by induction on n that for n € F with 2" inhabited, we have
Ju(ue2™) - VmeF((2"=2" = n=m) (66)

The formula is stratified giving n and m both index 0, so it is legal to proceed by induction.
The base case follows from Lemma 19.
Induction step. Suppose 27" = 2™ and nt is inhabited. We have m = zero V m # zero, by Lemma 5.17.
Case 1, m = zero. Then by Lemma 19, nt = zero, contradiction.

Case 2, m # zero. Then

IreF(m=r") by Lemma 17
ot = or" since 2" = 2m
2" 42" =27 427 by Lemma 18
r<n Vr=nVn<r by Theorem 5.16
We argue by cases.
Case 1, r < n. Then
2m < 2" by Lemma 18
2" £ 2" by the induction hypothesis
2 < 2" by the definition of <
" eF by Lemma 5
DU L by Lemma 18
2N 42" < 2" 427 by Lemma 11
2" 4 2" = 9"t by Lemma 18
o' < ot by Lemma 21

But that contradicts 2" = 27" . That completes Case 1.
Case 2, n < r, similarly leads to a contradiction. We omit the steps.

Case 3, n = r. Then 2" = 2". Substituting 2™ for 2" in the identity 2" 4+ 2" = 2" + 2", we have
2" 42" = 2" 4 27 Then 2" = 2" = 2™ as desired. That completes the induction step. [l

Lemma 21. Let m,n € F. If m < n and 2" is inhabited, then 2™ is inhabited and 2" < 2".

Proof. Suppose m < n and 2" is inhabited. Then

m<n by the definition of <
2m < on by Lemma 18

m#n by the definition of <
2m £ 2 by Lemma 20
2m < 2" by the definition of <

Lemma 22. For p,q € F we have

p<qg+ IkeF(p+k=q).
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Proof. By induction on g. The formula is stratified, giving all variables index 0.

Base case, p < zero <» Jk € F,p+ k = zero. Left to right: Suppose p < zero. Then p = zero V p < zero, by
Lemma 19. But p £ zero by Lemma 29. Hence p = zero. Then p + k = zero + k = zero by Lemma 3. . Right

to left. Suppose p + k = zero. Then by the definition of addition, there exists sets a € p and b € k such that
a Ub € zero. By definition of zero, zero = {@}, so aUb = @. Then a = &. Then @ € p and & € zero. Then
by Lemma 24, p = zero. That completes the base case.

Induction step. Assume ¢T is inhabited. We have to show
p<qt < IkecF(p+k=q").

Left to right: suppose p < g7. Then p = ¢7 V p < ¢, by Lemma 32.
Case 1, p < ¢q. Then by the induction hypothesis, there exists k € F such that p + k = q. We have

Ju (u € q") by hypothesis
Juu € (p+k)*+ since p+k =g¢q
p+ kY =@+k)tT=q" by Lemma 2
Ju (u € k1) by the definition of addition
kT €T by Lemma 19

That completes Case 1.
Case 2, p = ¢7. Then taking k = zero we have

p+k=p+zero=p=gq".

That completes Case 2.

Right to left. Suppose k € F and p + k = ¢7. We have to show p < ¢*. By definition of addition, there
exist a and b with e € pand b € k, and anNb = @ and aUb € ¢*. Then a is a separable subset of a U b, so
p < g7 by the definition of <. That completes the induction step. (I

Lemma 23. Let pgeFandp+q€F. Thenp <p+qand g <p-+q.

Proof. Suppose p,q € F and p+ g € F. We have

uEq for some u, by Lemma 4.7
& € zero by the definition of zero
FCu N u=02U((u—o) by the definitions of subset and difference
zero < ¢ by the definition of <
p<p by Lemma 18
p+zero<p-+gq by Lemma 10
p<p+gq by Lemma 2

That is the first assertion of the lemma. By Lemma 3, we have p4+ ¢ = ¢+ p, so ¢+ p € F and as above we
have ¢ < g + p. Therefore also ¢ < p + q. O

Lemma 24. Let p € F. Then

p#zero — p#one — 2P € F — pt < 2P,
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Remark. Specker 4.6 says p < 2P. Of course the exponent grows faster than linearly, so larger things can be
put on the left side, at the price of small exceptions.

Proof. By induction on p. For the base case, there is nothing to prove. For the induction step, assume p* is
inhabited and 2?" € F and pt # zero and pT # one. We have to prove

prt < or’ (67)
We have
p # zero since p* # one

Since equality on F is decidable, p = one V p # one,
Case 1, p = one. Then

pt T =two' = three by definitions of two and three
2P" = four by Lemma 8
three < four by Lemma 37
ptt < 2Pt since p™* = three and 27" = four

That completes the case p = one.
Case 2, p # one. Then

p # zero since p* # one by hypothesis (68)
2?" cF by hypothesis
or" = op 4 9P by Lemma 18 (69)
p+ €T by Lemma 19
2P < 2Pt by Lemma 21, since 2?" € F and p<pt
20 e by Lemma 5, since it is inhabited (70)
p+ < 2P by the induction hypothesis and (68) and (70)
pt+pt < 2P 42 by Lemma 11
pTHpt<2v” by (69)
ptt+p<2r’ by the law = + y+ = 2+ +y
ptt <pTT4p by Lemma 23
p™ T is inhabited by the definitions of < and addition
ptt eF by Lemma 19
pTt+peF by the definition of < and Lemma 6
ptt < or" by Lemma 24
But that is (67), the desired goal. That completes the induction step. O

Lemma 25. Let ¢ € F. Then for all n € F and p € F,
n=p+q—zero<qg—+p<n.

Remark. This lemma links addition and order. It probably can be proved directly from the definitions of
addition and order, but here we prove it by induction. Nevertheless we do have to use the definition of addition
directly at one of the steps.
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Proof. By induction on ¢, which is legal since the formula is stratified. The formula to be proved includes the
quantifiers on n and p.

Base case. There is nothing to prove because of the hypothesis ¢ # zero.

Induction step. Suppose n = p+ ¢ and zero < ¢*. As usual in induction proofs, we also assume ¢* is
inhabited. Then

n=p"+4gq by Lemma 2
q < zero V q=zero V zero < ¢ by Theorem 5.16
Case 1, g < zero is impossible, by Lemma 29.

Case 2, ¢ = zero. Then ¢™ = one so n = p+ one = p™. Then p < n by Lemma 37.
Case 3, zero < q. Then

n is inhabited by Lemma 4.7
pT is inhabited by the definition of addition, since n p*q
pt<n by the induction hypothesis, since n = p™ + ¢
p<ph by Lemma 37
p<n by transitivity
That completes the induction step. [l

9  Definition of multiplication

Specker did not make any use of multiplication. If one could manage to prove that F is infinite, one
would need multiplication to interpret HA in ¢{NF. But without knowing that IF is infinite, there are technical
difficulties with multiplication. Some care is required to make sure that the equations for multiplication work
without assuming F is finite; the equations must have the property that if one side is in F, so is the other side.
That is, if one side “overflows”, so does the other side. To arrange this, we must first ensure that addition has
the same property. This ultimately goes back to the theorem that successor never takes the value zero, not
just on an integer argument but on any argument whatever. We carried out those details (and they can still
be found in earlier versions of this paper on ArXiv), but we have not included them here.

10  Results about T

Here we constructivize Specker’s §5.
Definition 10.1.

T(k) = {u:Jz(zer AN u~Pi(x))}

The formula is stratified, giving = index 0, v and  index 1. We will use T(x) only when « is a finite
cardinal, although that is not required by the definition. Note that T(x) has one type higher than . Thus we
cannot define the graph of T or the graph of T restricted to F.

Lemma 2. If x € F, then

x € Kk ¢ Pi(x) € Tk.



Finite sets, mappings, cardinals, and arithmetic in intuitionistic NF 57

Proof. Left to right:

TER by hypothesis
Pi(x) ~ Pi1(z) by Lemma 11
Pi(x) € T(k) by Definition 10.1
That completes the left-to-right direction.
Right to left:
Pi(z) € Tk by hypothesis
Jz(z€erk A Pi(z) ~Pi(z)) by definition of T
z~xT by Lemma 7
TER by Lemma 8
That completes the right-to-left direction. O

Lemma 3. If x € F then for every x € k, T(x) = |P1(z|).

Proof. Suppose k € F. Then k is inhabited, by Corollary 4.7. Let € k. Then

x € FINITE by Lemma 4
Pi(x) € FINITE by Lemma 10
|Pi(z|) € F by Lemma 21
Pi(x) € T(k) by Lemma 2
Py(z) ~ Pi(x) by Lemma 11
Pi(x) € [Pi(x]) by Definition 4.10

We remark that we cannot finish the proof at this point by Lemma 24, because we do not yet know T(x) € F.
Instead: by extensionality it suffices to prove

Vu (u € T(k) <> u € [P1(z])) (71)

Left to right: Suppose u € T(k). By definition of T, there exists w € xk with u ~ Py (w). Then

w e~ T by Lemma 9, since w € k and x € K
Pi(w) ~ Pi(x) by Lemma 7
u~ Pi(z) by Lemma 11 (transitivity of ~), since u ~ Py (w)

That completes the proof of the right-to-left direction of (71).

Right to left: Suppose u € |Pi(x]). Then u ~ Py(x). Since = € x, we have u € T(x) by the definition of
T. O

Lemma 4. If x € F and z € s then k = |z

Proof. Let k € F and x € k. By extensionality, it suffices to prove that for all u,
u€E kK u€ |zl

Left to right: Suppose u € k. Then

U~T by Lemma 9
T~Uu by Lemma 11

u € |z| by Definition 4.10
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Right to left: Suppose u € |x|. Then

U~ T by Definition 4.10
U €K by Lemma 8
O
Lemma 5. If |z| € F, then T(|z|) = [P1(z]).
Proof. By Lemma 3, with k = |z|. O
Lemma 6. If m € F then Tm € F.
Remark. Since the graph of T is not definable, we cannot express the lemma as T : F — F.
Proof. Let m € F. By Corollary 4.7, m is inhabited. Let a € m. Then
Pi(a) € Tm by Lemma 2
a € FINITE by Lemma 4
P1(a) € FINITE by Lemma 10
|Pi(al) € F by Lemma 21
TmeF by Lemma 3
O

Lemma 7. Every singleton has cardinal one. That is, Va (|[{z}| = one).

Proof. By definition, one = zero™ and zero = {@}. Then the members of one are sets of the form @ U {r}, by
the definition of successor. But @U{r} = {r}. Hence the members of one are exactly the unit classes. Let = be
given; then by definition of [{x}|, [{z}| contains exactly the sets similar to {z}. By Lemma 3, that is exactly
the unit classes. Hence [{z}| and one have the same members, namely all unit classes. By extensionality,
[{z}| = one. O

Lemma 8. For all m € F with an inhabited successor, we have
T(m™) = (Tm)™".

Proof. Since m™ is inhabited, there is an z € m and a € = (so z U {a} € m™). Then

m* eF by Lemma 19
T(m*) = [Pi(zU{a}|) by Lemma 3
= |Pi(z|U{{a}}) Dby Lemma 15
= (|Pi(z)* by Lemma 13
(Tm)™ by Lemma 3

Lemma 9 (Specker 5.2). T(zero) = zero.

Proof. We have P1(&) = @ as there are no singleton subsets of &. Since zero = |&|, by Lemma 5 we have
T(zero) = |P1(2]) = |@| = zero. O
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Lemma 10 (Specker 5.2). T(one) = one.

Proof.
{7} € one by definition of one
T(one) = |P1({@}] by Lemma 3
T(one) = [{{@}}| since P1({2}) = {{2}}
{{@}}| = one by Lemma 7
T(one) = one by the two previous lines
O
Lemma 11 (Specker 5.2). T(two) = two.
Proof. We have
T(two) = T(one™) since two = one™
= (T(one))™ by Lemma 8
= one" by Lemma 10
= two.
O

Lemma 12 (Specker 5.5). Let m,n € F. Then
n<m — Tn < Tm.

Remarks. Specker 5.5 asserts that for cardinal numbers p and ¢ we have p < ¢ <+ Tp < Tq. Specker does not
prove a version of that lemma with strict inequality. We are able to do so, because we deal only with finite
cardinals. (It might fail at limit cardinals.)

Proof. The formula in the lemma is stratified, with the relation < occurring as a parameter. Therefore we can
prove by induction that for n € T,

Vm eF(n <m — Tn < Tm).

Base case, n = zero. Suppose zero < m; we must show Tzero < Tm. Since Tzero = zero, we have to show
zero < Tm. By Theorem 5.16, we have

Tm < zero V Tm = zero V zero < Tm

and only one of the three disjuncts holds. Therefore it suffices to rule out the first two disjuncts, as the third is
the desired conclusion. By Lemma 34, the first one is impossible. We turn to the second. Suppose Tm = zero.
Since m € F, by Lemma 4.7 we have a € m for some a. Then P;(a) € Tm, by definition of T. Since T'm = zero,
we have P;(a) € zero. Since zero = {@}, we have Pi(a) = &. Then a = &. Since & € zero, by Lemma 24 and
the fact that a € m, we have m = zero. But that contradicts the assumption zero < m, by Lemma 34. That
completes the base case.
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Induction step. Suppose n™ < m and n™ is inhabited. We must show T(n") < Tm. We have

m # zero since n™ < m and nothing is less than zero
m=r" for some r € F, by Lemma 17
nt<rt since n™ < m and m = r*
n<r by Lemma 13
Tn < Tr by the induction hypothesis
Ja (a € m) by Lemma 4.7
Ja(a € r') since m = r*
(Tr)* =T(r") by Lemma 8
Ju (u € n™) by the definition of <, since nt < rt
(Tn)™ =T(n") by Lemma 8, since n* is inhabited
T(rt)eF by Lemma 6
T(n™) €eF by Lemma 6
Ju (u € T(r™)) by Lemma 4.7
Ju (u € T(n™)) by Lemma 4.7
Juu € (Tn)™* since (Tn)*™ = T(n™)

T(nt) < T(r*)
T(nt) < Tm

That completes the induction step.

since (Tr)* = T(r")

by Lemma 13

since (Tn)* = T(n*) and (Tr)™ = T(r™)

since rt =m

Lemma 13 (Specker 5.3). Let m,n € F and suppose n +m € F. Then

T(n+ m) = Tn+ Tm.

Remark. This theorem can be proved directly from the definitions involved, but we need it only for finite

cardinals, and it is simpler to prove it by induction.

Proof. By induction on m we prove

VneF(n+meF — T(n+m)="Tn+Tm).

The formula is stratified, since T raises indices by one.

(72)

Base case, m = zero. We have to prove T(n + zero) = Tn + T(zero). Since T(zero) = zero by Lemma 9, and

n + zero = n by Lemma 2, that reduces to Tn = Tn. That completes the base case.

Induction step. The induction hypothesis is (72). We suppose that m™ is inhabited and that n +m™ € F.
We must prove T(n +m™) = Tn + T(m™). In order to apply the induction hypothesis, we need n +m € F.
Since n +m™* € F, it is inhabited, by Corollary 4.7. By Lemma 2, (n + m)T is inhabited. Hence it has a
member, which must be of the form z U {a} where € n + m. Thus n 4+ m is inhabited. Then by Lemma 6,
n+m € F. Therefore, by the induction hypothesis (72), we have

T(n+m) = Tn + Tm.
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Taking the successor of both sides, we have

(T(n+m))t = (Tn+Tm)"
T((n+m)t) = (Tn+Tm)" by Lemma 8
T(n+m%) = (Tn+Tm)" by Lemma 2
= Tn+ (Tm)* by Lemma 2
= Tn+T(m") by Lemma 8
That is the desired goal. That completes the induction step. O

Lemma 14 (Specker 5.8). For m € F, 2™ is inhabited.

Proof. Let m € F. Then

uem for some u, by Lemma 4.7
Pi(u) € Tm by Definition 10.1
Py(u) € 2™ by the definition of exponentiation

Lemma 15. Form €T, 2T c F.

Proof. Suppose m € F. Then 3z (z € 2™), by Lemma 14. Then by the definition of exponentiation, for some
u we have

P(u) € 2™ A Pi(u) € Tm.

Then

TmeF by Lemma 6
P1(u) € FINITE by Lemma 4

u € FINITE by Lemma 10

Pi(u) € Tm by definition of T

Ps(u) € FINITE by Lemma 17

P, (u) € 2T by Lemma 12
2Tm ¢ by Lemma 5

Lemma 16. Suppose m € F. Then (Tm)* € F.

Proof. Suppose m € F. Then

2tm ¢ by Lemma 15

Tm e by Lemma 6
Fu (u € 2™) by Lemma 4.7
Tm < 2™ by Lemma 16
(Tm)* € F by Lemma 31
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Lemma 17 (Specker 5.9). For m € F, if 2" is inhabited, then 2T = T(2™).

Proof. Suppose 2™ is inhabited. Then there exists a with P (a) € m. Then

2" = |Ps(al) by Lemma 2
Ps(a) € 2™ by Lemma 12
P1(Ps(a)) € T(2™) by Lemma 2
P1(P1(a)) € Tm by Lemma, 2
TmeF by Lemma 6
Ps(Pi(a)) € 27" by Lemma 12
2m e by Lemma 5
2Tm c by Lemma 5
|Ps(7)1(a| = |P1(Ps(al)) by Lemma, 2
= |Ps(P1(al)) by Lemma 4
']r(gm) |P1(Psal) by Lemma 3
2Tm — (2m) from the last three equations
(I
Lemma 18. For n,m € I, we have
Tn=Tm —>n=m
Proof. Suppose Tn = Tm. By Lemma 4.7, we can find a € n and b € m. Then
P1(a) € Tn by definition of T
P1(b) € Tm by definition of T
Tn =Tm by hypothesis
Pi(a) € Tn by the previous two lines
Tm eF by Lemma 6
P1(a) ~ P1(b) by Lemma 9
a~b by Lemma 7
ben by Lemma 8
n=m by Lemma 24
(I

Lemma 19 (Converse to Specker 5.3). Let a,b,c¢ € F. Then
Ta+TbeF — Ta+Tb=Tc —a+b=c.
Remark. It is not assumed that a + b € F. Indeed, that follows from the stated conclusion.

Proof. The formula is stratified, giving a, b, and c all index zero. Therefore we may proceed by induction on b.
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Base case: We have
Ta + Tzero = Te by assumption
Ta + zero = Te by Lemma 9
Ta =Te by Lemma 2
a=c by Lemma 18
a+zero=c by Lemma 2
That completes the base case.
Induction step: We have
Ta + T(b") = Tc by assumption
Ju (uebt) by assumption
bt €F by Lemma 19
T(b") = (Tb)™ by Lemma 8
Ta + (Tb)* = Te by the preceding lines
(Ta + Tb)* = Te by Lemma 2
c # zero by Lemmas 9 and 16
c=r" for some r, by Lemma 17
(Ta +Tb)*t = T(r™) by the preceding two lines
(Ta + Tb)* = (Tr)*" by Lemma 8
Ta+TOb1) €F by assumption
(Ta+Tb)t € F by Lemmas 8 and 2
Ju (u € (Ta + Tb)™) by Lemma 4.7
Ju (u € (Ta + Tb)) by definition of successor
Ju (u € (Tr)*) by Lemma 4.7
TreF by Lemma 6
Ta eF by Lemma 6
To e F by Lemma 6
Ta+ToeF by Lemma 6
Ta + Tb =Tr by Lemma 11
at+b=r by the induction hypothesis
(a+b)t =rt by the preceding line
a+bt=rt by Lemma 2
a+bt =c since 7+ = ¢
That completes the induction step. (I

Lemma 20. For n,m € F, we have

n<m <+ Tn < Tm.



64 Michael Beeson

Proof. Left to right is Lemma 12.
Right to left. Suppose Tn < Tm. By Theorem 5.16, we have n < m or n = n or m < n. We argue by cases.
Case 1, n < m. Then we are done, since that is the desired conclusion.

Case 2, n = m then Tn = Tm. By Lemma 6, Tn € F and Tm € F, so by Theorem 5.16, Tn = Tm
contradicts Tn < Tm. That completes Case 2.

Case 3, m < n. Then Tm < Tn by Lemma 12. O
Lemma 21 (Specker 5.6). Suppose p,q € F and p < Tq. Then there exists » € F such that p = Tr.
Proof. By induction on p we will prove
VgeF(p<Tq— IreF(p="Tr)) (73)

The formula is stratified, giving ¢ and r index 0 and p index 1, so induction is legal.
Base case, p = 0. Then r = zero satisfies p = Tr, by Lemma 9. That completes the base case.

Induction step. The induction hypothesis is (73). Suppose p™ < Tq and p™ is inhabited. Then

p<ph by Lemma 26
p < Tq by Lemma 25
p="Tr for some r, by (73)

Now I say that rT is inhabited. To prove that:

Tr=p<ph <Tq as already proved
Tr < Tq from the previous line
r<gq by Lemma 20
rt <gq by Lemma 30
Ju (u € rh) by the definition of <

That completes the proof that r+ is inhabited. Then since p = Tr, we have

pt = (Tr)" =T(™") by Lemma 8
That completes the induction step. [l
Lemma 22. Suppose p € F and 27 is inhabited. Then p = T ¢ for some g € F.

Proof. Suppose p € F and 2? is inhabited. Then by definition of exponentiation, for some a we have Py(a) € p
and Ps(a) € 27. By definition of T we have p = T(|a|). By Lemma 21, we have |a| € F. O

Lemma 23. For n,m € [F, we have

n<m <+ Tn <Tm.

Proof. We have

n<me<n<mV n=m by Lemma 19

Tn <Tm <+ Tn <Tm VvV Tn="Tm by Lemma 19

Now to prove the desired conclusion:
Left to right: if n < m then Tn < Tm by Lemma 20, so Tn < Tm. And if n = m, then Tn = Tm < Tm,
by Lemma 18.

Right to left: if Tn < Tm then n < m by Lemma 20, so n < m. And if Tn = Tm, then n = m by
Lemma 18. =
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Lemma 24. LetecFande+e €F. Then et €F.

Proof. By Theorem 5.17, ¢ = zero V e # zero. If e = zero then e™ = one, so we are done by Lemma 20.
Therefore we may assume e # zero. By Lemma 4.7, e + e is inhabited. By the definition of <, there exist x
and y with x € e and y € e and x Ny = . Then

y#£ED since if y = @ then e = zero, by Lemma 24
y € FINITE by Lemma 4
acy for some a, by Lemma 4
aéwx sincex Ny =@
rU{a} €et by definition of successor
et eF by Lemma 19

O

Lemma 25. If Tc is even, then c is even. More precisely, if c,a € F and Tec = a + a and a + a € F, then
there exists b € F with ¢ = b+ b.

Proof. The formula is stratified, giving b and ¢ index 0 and a index 1. F is just a parameter, so it does not
need an index. Therefore we can proceed by induction on a.

Base case: Suppose Tc = zero + zero and ¢ € F. We have

Zero + zero = zero since x + zero = x
T(zero) = zero by Lemma 9
T(c) = zero since T(c) = zero + zero = zero
c = zero by Lemma 18
Jb(c=b+10) namely, b = zero

Induction step: Suppose a™ is inhabited and a* € F and Tc = a* +a™, and a € F and a®™ +a* € F. (The
assumption a® € F is part of the induction hypothesis, while the assumptions a € F and a™ is inhabited come
with every proof by induction on F.) Then

at +at =(a+a)tt by Lemma 2
(a+a)™ €F since a™ +atT €F
I say that
a+acF (74)

It is surprisingly difficult to prove that. I had to go back to the definition of addition. Since at + a* € T,
there exists € a* + a™, by Lemma 4.7. By the definition of addition, = has the form

r=uUv with uNv =g and u € a* and v € a™
u=zU{p} Av=wU{q} with z € a and w € a, by definition of successor
zUw€Ea+a by the definition of addition

at+aclF by Lemma 6
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That completes the proof of (74). Similarly, z Uu € a™ + a, so

at €F by Lemma 19, since a € F' and a™ is inhabited
at+acF by Lemma 6
(a+a)t =a’ +a by Lemma 2
(a+a)T €F by the preceding lines
Continuing, we have
Te=(a+a)™ by Lemma 2
T ¢ # zero by Lemma 16
one # (a+a)tt by Lemma 11
T c # one since T'c = (a +a)™™
¢ # zero by Lemma 9
c=r" for some r € F, by Lemma 17
r % zero since if r = zero then ¥ = ¢ = one, so T ¢ = one
r=t" for some t € F, by Lemma 17
c=t" by the preceding lines
Te=(Tt)™t by Lemma 8
(a+a)™™ = (Tt)t" since Te = (a +a)t "
TteF by Lemma 6
Tt=a+a by Lemma 11
t=e+e for some e € F, by the induction hypothesis
tth = (et +e™) by Lemma 2
c=b+b with b = eT, by the preceding lines
et eF by Lemma 24, since e +e =t € F
That completes the induction step. (|

Lemma 26 (Specker 5.4). Let m € NC. Then
m # T(m) + one

Remark. And so on, with one replaced by two or 23, 457, and any number you could name. If Tm # m, Tm
must be a non-standard distance away from m.

Proof. We give the proof for one. Recall that m is even if m = p+p for some p € F, and odd if m = p+p+one
for some p € F. Then if m is even, m 4+ one is odd, and vice versa. One can verify by induction that every
integer is either or odd, and not both. Suppose m = Tm + one. If m is even, then Tm is even, by Lemma 25,
so T(m) + one is odd, contradiction. If m is odd, then m = k™ = k + one for some k € F, since zero is even.
Then k is even. Then T(m) = T(k™) = T(k + one) = T(k) + one, which is odd since T(k) is even. Then
T(m) + one is even, contradiction, since m is odd and equal to T(m) + one. O

Lemma 27. For all p,q, if p+ ¢ = zero then p = zero.

Remark. No additional hypothesis is needed.
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Proof. By definition, zero = {@}. By the definition of addition, there exist a and b with a € p and b € ¢ and
aNb= @, such that a Ub € zero. Then a Ub = &. It follows that a = @ and b = &. On the other hand, if a
or b had a non-empty member, then by the definition of addition, a + b would have a non-empty member, so
zero would have a non-empty member. Therefore p = ¢ = {@} = zero. O

Lemma 28. Forz,yeF, s+zrx=y+y — z=1y.
Proof. The formula is stratified; we prove it by induction on x, in the form

VyweFlz+z=y+y— x=1y).

Base case: Suppose zero + zero = y + y. Then zero = y + y. By Lemma 27, y = zero. That completes the
base case.

Induction step: Suppose z7 + 2z = y+y, and suppose (as always in induction proofs) that " is inhabited.
Then

4ot = (x4 )t by Lemma 2
Yy # zero by Lemma 16
y=r" for some 7, by Lemma 17
(x+2)™t=@+r)tt by Lemma 2
r+x=r+r by Lemma 11
r=r by the induction hypothesis
zt =rT by the preceding line
zt =y since y = r+
That completes the induction step. O

Lemma 29. Let p € F. Then
2 €F + Jq € F(p="Tg).

Proof. Suppose p € F. Left to right:

2P e F assumption
Ju (u € 2P) by Lemma 4.7
Pi(a) €p for some a, by the definition of exponentiation
P1(a) € FINITE by Lemma 4
a € FINITE by Lemma 10
la| € F by Lemma 21
a € |a by Lemma 11
Pi(a) € T(|al) by definition of T
T(la|]) € F by Lemma 6
Pi(a) € pNT(|al) by definition of intersection
p=T(|a|) by Lemma 24

dq € F (p = Ta) namely ¢ = |a]
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That completes the proof of the left-to-right direction.

Right to left: Suppose p = Tq and ¢ € F. Then

u € q
P1(u) € Tq
TgelF
P,(u) € 2T
Ps(u) € 2F
2 e F

for some u, by Lemma 4.7

by definition of T

by Lemma 6

by definition of exponentiation
since p = Tq

by Lemma 5

That completes the proof of the right-to-left direction.

Definition 10.30. Let X be any set of cardinals. Then we define

T(X) = {T(u) : u € X}.

or more explicitly

TYX)={T(w):ueX}={y:Juec X (y="Tu)}.

The formula in the definition is stratified, giving u index 0 and y and X index 1. Actually, X is just a parameter

and does not even need an index. Therefore the definition is legal in {NF. We note that it is not a function

definable in ¢NF. It is just an abbreviation for a comprehension term. Note also that the set X can be finite

or not, and the cardinals in X can be finite or not.

In general images commute with union. For images under T we have

Lemma 31. T“(X UY) = T“X)UT“Y).

Proof. This is proved in a few short steps from the definitions of 7%(X) and U.
Lemma 32. Let a and b be finite disjoint sets. Then
laUb| = l|al + 0]

Proof. Left to right: Suppose ¢ € |a Ub|. Then

aUb € |aUb| by Lemma 11

a € |a by Lemma 11

be b by Lemma 11

anNb=g by hypothesis

aUbe FINITE by Lemma 11

la| € F by Lemma 21

|b| € F by Lemma 21

laubl € F by Lemma 21

la| + 16| € F by Lemma 6

aUb e |a| + |b| by the definition of addition

laUb| = |a| + 0] by Lemma 24
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Lemma 33. Let X be a finite set of cardinal numbers. Then
IT“(X]) = T(]X]).

Proof. The displayed formula in the lemma is stratified, giving X index 1; then |X| gets index 2 and T|X| gets

index 3. On the left, the members of T“(X) are Tu for u € X, so u gets index 0, and Tu gets index 1, so T“X

gets index 2, so |[T“(X|) gets index 3, the same as the right side of the equation. So it is stratified, as claimed.
The part of the lemma involving X is

VX (X € FINITE = X € NC — — |T*(X]|) = T(|X]),

and this is also stratified, since FINITE and NC are just parameters. Therefore we can prove it by induction
on finite sets.

Base case, X = @. Then |&| = zero, so T(|&|) = T(zero) = zero. On the left, T“(2)) = &, so |T“(&|) = zero.
That completes the base case.

Induction step. Suppose X is finite and ¢ € X. We have to show
IT*(X U{c}| = T(|X U{c}.

We have
X U{c} € FINITE by Lemma 7, since ¢ ¢ X
T“(X U{c}) =TYX)U{T(c)} by Lemma 31 (75)
IT“(X U{c}]) = |TYX|U{T(c)}) by the preceding line
Te & T4(X) by Lemma 18, since ¢ ¢ X (76)
|T“(X]) = T(]X]) by the induction hypothesis (77)
|X| eF by Lemma 21, since X € FINITE
T(|X]|) eF by Lemma 6
T“(X) € FINITE by Lemma 4
{T(c)} € FINITE by Lemma 9
T“(C)N{T(c)} =& by (76)
T (X[ U{T(e)})) = [T“(X]) + {T(cl})) by Lemma 32
IT“(X|U{T(c)})) = |T“(X]|) + one by Lemma 7
IT“(X|U{T(c)})) = T(|X]|) + one by the induction hypothesis (77)
T“(X|U{T(c)})) = T(|X]|) + T(one) since T(one) = one
| X| +one = |X U{c}| by Lemma 32 since ¢ ¢ X
|X|+oneeF by Lemma 6
[T“(X)U{T(c)})| = T(|X]| + one) by Lemma 13
IT“X)U{T(c)}| = T(|X U{c}]) by the preceding lines
IT(X U {eh)] = T(|X U {c}]) by (75)
That completes the induction step. g

Lemma 34. Let X be a finite set of cardinals. Then T“(X) is finite.
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Proof. Let X be a finite set of cardinals. Then

X CFINITE by hypothesis
T“(X) € FINITE by hypothesis
|T“(X]) =T(|X]) by Lemma 33 (78)
| X|)eF by Lemma 21
T(|X]|) eF by Lemma 6 (79)
IT“(X| eF by (78) and (79)
T“(X) € |T“(X]) by Lemma 11
T“(X) € FINITE by Lemma 4
O

11 Cartesian products

The Cartesian product of two sets is defined as usual; the definition is stratified, so it can be given in iNF.
But because ordered pairs raise the types by two, the cardinality of A x B is not the product of the cardinalities
of A and B, but instead it is the product of T? of those cardinalities. In this section we provide a proof of this
fact, in the interest of setting down the fundamental facts about the theory of finite sets.

Lemma 1. Let X, Y, and Z be finite sets. Then
(XUY)xZ=(Xx2Z2)U(Y xZ).
Proof. This follows in a few steps from extensionality, the definition of x, and the logical fact that
(PV Q) NR+<(PANR)V (QANR).
O
Lemma 2. Let Y be a finite set and let a be any set. Then {a} x Y is finite. If x = |Y| then T?x = |{a} x Y.
Proof. Consider the map f: P#(Y) — {a} x Y defined by
F= b o) sy e Y

The formula is stratified, giving y and a index 0, so (a,y) gets index 2, as does {{y}}. Y gets index 1. Since
the formula is stratified, f can be defined in iNF.

One then proves without any surprises that f is a similarity from PZ(Y) to {a} x Y. We omit the
straightforward 196-line verification of that fact.

Then we have

PHY) ~ {a} x Y
P;(Y) € FINITE
P(Y) € FINITE

{a} x Y € FINITE

PHY)| =Tk
Ha} x Y| = T2k

since f is a similarity
by Lemma 10

by Lemma 10

by Lemma 23

by definition of T

by Lemma 8
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Lemma 3. Let X and Y be finite sets. Then X x Y is finite. Moreover, if x = | X| and p = |Y], then
T2(x) - T() = |X x Y.

Remarks. Without T2, the formula is not stratified. It is not necessary to assume that (T?k)-T?(u) € F. That

will, of course, be a consequence, by Lemma 21.

Proof. The formula to be proved is
X € FINITE — VY € FINITEX x Y € FINITE

That formula (and the hypotheses listed before it) are stratified, giving X and Y index 1; then X x Y gets
index 3, | X x Y| gets index 4, k = | X| gets index 2, and T?(k) gets index 4; since multiplication is a function,
the whole left-hand side gets index 4. FINITE is just parameter. Therefore we may proceed by induction on
finite sets X.

Base case. We have to show @ x Y € FINITE. One shows @ x Y = @ using the definition of x, and then
@ € FINITE by Lemma 6.

Induction step. Assume X is finite and a ¢ X. The induction hypothesis is
VY € FINITE(X xY € FINITE) (80)

Assume X U {a} € FINITE. We have to prove (X U{a}) x Y € FINITE. We have

X € FINITE by hypothesis
X xY e FINITE by the induction hypothesis (80)

{a} x Y € FINITE by Lemma 2
(XU{a}h) xY = (X xY)U({a} xY) by Lemma 1
X xY)N({a} xY)=0 since a ¢ X

(XUY)U({a} xY) € FINITE by Lemma 11

(X U{a}) xY € FINITE by the preceding lines
That completes the induction step. O

Lemma 4. Let X and Y be finite sets. If kK = |X| and p = |Y|, then

T2(r) - T2(4) = | X x Y.
Remarks. Without T2, the formula is not stratified. It is not necessary to assume that (T?k)-T?(u) € F. That
will, of course, be a consequence, by Lemma 21.

Proof. By induction on finite sets, like Lemma 3. We omit the proof, since we never use this lemma. It is
included only because it illustrates the general situation that arises from using Kuratowski pairing, which
increases the type. O

12 Onto and one-to-one for maps between finite sets

In this section, we prove the well-known theorems that for maps f from a finite set X to itself, f is one-
to-one if it is onto, and vice-versa. These theorems are somewhat more difficult to prove constructively than
classically, but they are provable.
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In treating this subject rigorously one has to distinguish the relevant concepts precisely. Namely, we have
f:X—=Y
Rel(f)

f € FUNC
oneone(f, X,Y)

Rel(f) means that all the members of f are ordered pairs. f € FUNC means that two ordered pairs in f with
the same first member have the same second member. (Nothing is said about possible members of f that are
not ordered pairs.) f: X — Y means that if # € X, there is a unique y such that (z,y) € f and that y isin Y.
(But nothing is said about (x,y) € f with &€ X.) “f is one-to-one from X to Y, or oneone(f, X,Y’), means
f: X =Y and in addition, if (z,y) € f and (u,y) € f then z = u, and if y € Y then x € X. (So z = u does
not require y € Y or x € X.) In particular, f : X — Y does not require domX C X, so the identity function
maps X to X for every X; but the identity function (on the universe) has to be restricted to X before it is
one-to-one.

Definition 12.1. f is a permutation of a finite set X if and only if f : X — X, and Rel(f) and f € FUNC,
and dom(f) C X, and f is both one-to-one and onto from X to X.

In this section we will prove that either one of the conditions “one-to-one” and “onto” implies the other, if
all the other conditions are assumed.

Remark. We do not need to specify range(f) C X, because that follows from dom(f) C X and f: X — X.
The reader can check that none of the conditions in the definition are superfluous.

Lemma 2. Let A and B be finite sets, and let f be a function with domain A, and f: A — B. Then [ is
finite.

Proof. By induction on finite sets A we prove that for all finite sets B, if the domain of fis A and f: A — B,
then f is finite.

Base case. A function with domain @ is the empty function, which is finite.

Induction step. Let A and B be finite sets, and let ¢ € A, and suppose f : AU {c} — B. Then
(c,y) e f for some y € B

Let g .= f — {{c,y)}. One can verify that g : A — B and the domain of g is A.1* Then by the induction
hypothesis, g is finite. Since A and B are finite, equality on A and B is decidable, so any member of f is either
equal to (¢, y) or not. Therefore

f=9u{{cy)}
Since g is finite and {(c,y)} & f, f is also finite. O

Lemma 3 (Decidable image). Let X and Y be finite sets. Let f: X — Y and suppose the domain of f is
X. Then the set P defined by

f(X)={yeY :JzeX(z,y) € f}

is a decidable subset of Y.

11 Formalizing this sort of lemma makes one appreciate the informal functional notation; this lemma took 330 lines of Lean and
several hours. I changed “One can easily verify” to the present “One can verify.”
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Proof. Let y € X. Define
Z:={rxeX:JyeY ((z,y) € f)}

The formula is stratified, giving x and y index 0, f index 3, and X index 1. Therefore the definition is legal.
Then

fCXxY since dom(f) = X

f € FINITE by Lemma 2
X € DECIDABLE by Lemma 3
X xY € FINITE by Lemma 3

f is a separable relation on X by Lemma 18

Z € FINITE by Lemma 21
Z=@ VvV Jx(re2) by Lemma 4

Putting in the definition of Z, we have the formula in the conclusion of the lemma. O

Theorem 12.4. Let X be a finite set, and let f : X — X be a one-to-one function. Then f is onto.

Proof. By induction on finite sets, we prove that if f : X — X is one-to-one, then f is onto. By Lemma 3, X
has decidable equality.

Base case: The only function defined on the empty set is the empty function, which is both one-to-one and
onto.

Induction step: Let X = B U {a}, where a ¢ B, and B is finite. Suppose [ : X — X is one-to-one. We
have to prove

Vy e X3z e X ((z,y) € f) (81)
By Lemma 3, a € range(f) V a & range(f). Explicitly,
e X ({(zya)e f) V mIx e X ((x,a) € f).

We argue by cases accordingly.

Case 1, dx € X ((x,a) € f). Fix ¢ such that ¢ € X and (c,a) € f. Since X has decidable equality, we have
c=a V c# a. We argue by cases.

Case la, ¢ = a. Then f: B — B. Let g be f restricted to B. Then g is one-to-one, since f is one-to-one.
By the induction hypothesis, g : B — B is onto. Now let y € X. Theny =a V y € B. If y = a, then (a,a) € f.
If y € B, then since g is onto, there exists € B with (x,y) € B. Then (z,y) € f. That completes Case la.

Case 1b, ¢ # a. Since [ : X — X, there exists b € X such that (a,b) € f. Then a # b, since {(¢,a) € f and
(a,b) € f,s0if a =b then (a,a) € f; then since f is one-to-one we have a = ¢, contradiction. Define

g9:=(f—{{c;a)} = (a,0)) U{(c,b)}.
We have Rel(g), since by hypothesis Rel(f). I say dom(g) = B. By extensionality, it suffices to show
J((t,y)€g) <+ tE€B (82)

Left to right: Assume (t,y) € g. Then

(ty) € f AN (ty) #(c,a) A (ty) #(a,b) V (t=c N y=D).
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If the second disjunct holds, then t = ¢, and ¢ € X but ¢ # a, so ¢ € B; so t € B. Therefore we may assume
the first disjunct holds:

((ty) € f A (ty) # (c,a) A (ty) # (a,b)).

Then ¢ € X since dom(f) = X. Since (t,y) # (a,b), we have y # b. Since (a,b) € f and (¢t,y) € [ it follows
that ¢ # a. Since X = B U {a}, we have t € B. That completes the left-to-right direction of (82).

Right to left. Suppose t € B. Since domf = X and B C X, there exists z such that (¢,z) € f. Unlesst = ¢
or t = a, we have (t,z) € g. If t = ¢ we can take y = b. Since ¢t € B we do not have ¢t = a. That completes the
proof of (82). That completes the proof that dom(g) = B.

Now I say that g : B — B. Suppose z € B. We must show there exists y with (z,y) € g. Since f: X — X,
there exists y € X such that (z,y) € f. Thenz =c¢ V x # ¢. If © # ¢ then (z,y) € g. If x = ¢ then (z,b) € g.
That completes the proof that Jy ((z,y) € g). We must also show that if (x,y) € g and (x, z) € g then y = z.
If @ # ¢ then (z,y) € f and (x,z) € f,soy = z. Ilf x = cthen y =b and z = b, so y = z. That completes the
proof that g : B — B.

Now I say that g is one-to-one. Suppose g(u) = g(v). If u # c and v # ¢, then g(u) = f(u) and g(v) = f(v),
so u = v since f is one-to-one. If u = ¢ and v # ¢ then g(u) = b. Since v # ¢, g(v) = f(v) = b. Since f is
one-to-one, v = a. But v & B, so {v,b) € g, since dom(g) = B. Similarly if v = ¢ and u # ¢. That completes
the proof that g is one-to-one.

By the induction hypothesis, ¢ is onto. Now I say that f is onto. Let y € X. Then if y = a, we have
(c,y) € f. If y = b we have (a,y) € f. If y # a and y # b, then y = g(z) = f(x) for some z. Since X has
decidable equality, these cases are exhaustive. That completes Case 1b.

Case 2, n3dz € X ({(x,a) € [). Let g be f restricted to B. Then Rel(g), and dom(g) = B, and g is one-to-
one, and g : B — B. Then by the induction hypothesis, g is onto. Since f : X — X, there exists some b € X
such that (a,b) € f. By hypothesis b # a. Then b € B. Since g is onto, there exists € B such that (z,b) € g.
Then (z,b) € f. Since [ is one-to-one, we have = a. But x € B, while a ¢ B. That contradiction completes
Case 2. (|

Lemma 5. Let B € FINITE and a ¢ B. Then |BU {a}| = (|B|)*.

Proof. We have

Lemma 6.

B € |B|
BuU{a} € |BU{a}|
Bu{a} € (IB)*

by Lemma 11
by Lemma 11

by definition of successor

BU{a} € FINITE by Lemma 7
|IBU{a}| € F by Lemma 21
|B| € F by Lemma 21
(IB)t €F by Lemma 19

Bu{a} € [BU{a}|n(B))"
[BU{a}| = (IB)"

by the definition of intersection

by Lemma 24

Let m,n € Fand m +n <m% and m +n € F and n # zero. Then n = one.
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Proof.
n=r"
m+r+§m+
aeEm+n Abem®
mT €T
m4rT+k=m"
(m+r+Ek)t=m"
m+relF
m+r+kt=m"
m+r+kteF
m+r+kelF
m+r+k=m
r+k+m=zero+m
m+reF Ar+keF
r+k+melF
r+ k = zero
(m+r)t <m?*
m+rt eF
m+relF
m+r=m
m+r =m + zero
r = zero

n=rT = zero™ = one

r = zero
rT = one
n = one

for some r € F, by Lemma 17
sincem+n <mtand n=rt
for some a and b, by definition of addition
by Lemma 19

for some k € F, by Lemma 22
by Lemma 2

by Lemma 8

by Lemma 2
sincem+r+kt=mtelF
by Lemma 9

by Lemma 11

by Lemma 2

by Lemm 7

by commutativity and associativity, since m +r + k € F
by Lemma 16

by Lemma 2

sincem+n el

by Lemma 9

by Lemma 11

by Lemma 2

by Lemma 16

since one = zero™

by Lemma 27

by the definition of one

since n = rt

Lemma 7. Let X € FINITE and let Z be a separable subset of X. Then

2] < 1X].
Proof. We have
|X|eF by Lemma 21
Z € FINITE by Lemma 19
|Z| e F by Lemma 21
X € |X] by Lemma 11
Z e |Z| by Lemma 11
|Z] < |X] by the definition of <
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Theorem 12.8. Let X be a finite set, and let f: X — X be onto, with dom(f) C X. Then f is one-to-one.

Proof. We prove the more general fact that if X and Y are finite sets with |X| < |Y|, and f: X — Y is onto,
then f is one-to-one. (The theorem follows by taking ¥ = X'). More explicitly, we will prove by induction on
finite sets Y that

VY € FINITEVX € FINITE (|X| < |Y] — V/ (f € FUNC
— Rel(f) — dom(f) C X

—VeeX3IyeY ((z,y) €f)

—VyeYdre X ({(zy) €f)

= VyeYVe,ze X ((z,y) € f = (z,y) € f = x=2)))

The formula is stratified, giving x,y,z index 0, f index 3, X and Y index 1, and |X| and |Y] index 2.
FUNC and FINITE are parameters; Rel(f) is stratified giving f index 3; dom(f) € X can be expressed as
Va,y ((z,y) € f — x € X)), which is stratified. Therefore we may proceed by induction on finite sets Y.

Base case, Y = @. Then (in the last line) y € Y is impossible, so the last line holds if the previous lines
are assumed. That completes the base case.

Induction step, Y = B U {a} with a ¢ B and B € FINITE. Suppose X € FINITE, and f : X — Y is onto,
and f € FUNC and Rel(f) and dom(f) C X. We must prove f : X — Y is one-to-one. Define
Z:={reX:(x,a) € f}. (83)

The formula is stratified, giving  and a index 0 and f index 3, so the definition is legal. Since f is onto, Z is
inhabited. I say that Z is a separable subset of X. That is,

Ve e X ((z,a) € f V (x,0) & f). (84)

To prove that, let © € X. Since f : X — Y, there exists y € Y with (x,y) € f. Since f € FUNC, we have
(x,a) € f > y =a. Since Y is finite, we have y = a V y # a by Lemma 3. That completes the proof of (84).
Then by Lemma 19, Z € FINITE and X — Z € FINITE.

Let g be f restricted to X — Z. Then g : X — Z — B and g is onto B. I say that

| X —Z| #|X]| (85)
To prove that, assume |X — Z| = | X|. Then

|X—-Z|eF by Lemma 21

|X| eF by Lemma 21
X~X-7 by Lemma 9

ueZ for some v € X, since f is onto Y

X-ZCX by the definition of Z
X#X -7 sinceu g X —Z butue X

Therefore X is similar to a proper subset of X. Then by Definition 3.23, X is infinite. Then by Theorem 3.24,
X is not finite. But that contradicts the hypothesis. That completes the proof of (85).
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Now I say that | X — Z| < |BJ. To prove that:

X — Z| <|X]| by Lemma 7
X —Z| < |X] by (85) and the definition of <
|X| < |BU{a}| by hypothesis
|BU{a}| = (|B])" since a ¢ B
|IX - Z| < |B|* by the previous two lines
| X — Z| <|B| by Lemma 6

Therefore we can apply the induction hypothesis to g. Hence g : X — Z — B is one-to-one. Therefore g is a
similarity. Then
|X — Z| = |B| by Lemma 9 and ten omitted steps
I X|=|X—-Z|+1|Z] by Lemma 15
|X|=|B|+|Z] by the previous two lines
(X <|Y] by hypothesis
|B|+ |Z] < Y| by the previous two lines
Y| =|B|* sinceY = BU{a} anda ¢ B
|B| + 12| < |B|* by the previous two lines
|Z| = one by Lemma 6

By Lemma 5, Z is a unit class {c¢} for some c. By (83),
Vo ((z,a) € f <>z =c).

I say that f is one-to-one. To prove that, let u,v € X and (u,y) € f and (v,y) € f. We must prove u = v.
Since Y has decidable equality, we have y = a V y # a. We argue by cases accordingly.

Case 1, y=a. Thenu € Z and v € Z. Then u = ¢ and v = ¢, so u = v. That completes Case 1.
Case 2,y #a. Thenu & Z and v € Z, so (u,y) € g and (v,y) € g. Since g is one-to-one, we have u = v as
desired. That completes Case 2. That completes the induction step. [l

Theorem 12.9. Let X and Y be finite sets, and suppose f : X — Y is onto, and the domain of f is X.
Then Y] < |X].

Proof. By induction on finite sets X, we prove the theorem for all Y.

Base case. If f: @ — Y has domain @ and is onto Y then Y = @, so

| X | =1Y]| = |2| = zero.

Induction step. Suppose ¢ € X and f has domain X U{c}, and f: X U{c} — Y is onto. Let g be f restricted
to X, which is conveniently defined as f N X x Y. Then the domain of g is exactly X.

We have f: X U{c} = Y, from which it follows in a few steps that also g : X — Y. Then by Lemma 3, the
image g(X) of X under g is a decidable subset of Y. (That lemma requires that the domain of g be exactly
X, not larger, which is why we had to use g instead of f.) That is,

Bz e Xg(x) = f(c) V =3z € Xg(z) = f(o).

We argue by cases, as justified by that disjunction.
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Case 1, 3x € X g(z) = f(c). Then g: X — Y is onto. Then

Y| < |X]| by the induction hypothesis
IX| < |X|t by Lemma 26
X" = |X U{c} by Lemma 13
Y] <|X U{c}| by the preceding lines

That completes Case 1.
Case 2, =3z € X g(x) = f(c). Let t = f(c¢). Then g: X — Y — {t} is onto. We have

Y — {t} € FINITE by Lemma 31

g: X =Y —{t} and g is onto as one can check

and the domain of g is X. Then by the induction hypothesis,
Y —{t} < |X].

We want to take the successor of both sides, but to do that we have to check that those successors are inhabited.

Y has decidable equality by Lemma 3
Y -{tHu{t} =Y by decidable equality on Y
Ju (u € |X|1) namely v = X U {c}
Ju (ue|Y — {t}T) namely v = (Y — {t}) U {t} =Y
|X|T eF by Lemma 19
Y — {t}|T €F by Lemma 19

Now we can take the successors:

Y — {3t < | x|t by Lemma 10 (86)
Y el|Y| by Lemma 11
Y -{thu{tye|y — {t}|* by definition of successor
Yely —{t}" since (Y —{t})u{t} =Y
Y — {t}|t =Y by Lemma 24
Y| <|X|* by (86) and the preceding line
| X U{c} = |X|T by Lemma 13
¥ <X U{e}] since Y] < |X|* = X U{c}]
That completes the induction step. (I

Lemma 10. Let A and B be finite sets, and let f be a function mapping A onto B. Then |B| < |A].

Proof. We may assume without loss of generality that A is the domain of f. Then

f € FINITE by Lemma 2
A x B € FINITE by Lemma 3
f € FINITE by Lemma 2

f €Ps(AxB) by Lemma 18
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That is, f is a decidable relation on A x B. Define
Z:={seB:3e A(b,s) € f).
By Lemma 3, since f is a decidable relation on A x B, Z is a separable subset of B. That is,
VteB(teZ VvV t&Z) (87)

Now we will proceed by induction on finite sets A to prove that for all finite sets B and all g : A — B onto,
|B| < |A].

Base case: If g : @ — B is onto, then B = &, so |A| = |B| = |@|.

Induction step: Let g : AU {c} — B be onto, where ¢ ¢ A. Let t = g(c) and let f = g — {(c,t)}. Then
f:A— B. By (87),t€ Z VvV t ¢ Z. That is,

e A(btye f) v =Fbe A((b,t) € f).

We may therefore argue by these two cases.
Case 1. If there exists b € A with f(b) =t¢, then f: A — B is onto, so by the induction hypothesis

1Bl < [Al < (JA)T =]AU(]

as desired.

Case 2. If there does not exist such a b then f : A — (B — {t}) is onto. Also B — {t¢} is a finite set, by
Lemma 20. Hence by the induction hypothesis, |B — {¢}| < |A|. Then

B=(B-{t)u{t)

since equality on the finite set B is decidable, so

Bl = B - {t}+
|B - {t}|T < (A)T by Lemma 10
|B| < (JA)™" by the previous two lines
|AIT = |AU {c}] by Lemma 13, since ¢ ¢ A
|B| < |Au{c}] by the previous two lines
That completes Case 2, and that completes the induction step. (I

Lemma 11. Let X be a finite set and let @ and b be finite subsets of X. Then a U b is finite.

Remark. We cannot prove the union of two finite sets is finite without some additional hypothesis, for consider
{p} U {q}, where we do not know whether p = q or not, e.g., p = and ¢ = {x : 2 = F A P}, where P is
Goldbach’s conjecture or the Riemann hypothesis. Does the union contain one or two elements?

Proof. We have

a € Py(X) by Lemma 18
be Ps(X) by Lemma 18
Vee X(x€a V x¢a) by the definition of Ps(X)
Vee X(x€b V x¢b) by the definition of Ps(X)
Vee X(x€aUb VagaUb) by the preceding lines and logic
aUbC X by the definition of C
alUbe Py(X) by the definition of Ps(X)

aUbe FINITE by Lemma 19
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O

Lemma 12. Let X be a finite set and let y be a finite subset of Ps(X) (that is, the members of y are
separable subsets of X). Then the union of y is a finite set. That is,

Jy e FINITE.

Proof. By induction on finite sets y (for fixed X).
Base case. When y = @, the union of y is also @, which is finite.

Induction step. Suppose ¢ € y and y U {c¢} C Ps(X). Then we have (in a few steps from the definitions of
J and U)

Uwuieh = (Uy) ve (88)

Then
U y € FINITE by the induction hypothesis

c € Ps(X) since y U {c} C Ps(X)

c € FINITE by Lemma 19

y CPs(X) since y U {c} C Py(X)

Ung since y C Ps(X)
JyuceFINITE by Lemma 11
Jwu{e}) e FINITE by (88)

That completes the induction step. (I

13 The initial segments of ¥

Next we begin to investigate the possible cardinalities of finite sets. The set of integers less than a given
integer is a canonical example of a finite set.

Definition 13.1. For k € F, we define

Jk)={z€F:x <k}

Jk)y={z €F:a <k}

The definition is stratified, so J(k) can be defined, but J(k) gets index 1 if = gets index 0, so J is not
definable as a function on F.

Lemma 2. For each m € F, if m™ € F then

J(m™) = J(m)u {m}

J(m*) = J(m) U {m"}.
Proof. By the definitions of J and J, and the fact that for € F we have
r<mtorz<m Vv r=m,

by Lemma 33. O
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Lemma 3. For m € F, J(m) and J(m) are finite sets.

Proof. By induction on m. The formulas to be proved, namely
Vm (m € F — J(m) € FINITE)

and similarly for J, are stratified, giving m index 0. F and FINITE are parameters and do not require an index.

Base case, m = zero. Then J(zero) = @, by Lemma 34. By Lemma 6, @ € FINITE. That completes the
base case for J. For J, we have x < zero +» x = zero, so J(zero) = {zero}, which is finite by Lemma 7. That
completes the base case.

Induction step. Suppose m € F and m™ is inhabited. By induction hypothesis, J(m) and J(m) are finite.
By Lemma 2, J(m*) = J(m) U {m}, so by Lemma 7, J(m*) € FINITE. Similarly for J(m). That completes
the induction step. [l

Lemma 4. Suppose m € F. Then |J(m|) = T?m.

Proof. The formula of the lemma is stratified, giving m index 0, since then T?m gets index 2, while J(m) gets
index 1 and |J(m|) gets index 2, so the two sides of the equation both get index 2. Therefore the lemma may
be proved by induction.

Base case: J(zero) = &, by Lemma 29. We have |&| = zero, by Lemma 11 and the definition of zero. By

Lemma 9, we have T?zero = zero. That completes the base case.

Induction step: We have
IJm™) = J(m)u {m*}
|J(m|) = T?*m
J(m) € T?m
Ju (u € m™)
mt eF
m & J(m)
J(m)u{m} € (T?m)™*
(Tm)* =T(m™)
T(m%)eF
(Tm)* €F
Ju (u € (Tm)™)

That completes the induction step.

14 Rosser’s Counting Axiom

Rosser introduced the “counting axiom”, which is

by Lemma 2

by the induction hypothesis
by Lemma 11

assumed for proof by induction
by Lemma 19

by definition of J(m)

by definition of successor
by Lemma 8

by Lemma 6

by the preceding two lines
by Lemma 4.7

by Lemma 8

by the preceding lines

by Lemma 11

by definition of intersection

by Lemma 4.7

meF — J(m) € m.
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(See [16], p. 485.) In view of Lemma 4, that is equivalent to
meclF — Tm=m.

Since 2™ is always defined for m € F, the counting axiom implies that 2™ is always defined for m € F. In
particular then the set of iterated powers of 2 starting from zero is an infinite set. That is the conclusion of
Specker’s proof (but without assuming the counting axiom). The point here is that the counting axiom elimi-
nates the need to constructivize Specker’s proof: if we assume it, there remain only surmountable difficulties
to interpreting HA in ¢NF. But the counting axiom is stronger than NF [13], so this observation does not help
with the problem of finiteness in ¢{NF.

15 Infinity in intuitionistic NF

b

We use Dedekind’s definition, that a set is infinite if it is similar to a proper subset. The “axiom of infinity

“not

says there is an infinite set. Before going further, we remind the reader that with intuitionistic logic,
finite” does not imply “infinite”. There are two obvious candidates for infinite sets: V and F. Specker showed

that, with classical logic, V is not finite; we will discuss that proof below.

If F is finite, then by Lemma 35, there is a maximal finite cardinal m. Then by Lemma 4.7, m has a
member U, and by Lemma 21, U is finite. If we could find some ¢ ¢ U, then m™ would be inhabited and hence
in F, contradicting the maximality of m. Therefore Vo —— (x € U); that is, V is the double complement of U.
However unlikely this may seem, nobody has yet been able to find anything contradictory about it, without
using classical logic. The following lemma states this remarkable result, so we can cite it below.

Lemma 1. Suppose m is a maximal element of F, and U € m. Then Vz —— (z € U).
Lemma 2. Let m is a maximal element of F and n € F. Then Tm < n implies 2" = &.

Proof. Suppose Tm < n and 2" is inhabited; we must derive a contradiction.

Pi(u) €n for some u, by definition of exponentiation
u € |ul by Lemma 11
P1(u) € T(Jul) by definition of T
Tn = T(|u|) by Lemma 24
Tm < T(|ul) since Tm < n
m < |u by Lemma 20
But that contradicts the maximality of m. O

Lemma 3. If V is infinite then F is not finite.

Remark. Note that Specker’s proof shows V is not finite, but not that V is infinite, which is stronger.

Proof. Suppose V is infinite and F is finite, with maximal integer m and U € m and f : V — V with ¢ not in
the range of f. Then

Ve-—zecU since U € m
Ve(zeU — -~ (f(z) € U)) by the previous line
Ve (zeU — f(x) e U) by Lemma 28
- (f:U—-0U) by definition of f: U — U
—=(ceU) since Ve =—x € U

That implies that U is not not infinite. But since U is finite, it is not infinite, by Theorem 3.24. O
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Lemma 4. With classical logic, if V is not finite then F is not finite.

Proof. Suppose V is not finite and F is finite. Let m be the maximal integer and U € m. Then U is finite and
Va == (z € U). Then by classical logic, V = U, contradiction, since U is finite and V is not. (|

But constructively, the situation is more complicated: we can prove V is not finite, but it is an open problem
whether F is finite or not.

To prove F is infinite, we would hope to prove that successor maps F into [F, so it is of some interest whether
that follows from the apparently weaker proposition that F is not finite. We cannot answer that question: it
is an open problem whether

F € FINITE — Vz € F (2T € F).

In other words, as far as we know, it might be that VU € FINITE(V — U # &), but nevertheless we cannot
prove VU € FINITE3z (x € V— U). The former is equivalent to successor being nonempty on F, the latter
to successor being inhabited on F. We cannot shift the double negation left through ——. (We shall see below
that FINITE is not finite, so Lemma 28 is no use here.)

Nevertheless, if we did somehow prove that F is finite, we could prove that Heyting’s arithmetic HA is
interpretable in i{NF. Here is how we would do that:

Recall that FF is the least set containing zero and closed under inhabited successor. Now define H to be the
least set containing zero and closed under nonempty successor. Then we can prove things using H-induction,
in which at the induction step one is allowed to assume z* # &, instead of the usual Ju (u € x*). Assume
that F is not finite. We do not give all the details, but here is a sketch: First we prove F C H, by F-induction.
Then by H-induction, we prove Vo € H (-—z € F), then @ ¢ H; then that H is closed under successor and has
decidable equality, and that successor is one to one on H. Then we could use H as the interpretation of the
variables of HA. But that would still not prove that F is closed under successor!

In the sea of open problems, there is an island: the theorem of Specker that V is not finite. This theorem,
proved classically in [17], is widely acknowledged as constructively correct, for reasons I will now explain. Let
P be any stratified formula and let Xp = {x € {@} : P}. Then Xp is zero or & according as P or =P. If
V is finite then V has decidable equality, so by deciding whether Xp = @ or not, we decide P V —P. Then,
folklore has it, Specker’s proof of infinity uses classical logic only for stratified formulas, so it will go through
under the assumption that V is finite, and produce a contradiction.

While this metamathematical argument is appealing, it still requires checking the details of Specker’s proof
to ensure that classical logic is used only for stratified formulas. I studied Specker’s proof, trying to make
it constructive, and using Lean to check my proofs. Assume there is a maximal integer m. Then m has a
member U, which is “unenlargeable”, as discussed above. I thought that perhaps U could be made to play the
role that V plays in Specker’s proof. That plan did not succeed, unless we assume V is finite, in which case
Specker’s proof does provide a Lean-checkable proof that V is not finite. I chose not to present it here.!?

Rosser, in an appendix to [16] (but not the first edition [15]), gave another proof that V is not finite, in
which Specker’s ideas are recognizable. Rosser proves V is not finite and then immediately concludes that [F is
not finite, since classically m € F and U € m, U is finite so V — U is inhabited, so m™ is inhabited. The proof
that V is not finite might well be constructive. I did not check it in Lean, since I already checked Specker’s
proof in Lean.

Once we know that V is not finite, we can try to prove other sets are not finite. For example, FINITE is
not finite, as we shall prove soon.

Lemma 5. Vz(z € FINITE = z € P (V) V z & P1(V)).

12 It is not very short; the details are in no doubt; it leads to an even lengthier discussion of the problem of infinity, but not to
a solution of that problem.
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Proof. A set x is a singleton if and only if || = one. That is,

YV (z € P1(V) <> |x| = one) by the definitions of P; and one

Since equality on F is decidable, it is decidable whether a finite set is a singleton or not. Therefore

Vz (z € FINITE = z € P1(V) V 2 & Pi(V))

Lemma 6. FINITE is not finite.

Remark. This depends on the fact the V is not finite, which we do not list as a hypothesis, since it is a theorem,

even if the proof has not been presented here.

Proof. Assume FINITE is finite. We must derive a contradiction. We have

16

P1(V) C FINITE by Lemma 9
P1(V) € Ps(FINITE) by Lemma 5
P1(V) € FINITE by Lemma 19, since FINITE € FINITE
V € FINITE by Lemma 10
. (I
Conclusions

This paper lays the foundations for future studies of intuitionistic NF set theory ¢{NF, by providing coherent

definitions for the basic concepts, including order, exponentiation, addition, finite sets, and T. The concept of

separability plays an important role in order and power set, and hence in exponentiation as well. The theory

presented here—if supplemented by a proof that the set of integers is not finite—would serve well as a basis for

formalizing constructive mathematics in the style of Bishop. These basic theorems will surely be both useful

and necessary for deeper investigations of the metamathematical properties of iINF. That subject has yet to

begin, as at present we cannot even show that the law of the excluded middle is not provable in {NF.
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