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can be seen as an elaboration of data structufe3. first one had the integers, then 
the rationals, the algebraic numbers, afket some st and complex 
numbers, the general concept of function, etc. At last it was that set theory 
could serve as a universal Iangua~e, in which all the ry data StNCtUfCS could 
be constNded from the primitive data structure, set. perhaps computer science 
could take advanrage o iminafy 
investigation into what a be like. 

On the other hand, in babe dtfintd functions 
by identifying them with the sets which are their graphs. Rigor is identified with set 
theory, so the definition of a function a rule has to 80. This is particularly 
inappropriate for computer science, and even many mathematicians are more 
interested than before in rub for eonrputiq tbt solutions or” problems. We shall 
resuffuct functions- rules and five thtm fht place in M theory fhaf they deserve. 
Thus this pet can also be viewed an investigation in the foundations of 

hematics. 
n order to be mmipalafd by a compufer, a set mua# be repmeafcd by a concrttt 

objtu, ultimately by a sequence of zeroes and ones. Thar does sot mean, however, 
can be manipulafed. For example, the data type 6&tum of 
of arbitrary size is common; we shall dtn4Ht if mofe simply 

tin# an infinite set by a (finite) name, in thii 
perty enabling us to compurt membetship in fht stf. 

in cummon use is adtqurft fo fht dtmands 
2). making Ihe same poina uses “pid#n Pucrl” 

a112 algorithm extracted from Bishop*& constructive proof of the Weiemtrass 

r the modulus of continuify of X a third qumenl 6 of 
tolerance of approximaGon, and outputs a polynomial, 

ucnce of reals (of unknown ltn#h). Thlr trrunplt 
for more gtntd typing facili&s. Althou@ many e#ofts wn 
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down an axiomatic set theory simlar to that in use today. The operation by which 
this set is produced from a is a first-rate example of a legitimate operation on sets; 
there should be an operation c+ such that c+(a) = {x E a : d(x)}. 

ursion. The operators we have been discussing are in general partially 
defined, and should satisfy the recursion theorem, according to which for each 
operation g there is an operation $ such f(x) f= g(~$ fi., 

But as it turns out, these three principles taken together are contradictory: 

2.4. eorem (Gordeev). Extensionality, the recursion theorem, and the existence of 
an operation q, corresponding to separation are contradictory. 

roof. Let g( z, f) = {x E (0) : f (z) = x}, by separation, where $9 is the empty set. 
Introduce f by the recursion theorem so that f(z) = g( zJ). Since g is total, so is f; 
but then f(f) is a set, namely f(f)={xE{PJ}:f(f)=x}. If f(f)=@, then @of, 
contradiction, so f ( f) # 0. But if x E f (f), then x = $3 and x = f (f), contradiction. 
Hence f(f) has no members. By extensionality then f(f) = 0, cpntradiction. Cl 

This theorem was first discovered in connection with theories of sets and rules 
developed by Feferman [ 141, in which extensionality is not an axiom. It was therefore 
not regarded as a paradox, but simply as a refutation of extensionality in the context 
of those theories. In the present context, however, Gordeev’s theorem does seem 
paradoxical at first, and it prompts a closer examination of the foundational view- 
point which must underlie the theories we intend to construct. 

ules and sets: reflections on the foundations of mathematics 

In mathematics we find two kinds of “mathematical entities”: the concrete and 
the abstract. By concrete entities we mean objects which can be completely rep- 
resented by a finite sequence of symbols, capable of being stored in a computer 
(although no fixed bound on the size of concrete objects is imagined). By an abstract 
entity, on the other hand, we mean an object which by its nature is infinite and can 
never be completely displayed. An abstract entity may however be represented in 
various ways; the example has already been discussed. 

A discovery of the early axiomatizers of set theory was that concrete entities can 
be represented or “coded” by suitable sets, so that from a formal point of view we 
may pretend that “everything is a set”. The resulting axiomatizations have an 
appealing simplicity, and no doubt it was partly due to this simplicity that set theory 
came to be regarded as a “universal language” for mathematics, a status which it 
enjoys to this day. Only certain dissenters from the mainstream of mathematics have 
resisted the doctrine that “everything is a set”. We have in mind various schools of 
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constructive thought, such as the intuitionists (followers of Brouwer); the Russian 
constructivists (following Markov), who reject all abstract objects out of hand and 
work only with symbolic representations; and more recently those working in the 

style of Bishop [S], who accepte a notion of sets as abstract objects. 
All of these schools regard the notion of rule or law as fundamental. 

for Brouwer, “eine Menge ist ein Gesetz” (a set is a law). It is also interesting that 

if we go back to the period before Zermelo’s axiomatization, the concept of ‘“law” 
plays a role. For example, the notion of “transformation” (Abbildung) plays an 
important role in Dedekind’s Was sind uns was sollen die Zahlen: he takes “transfer- 
mations” as laws that transform elements s of a set S to “determinate things” 4(s). 
He then anticipates Fraenkel’s principle of “replacement” by stating that the image 
f$( S) of a set S is again a set. 

The distinction made above between abstract and concrete entities opens the way 
for another important distinction, that between rule and algorithm. An algorithm 
operates on concrete objects and produces (if anything) concrete objects. A rule, 
on the other hand, may operate on and produce either concrete or abstract objects. 
For example, there is an o eration M such that U(X) is the set known as the union 
of x, usually written U x, hose members are the members of the members of x. 
The rule u is not representable in set theory in its usual formulation: it is not a set, 
nor is its graph a set. It is a rule. Another example is the powerset operation 9. 

One thesis of this paper is that rules as fundamental to mathematics and computer 
science as sets are. For example, the concept of “‘function” has its roots in the idea 
that “a function is a rule”. The gradual development of that idea into the definition 
of a function as a single-valued set took a long time (see [36]), and perhaps ought 
to be reconsidered for the foundations of computer science. Even in mathematics 
the idea of “function-as-a-rule” retains a certain appeal, and the definition of 
“function-as-a-set” is usually justified when first presented by reference to the 
intuitive concept of a rule, which shows that the concept of a rule is actually more 
fundamental. 

Rules are supposed to be concrete objects, given by symbolic representations. A 
question now arises: how does a rule operate on a set, which is an abstract object? 
The operation u, for example, is supposed to operate on any set, not just on sets 
which happen to have symbolic representations. There are various algorithms corre- 
sponding to u, which enable US to compute symbolic representations of U x fro 
specified kinds of symbolic replaesentations of X, but these algorithms are not to be 
identified with the opeation u itself. We shall have to take the application operation 
as primitive. When we give a rule, we must tell how to apply it, i.e., what the answer 
is at a given argument. We may also define algorithms operating on symbolic 
representations of sets. It may happen that such an algorithm is extensional, in the 
~:e nse that it takes all representations of any given set x onto representations of the 
same set. In that case, the algorithm can be counted as a rule, although it would 
be defined only in those sets that have a symbolic representation of the kind involved 
in the definition of the algorithm. There may also be algorithms which are not 
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extensional; for example, if sets are represented by listing their members, then the 
function which picks the first element of a list will not be extensional. 

With these distinctions in hand, we can “resolve” the paradox posed by Gordeev’s 
theorem. The proof constitutes the construction 06c a particular algorithm which is 
demonstrably nonextensional. The author does not consider this “resolution” any 
more definitive than the so-called resolutions of the paradoxes of classical set theory. 
we shall proceed by retreating to axioms which block the contradiction, yet are 
useful for practical purposes. 

The main idea is to restrict the separation axiom to formulae 4 of ordinary set 
theory, i.e., formulae which do not involve the application relation. This turns out 
not to be very restrictive; in practice, we can often define sets that we need (including 
the dependence on parameters), even when the definition appears to require separ- 
ation for a formula involving the application of operations. The method is a process 
of substitution. For example, suppose we want to define g(x, b) = 
{u: 3x E b( u Ed)}. Th ere will be a certain operation c,,, such that C~ (4 w) = 
{XE Q: XE w}. Then g(x, b) = c4(u(im(b,j’)),f(x)), where as above u is union and 

(b,f) is the image of & under J 
It is instructive to see why this method does not permit us to define the set used 

in Gordeev’s proof. Try h(z, y) = {x E (46): y = x} and g(z,f) = h(z, f (2)). But now, 
although h is total, there is no reason why g is total, and the argument in Gordeev’s 
proof only shows that f(f) is undefined. 

To avoid any confusion, one point should be reiterated. Gordeev’s theorem does 
not show the inconsistency of extensionality, the recursion theorem, and separation. 
Rather, it shows the inconsistency of extensionality, the recursion theorem, and the 
dependence on parameters by a rule of sets defined by separation. 

elated work 

Zermelo [40] formulated axioms for set theory which form the basis of modern 
set theory. Zermelo said that he was motivated by “set theory as it is historically 
given”. That is, he cttempted to write down axioms which accounted for mathemati- 
cal practice, and which he believed to be free of paradoxes. Let us call tLis the 
“pragmatic” approach to axiomatization, as opposed to the “philosophical” 
approach in which one attempts to justify one’s axioms. The philosophical approach 
was taken by Cantor and Dedekind (see the Appendix of this paper), but Zermelo’s 
main motivation was to convince people that he had really proved that the reals 
could be well-ordered, which accounts for his pragmatism. 

Von Neumann [38] showed that one could take the concept “function” as primitive 
instead of “set”, and define “set” in terms of “function”. This was, however, a 
theory of functions, not a theory of rules; no computability was implied. 

ishop [S] viewed mathematics as a “high-level programming language”. In his 
e made no attempt to formalize that programming language, although in 
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unpublished work he did so. is formalization remained unpublished, because his 
theory contained a paradox. 

Martin-L6f [33,34] introduced “type theories”, in which one forms types which 
are similar to (but not as general as) sets. In the most recent version of these theories, 
Martin-L6f has explicitly forbidden the formation of types of types9 but allows only 
the formation of types of names oftypes, espousing the principle that one may form 
types only of concrete objects. Martin-Liif’s approach is philosophical as opposed 
to pragmatic; he views his formal theories as an incomplete description. He clearly 
believes he has replaced Cantor’s definition of a set with one which (if not equally 
simple) is at least correct, and hence does not lead to paradoxes. (It is interesting 
to note, however, that the earliest version of his theory was also inconsistent.) A 
group in Giiteborg has implemented a system based on Martin-L6f’s theories on 
the computer; it is called “Gsteborg LCF”. 

Feferman [ 14, IS] introduced theories of operations and classes. These are based 
on a philosophy that the “universe” V consists of objects representable by finite 
symbolic expressions. One may form sets or “classes” of these objects. The objects 
include names or representations of the classes. If we understand Feferman’s 
viewpoint correctly, one is never forming sets of abstract entities; for example, one 
never forms sets of sets. Instead, one forms sets of concrete representations of sets. 
This viewpoint justifies Feferman’s “elementary comprehension axiom” that permits 
the formation of a universe V of all objects. The Russell paradox is blocked by the 
syntactic restriction to “elementary” formulae in the comprehension axiom. Hayashi 
[27] has implemented a version of Feferman’s theory in LISP, in a program called 
PX. His theory replaces the combinators in Feferman’s theory by the primitives of 
LISP. 

Myhill [42] and Friedman [ 19,201 introduced theories in the language of classical 
set theory, but with intuitionistic logic. These theories, because of their intuitionistic 
logic, are indirectly connected to rules. 

Graves [22] designed and implemented a theory of types based on category theory, 
more specifically on topos theory. Gordon, Milner, and Wadsworth [24] describe 
a system with rather general typing facilities known as “Edinburgh LCF”, for which 
a denotational semantics based on the Scott-Strachey formalism has been given. 
Constable 193 has (with others) developed a system called NuPrl (two of whose 
predecessors are described in [ 10,111). These systems include proof-checkers operat- 
ing in a typed, functional environment, whose theoretical basis belongs to the lineage 
of Martin-Liif’s theories. 

Belonging to the same lineage are at least three typed, fully functional program- 
languages. (This phrase means that procedures are data objects with types.) 
are ML, Pebble, and QJ. ML was originally developed as a “metalanguage” 

for LCF, which accounts for its name; its structure makes it appropriate that these 
are also Martin-Liif’s initials. Pebble, which is being developed at 
and Lampson [S], permits types as values and allows some rat 
constructions; in particular bindings of variables are ordinary dat 
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created by Sato as a uniform environment for the specification, execution. and 
verification of programs. The system Algos mentioned above is similar, but its lineage 
is category theory. 

After this summary, we shall attempt to place the present work in context. There 
were three lines of development of theoretical, logical systems for constructive 
mathematics in the seventies: Martin-LX’s type theories, Feferman’s not-strictly- 
typed theorips, and Friedman-Myhill% constructive set theories. Each of these is 
capable of being implemented as a programming language with sufficient power to 
formalize mathematics in an interactive proof-checking environment. This line of 
research is well-developed for Martin-L6f’s type theories, being developed for 
Feferman’s theories by Hayashi, and so far untouched for the constructive set 
theories. As they stand, the constructive set theories are too crude since they do not 
allow a direct treatment of functional application. In this paper we correct this 
defect, creating constructive set theories suitable for computerization. 

5. Preliminary description of ZFR 

We shall formulate a theory ZFR, the letters stand for “Zermelo-Fraenkel set 
theory with Rules”. This section describes the thecry; the next section gives a list 
of its axioms for reference. 

In formulating theories of sets and rules, the first matter requiring attention is 
the choice of language. In classical Zermeio-Fraenkel set theory ZF, the assumption 
is made at the outset that every mathematical object is a set. This assumption is 
actually false: the integers are not sets (New Math to the contrary). Formally 
speaking, the Von Neumann integers-that is, the sets generated from the empty 
by the operation x u {x)-are isomorphic to the integers, and can serve as representa- 
tives of the integers. But to see that this is harmless, we must work outside the 
conceptual framework of ZF. Our present object is to formulate theories which 
more naturally reflect our intuitive views about the foundations of mathematics; 
hence, we do not wish to begin by assuming everything is a set. Moreover, we wish 
to leave the way open for computer-oriented versions of the theory in which there 
may be other “atomic” data types such as, for example, the symbolic atoms of LISP. 

We therefore include unary predicates “S(x)” and “N(x)” for “x is a set” and 
“x is a nonnegative integer” respectively. It will not be necessary to include a 
predicate for “x is a rule”. We shall not put into our theory any axioms restricting 
the kinds of objects there are, such as “everything is either an integer or a set”. As 
a matter of convenience, we shall use the letters a, b, u, 0, w (with or without 
subscripts) for sets, and i, j, k, rr, m for integers. By this we mean that variables 
denoted by these metavariables are implicitly restricted to the unary predicates S 
and N. There will be a binary relation “E” for membership. 

We shall need a means of speaking of the application of a rule to an object. There 
are two ways to proceed: 
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(i) We can introduce a 3-ary relation Ap (A x, y) for: the result of applying f to 

x is y. 
(ii) We can introduce a function symbol Ap so that Ap(_f, x) is the result of 

applying f to x. 
Approach (ii) seems more natural, but it necessitates a reformulation of logic 

since Ap(J; x) will sometimes be undefined. One suitable reformulation of logic has 
been given in 131, where it is called EPT (18gic of partial terms). There it is explained 
how to interpret a thefjry formulated in LPT into a theory formulated in style (i) 
above, with a 3-ary App relation. We shall formulate our theories in LIT. In practice, 
we shall write fx, f(x), or (fx) instead of Ap(f, x), We follow the conventions of 
combinatory logic: xyz abbreviates (xy )z (association to the left), and f(x, y) 
abbreviates fxy. 

Logic of partial terms 

The following description of LPI’ is reproduced from [3], where further details 
may be found. LPT is a logic in the same sense as the predicate calculus. If we are 
given any collection of predicate symbols, function symbols, and constants as in 
the usual predicate calculus, there will be a language in L based on these symbols. 
The rules for forming terms are the same as in ordinary predicate calculus. Every 
atomic formula in the usual sense is still an atomic formula; but there is one more 
kind of atomic formula, namely: if t is a term, then tJ is an atomic formula. This 
may be read “t is defined”. It should be emphasized, however, that the intended 
meaning is that the term “t” denotes something. That is, one says of an object that 
it exists, of a term that it denotes or is defined. All objects exist, of course, so to 
say that something does not exist is a figure of speech; what is meant is that the 
term one has mentioned does not denote. 

In case equality is part of the language, we use t = s to abbreviate (& + t = S) A 
(s& + t = s). In words: if either t or s denotes anything, then they both denote the 
same thine. Note, however, that = is not an official part of the language. 

We shall use the notation A[t/x] to mean the result of substituting t for the free 
occurrences of x in A. The customary inference from VxA to A[t/x] is not valid 
if t is a nondenoting term: “if everything exists, then the king of France exists” is 
an invalid inference since the antecedent is true but the consequent is false. We are 
now ready to set out a list of rules and axioms for making correct inferences in 
LPT. In this list, t and s are terms, while x and y are variables. 

Axioms and rules of L 

B+A 
B+VxA 

if x is not free in B, (QU 

A+B 
xA+B 

if x is not free in B, 
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VxA A tJ + A[ t/s], (43) 

A[ t/x] A tJ + 3xA; 

t=sA+(t)+qb(s), (E2) 

t=s-, tJhs&; (E3) 

R(t I,..., tp+tJh’ l ‘At”&, (SO 

c& for constants c, (S2) 

x$ for variables x. (S3) 

Note that E3 is a special case of Sl. Another special case of Sl worthy of mention 
is 

f(t ,,..,, tn)J+tlA***Atn&. 

With a suitable logic at hand, we are now in a position to set down some axioms 
about rules. Before doing this, we have to choose a suitable language in which to 
express our rules. The proliferation of modern programming languages illustrates 
the range of possibilities here. Since our present purpose is primarily theoretical, 
as opposed to being aimed at a practicai implementation, it will be wise to choose 
the simplest possible language, even if that makes it difficult in practice to write 
down specific rules. We therefore choose the language of combinatory logic, which 
is the simplest programming language in the world. Our theory will include two 
constants k and s, with the axioms 

These axioms permit the proof of the recursion theorem, according to which we 
can find, given g, an f such that fx = g(x, f ). In addition, they permit the construction 
of A-terms: if t is any term, then there is another term Ax. t such that (Ax. t)x s t 
(where x is a variable). Note that this is not a term-formation rule but a theorem. 
See [2,12,15] for details of these results. 

The remaining axioms about rules concern the existence of a certain specific rules. 
First of all, there is a constant sN for the successor function on the integers. Second, 
there are several axioms corresponding to the set-theoretic axioms of pairing, 
separation, union, and powerset, which introduce constants as follows; p(x, y ) is 
the unordered pair of x and y; IL~X is the union of x; Px is the powerset of x, and 

e formulation of the replacement axiom in our theory is simply that the image 
et a under an operati n f such that f( defined for all x E a is a set im(a, f ). 

is itself a mathematical object. is is evidently what we try to express 
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in much less natural language in the usual formulation of the replacement axiom, 

) VxE a3!y&(x, y) + 3WxE a3ye bf$(x, y). 

Moreover, this version of the axiom is not self-evident; the version about i 

self-evident version. can be derived from the axiom about ii using a &table 

version of the axiom hoice, but then one has to justify that if one can. 
The other two set-theoretical axioms, extensionality and E-induction, are not 

about rules at all, but about the nature of sets. 
The constants c+ are included only for formulae 4 which do not contain 

do not contain any constants c clr ; this restriction will enable us to block the paradox 
discussed above. 

6, Formal specification of ZF 

It is natural to use intuitionistic logic when contemplating a computation system; 
but ZFR makes sense with or without the law of the excluded middle. To fix the 
notation, we shall use ZFR for the version with classical (ordinary) logic, a 
for the version with intuitionistic logic. Since ZFR can be obtained from 
adding the law of the excluded middle, we specify IZ 

Language of IZFR. Unary predicate symbols S and N for sets and numbers. Binary 
relation symbols E and =. Function symbol Ap. Constants A, k, s, sN, 0,0, 9, d, 
N, im, c4 for each primitive formula 4; the concept “primitive formula” is defined 
next. 

Primitive formula. One not containing Ap or any constant cdi. 

Logic of IZFR. L as specified above, with intuitionistic logic and equality axioms. 

Axioms of I 
(Al ) Extensionality : 
(A2) Pairing: 
(A3) Union: 
(M) Empty set: 
(As) InJinity: 

(A6) Separation : 

(A7) Images: 

(A8) Powerset: 
(A9) E -induction : 

Vx(xEa-xEb)+a=b. 
S(pyz) /\ VX(XE pyz-x = y v x = z). 

u(uEaAxEz.4)). 

*N(x))* 

S(cfda, Yl, l l l ¶ Y”)) 

~~(~~c~(a,y,,=..,~.,~c+~~Q~~(~,Y*,...,Y*))~ 
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(BO 
(B2) Cases: 
(B3) Successor: 
(B4) Induction : 

zmc+S(x). 
dnnxy = x A (n # m + &m.~y = y). 
N(0) A N(sNn) A &a = &rn -) n = m) A sNn # 0. 
#(o)AVn(dn)+ +(sNn))+Vn+(n), d!i formuhe (6. 

Conventions. a, b, u, 0, w are (meta)variables for sets; i, j, k, n, m are for numbers. 
These conventions have been used to abbreviate the axioms. Other variables such 
as X, y, z are unrestricted. 

Remark. Note that the pairing axiom permits us to form a set gxy, usually written 
{x, y}, from any two objects x and y, not only from two sets. 

7. Axioms of set theory 

In this section we list for reference the axioms of Zermelo-Fraenkel set theory. 
These axioms are formulated in a language with binary relation symbols E and =, 
and no other constants, relation, or function symbols. 
Extensionality : Vx(xEa-xEb)+a=b. 
Pairing : 3a(xEahyEa). 
Union : 3aVx(xE aG3bE a(xE 6)). 
Separation : 3aVx(x E a -x E b A 4) (a not free in 4). 
Infinity : 3a(3x E a A Vx E a3y E a(x E y)). 
Powerset: 3a(Vz(zEx+zEb)+xEa). 
E -induction : Vu(Vx E u&x) + (b(u)) + Vu~(u). 

Empty set: 3aVx(x e a). 
Replacement : VxEa3!y+3bVx~a3y&+. 
Collection : Vx~a3y+4bVx~a3y~h$. 

These are the versions of the axioms which Friedman [ 181 discovered were suitable 
for use with intuitionistic logic; note that they are the same as the usual axioms 
except that the axiom of foundation has been replaced by E-induction. Also, the 
axioms of replacement and collection are equivalent if classical logic is allowed, 
but not with intuitionistic logic [2!1]. We therefore have the following set 
theories: 

: all of the above axioms except collection, with intuitionistic logic, 
_. CO]: all of the above axioms, with intuitionistic logic, 

all of the above axioms, with classical logic. 
Of course, collection implies replacement, so there is no need to include replace- 

ment on the list of axioms of 
This paper can be understoo wing anything about intuitionistic logic, 

but it is intuitionistic logic that would be built into a computation system based on 
and so a background in intuitionistic set theory is relevant. See [4, Chapter 
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8. Functions versus operations 

By a “function”, or sometimes for emphasis a “set-theoretic function”, we mean 
as usual a single-valued set: 

Func?(jJ C) s(f) A VZ E f 3X3y(z = (x, JJ)) 
A VxVyVz((x, y) E f A (x, 2) E f + y = 2). 

Note that although ordered pairs may be defined using the operation symbols of 
ZFR, the formula Funct is intended to abbreviate the usual formula of ZF which 
does not mention Ap. 

The author has discussed the differences between functions and operations before; 
see, e.g., [4, pp. 40-421. There the case is given for making a careful distinction. 
Nevertheless, one may consider the axiom asserting that every function is an 
operation: 

Here we have written Ap(f, x) = y instead off(x) = y to avoid any possible confusion 
about what is meant. FO (which stands for “functions are operations”) is a rather 
strong statement in that it requires that the domain of the operation be the same as 
the domain of the function. Under Church’s thesis the domains of operations should 
be r.e., while domains of functions could be arbitrary sets. If we use classical logic, 
then FO conflicts with Church’s thesis for a more fundamental reason, namely that 
there will be lots of nonrecursive set-theoretic functions. To put the matter in the 
language of computer science: FO may be appropriate for denotational semantics, 
but not for operational semantics. 

One may say that acceptance of FO is a major point distinguishing classical 
mathematics from constructive. It is not the only one, however, since 
imply the law of the excluded middle. One might say instead that it is 
point distinguishing the classical viewpoint from the computational viewpoint. A 
function, in the classical sense, need not be computable ; but an operation must be 
computable. 

That viewpoint leads naturally enough to the desire ‘3 be able to form the set 
op(a, 6) of all operations from Q to 6. Indeed, the designers of programming 
languages want to have a type A+ B, and both Feferman and Martin-LX have 
incorporated such a cons tion in their theories. One cannot, however, prove the 
existence of op(a, 6) in Z Indeed, op(A, B) may contain aisitrarily complicated 
procedures. For example, given any set cy, one can construct a procedure leading 
from A to B which, although it incorporates a (in its “code”, so to speak), simply 
ignores a! when it runs, and produces a constant value. Such procedures will have 
arbitrary rank, and so, in a theory in which sets must be well-founded, one cannot 
collect them all into a set. 

Reflection will convince one that the exist 
do not even know if it is consistent with 

(a, b) is too much to as 
(a, &) is surely not what the 
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computer scientists mean when they talk about the type a + b. What one wants of 
A + B is not that it contains all operations from A to B, but that there be an opera&m 
A(a) which “abstracts” from the definition of an operation f and a set Q to another 
operation A (a, f), such that A (u, f)x = fx for x E A. Usually we write A (a, j’)x as 
Ax E a. fx. We now formulate a sensible axiom of exponentiation: 

(Exp) S(a-*b)~(Vx~a(fx~b)~(A(a,f)~(a~b)~Vx~a(A(a,f)x=fx)) 

AfE(a+b)-*VxEa(fxEb). 

This version of exponentiation is consistent with ZFR. In fact, it is implied by 
the principle FO discussed above. A natural candidate for A is the “graph’” operation 
Gr which associates to every set a and operation f the graph off on cr;: raamely 
{(x, fx): x E a}. The operation Gr is easily defined in terms of im; 

Gr( a, f) = im( a, hx.(x, fx)). 

If one assumes FO, then the set of graphs of operations from a to b coincides with 
the set of single-valued subsets of a x b, which can be formed by powerset and 
separation. 

Strictly speaking, we cannot say that FO implies the axiom of exponentiation 
since that axiom involves a new symbol A. What we can prove can be precisely 
stated as follows. 

8.1. Lemma. IZFR + FO + Exp can be interpreted in IZFR + FO by interpreting A as 
Gr. In particular, every model of IZFR + FO can be expanded to a model of Exp as well. 

roof. We havti to tell how to interpret the two operations involved in Exg, namely 
A and the operation + involved in forming a + b. The interpretation of A is Gr, 
and the interpretation of -, is given by 

is used in verifying the second part of Exp under this interpretation, namely 
that every member of a + b is an operation from a to b. Cl 

onsistency of 

In this section we prove that is consistent. In essence we onstruct a model 
he idea for the const n goes back to Feferman [5. 1: where models 

constructed for the combinatory axioms whose universe is a model to set theory 
and in which some prespecified functions + M are representable. The idea 

is to assign some members of to serve as dices for the prespecified functions, 

3 Feferman’s construction, in turn, can be traced back through [37] to its ultimate roots in Kleene 
[30], where an inductive definition of an appplication relation is a key point of the theory. 
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and define the application relation App on inductively, making x be some trivial 
function such as (1, x) and Kay be y at the basis stage, along with making the co&s 
of the prespecified functions behave as desired. We also make sx and SXJP equal to 
some trivial values. Then at the inductive stages, suppose we have already put XY = u 

and xz = t, and uv = w. Then we put sxyz = w. This inductive definition will close 
nd produce a model of the combinatory axioms. 
lies immediately to produce a model of some of the axioms of 

ZFR since we can take union, pairing, powerset as prespecified functions, as well 
as the operations c+ connected with separation (since the application relation is not 
mentioned in 4). However, the operation im cannot be prespecified since it depends 
on the application relation. Evidently, we cannot define im( a, f) until we have 
defined f(x) for all x E Q. This means that our inductive definition may not close 
off at any stage represented by an ordinal of A4 On the other hand, the application 
relation we are defining has to be definable in M if the axioms of set theory (in 
particular induction) are to be valid. 

Nevertheless, if one pushes ahead with the plan of extending Feferman’s construc- 
tion to the transfinite, it turns out to work. What follows are just the details of this 
construction. Rather than present it model-theoretically, we prefer to define an 
interpretation from IZFR into IZF, in order to determine an upper bound for the 
proof-theoretic strength of IZFR as well a ve its consistency. Of tours 
follows from such an interpretation that Z n be interpreted in classical 
and hence is consistent. 

It turns out to be just as easy to make the model satisfy the axiom F 
in the previous section; this shows that our model is far from an “operational 
semantics” of IZFR, in that (if interpreted classically) it will include nonrecursive 
operations. By Lemma 8.1, this will automatically result in a model which also 
satisfies the axiom of exponentiation. 

Before beginning the proof, we need some techni 1 preparations. First, we 
describe a theory IZFR*, which is a version of IZF formulated with. a 3-ary 
predicate App instead of using the logic of partial terms. The passage from I 
to IZFR* is a special case of the general method of Beeson [3] for interpreting any 
theory in E into the first-order predicate calculus; the method associates to every 
function symbol f of a theory in bol for the graph of the function. 
Here we take f to be A We then have the axiom 

Each of the axioms of * is the nAtural translation of the corres 
For instance, for pair@; :dlr’e have 

ing axio 

c.0 

have ths same theorems in t 



. Conditions for App 

(1) 
(2) 
(3) 
(4) 
(9 
(6) 

(7) 
(8) 

APP( *, x9 o,o, x)), APPW, 0,x), Y, 4; 
APPb”, x9 (191, a, APPW, 1, x), Y, 0, 1, x9 Yk 
APP~ 2, ~1 it APP(Y, 2,~) A APP(U, v, 4 + AppW, 1, x, YS, 2, v; 

APPW, 2, XL Y, lx, Yk 

App(c$, a, {x E a : 4*(x)}) if 4 has only x free, 

APP($, Q, (1,6, ‘4’, 4) if 4 has x,y,,...,y, free, 

APP((l, 6, ‘+‘, 4, YI, . . . 9 y&h y&+1 9 h6, ‘di’, a9 Yt 9 . . . 9 yk+l)) 

for k + 1 < na, including k = 0, where # has x, y,, . . . , y,,, free, 

fi’b’,Q,Y*,~**, Ym-I)9 Ym9 Ix E d2 : 4*(X5 Yl, 9 l l 5 Ym))); 

4 xv W); 
9 -x,9(x)); 
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me second technical preparation we need is satisfaction relations for formulae 
of bounded complexity. Let the “complexity” of a formula be defined so that the 
complexity of atomic formulae is 0 and each logical operator or quantifier increases 
the complexity by 1. Let n be a fixed integer. Then there is a definable satisfaction 
relation for formulae of complexity not exceeding n. That is, there is a formula Sat 
with two free variables such that if 4 is a formula with free variables among 

X19 . . ..xk. then 

Sat@, (x b-,xd) * ddxw==,xd 

is provable (in a weak set theory, say IZF without either collection or replacement). 
These satisfaction relations are constructed explicitly in [4, Chapter XIV]. 

We now assign to each term t and formula 4 of IZFR*, a corresponding term 
t* or formula 4” of T; * preserves the logical operations and quantifiers. 

(tcq)* is t*Eq* N(t)” is t*cz o 

(t = q)* is t* = q* S(t)* is t* = t* 

k” is(l,O) 0* is (b 
S* is (1,l) iv* is 0 

P* is (1,2) ct is (1,6, ‘4’) 
U” is (1,3) im* is (1,7) 
d* is(l,4) P” is (1,B) 
sx is (1,s) 0” is 0 

The conditions given so far suffice to determine 4* if 4 does not contain App. 
In addition we want 

~094, r)* is AMt*, q”, r*) 

where APP is a formula yet to be defined. We have to find a formula App satisfying 
the following inductive conditions, 
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(9) 

(10) 

(11) 
(12) 

APP( $9 n, 094, n)), App(U,4, n), m, (L4, n, m)), 
APPW, 4, n, m), x, (1,4, n, m, x)), 
App((l,4,n,m,x),y,{z:(n=mAzE:x)A(n#mAz~y)}); 

APP(im*, a, 097, a)), 
VxE a3u E ~APP(~ X, Y) h VY E u3x E aApp(f, x, y) + App((l,7, a),$, u); 
Funct(f) A (x, y) Ef + App!A x, yk 
If @ is any formula of IZF satisfying the above conditions with # in place of 

APP, then APP(f, x9 Y) + NJ; x, Y )- 

Clause (II) is needed only to model F ; otherwise it may be omitted. Clause 
(12) says that App satisfies every instance of induction on the definition of App that 
can be expressed in IZF. 

9.2. Theorem. ZFR is consistent. 

Proof. Fix an integer n. Restricting condition (6) to formulae of complexity less 
than n, Conditions 9.1 can be expressed in IZF. By standard methods, we can find 
a formula App satisfying these conditions. It is easy to verify that every axiom of 
ZFR except the axiom of images is satisfied under the translation 4* (where 
separation is restricted to formulae of complexity less than n). The axiom 

APP(f,x,Y)~APPU&2) -+ Y=z 

is verified by induction on the definition of App, using clause (12); note that we 
have taken care that the f in various clauses have diRerent forms to prevent a 
conflict; in particular none of the “codes” in clauses (1) to (10) is a function, so 
there is no conflict with clzDuse (11). Similarly, the combinatorial axioms are satisfied 
because App is solution of the inductive conditions (1) to (3). 

Now consider the axiom of images. Suppose Vx E a3y App(f, x, y). By collection 
we can find a set 11 such that Vx E a3y E v App(f, x, y). By separation we can form 
u = {y E o : 3x E a App(J; x, y)}. It follows from clause (10) that App((l, 7, a), a, u) 
and App(im*, a, (1,7, a)), verifying the axiom of images. Cl 

The reader who finds the treatment of inductive definitions in this proof somewhat 
sketchy will find sufficient detail in the next section, where we refine the construction 
to show it can be done using only replacement. 

Every formula in the language of tvhid:! is provable in is 

Let 4 be a formula in the language of which is a theorem of 
n integer large en0 that there is a der ion of 4 involving on1 

of complexity less than n. erivations, ever 
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involving only formulae of complexity less than n of a fo ula A can be transformed 
into a derivation in ZF of A*. But in case A is in the language of ,A* isjust A. Cl 

In the remainder of this section, we shall consider several possible extensions of 

9. verything is an integer or a nd not both. The consistency proof above 
actually shows the consistency of Z with the collection schema and the axiom 
VxS(x). Should we require the consistency of ZFR with Vx((N(x) v S(X)) A 
l( N(X) A S(X))), the proof may be supplemented by the methods of the exercises 
of [4, Chapter VIII]. 

9.5. Pairing and projection functions. One may, of course, define ordered pairs as 
usual from the unordered pairing function p, namely (x, y) = ({x}, {x, y }}. Define 
p. = hz.u(n (2)) where n (z) = {x E u(z) : Vy E 2.x E y}. (This definition of intersec- 
tion is all right for nonempty sets.) Then po((x, y)) = X, so we have defined a left 
projection function. The right projection can be defined as po= 
AZ.{ w E U(W) : Vy E uz( z = (poz, y) + w E y)}. These definitions are intuitionistically 
correct; some simpler definitions work classically but not intuitionistically. Hence, 
it was theoretically unnecessary to include constants for pairing and projection in 
IZFR. 

9.6. Adding constants for specific set-theoretically definable operations. In this case 
the consistency proof will still apply; there are just more basis clauses in the inductive 
definition. For example, by 9.5 we could add constants w, jo, and j. with the axioms 
jo(nxy) = x and jo(my) = y. 

.7. Strong exponentiation. We might wish to assert the existence of the set op(A, B) 
of all operations from A to B. Note that this is not the same as the set of all functions 
from A to B, which can be defined using powerset and separation. Neither is it the 
same as the set A + B, as discussed in Section 8. To be precise, we consider the axiom 

(QPEXP) S(op(0, b)) A Vf(fE 3p(u, b) @ vx E a(fx E 6)). 

Note that P fygils in the model of ZFR constructed above, since even 
op(N, N) does not exist, in view of the fact that An.kOx (which is actually 

ould ilave to belong to Q (N, N) for every set x; but this is 
ave arbitrarily large rank, as it is interpreted in the model. 

We do not known i is consistent. 
This may seem like a drawback from the point of view of computer science since 

the type construction A + B is important. However, the version of exponentiation 
just considered is too strong. The right version of exponentiation, similar to t 

artin-Liif’s theories, is th discussed in Section 8; and we 
een that this follows fro e holds in the model constructed 

above. 
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is no stronger t 

This section has two purposes: 
(1) for those readers not on intimate terms with definition by transfinite induction 

in set theory, it will provide complete details of our consistency proof; and 
(2) for those readers interested in constructive set theory, we present a refinement 

of the proof which shows that we can get by with only replacement, instead of 
collection, which was needed in the proof presented above. (The two are not 
constructively equivalent, as discussed in Section 7.) 

The idea of the proof is to replace the definition of App by an inductive definition 
of a four-place relation R, where intuitively, if R(f, x, y, u), then u is the “reason” 
why App(J x, y). We will write down suitable conditions for the definition of R, 
and afterwards define App(f, x, y)-3uR(f; x, y, u). The reason this is useful is that 
the definition of R is essentially by induction on E, while that of App is not. In 
formalizing the definition of App, we need collection to collect together the u values 
such that R(f, X, y, u) for x E a, in order to define im( f, a). Defining R instead 
permits us to get by with replacement. 

10.1. Conditions for R 

(1) R(k*, x, (l,O, x), O), 
(2) w*, 4 (1, 1, a 01, 

(3) R(P*, x, {L&4 0)s 

(4) w*, x, u (x), 0); 

R((L 0, XL Y, 4 0); 

RW, 1, Jd, Y, 0, 1, x, Y), 0); 

R(O, 2, x), Y, 1% VI, 0); 

(5) R(c*,, a, {XE a : 4*(x)}, 0) if 4 has only x free, 

R(c$, a, {I, 6, ‘4’9 a), 0) if 4 has x,yl,...,ym free, 

WI, 6, V’, Q, YI 9 . l . 9 Y&L Yk+l 9 (196, ‘6’9 Q, Y19 l l l 9 Y&+1), 0) fQr k + 1< m9 

including k = 0, where + has X, yl,. . . , y,,, free, 

R((l, 6, ‘4’9 Q, Y19 l l .9 Ym-dr Ym, Ix E a : #(% Yl9 l l l 9 Yrn)), 0); 

(63 Rbff, x, x v bL0); 

(7) RW”, 4 WJd, 0); 

(8) R@*, n, il,% 4, 01, WL %n), m, 0,4, n, m), 0)s 

NO, 4, n, 4,x, 0,4, n, m, x),0), 
R((1,4,n,m,x),y,(z:(n=m~z~x)v(n#m~z~y)},O); 

(9) R(x, 2, u, a) A R(y, 2, 0, 6) A R(u, v, w, c)+ R((1, 1, x, Y), 2, w, h, v, a, 6, d):, 

(10) Funct(g)A Funct(h)~Vx~a3u,v((x,u)~g~(x,v)~h ~R(f,x,u,v)) 
h a = Dam(g) A a = Dam(h) + R((l,7, a),& Ran(g), (g, h)); 

(11) R(im*, a, (1,7, a)- 0); 

(12) Funct(fi JI (x9 Ykf + Nf, x, y, 0); 
(13) If * is any formula of satisfying the above conditions with +!j in place of 

R, then Nf, x, Y, u)-, 44x JG Y, 4. 

The last condition says that R satisfies every instance of induction on the definition 
of that can be expressed in e least 
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solution of the inductive condition 1.) Note that if we restrict the complexity of 4 
in (5) to be less than a fixed integer n, then conditions ( I)-( 12) can be expressed 
by a single formula of IZF, with an addition predicate symbol R by means of the 
satisfaction-definitions discussed above. We shall refer to these conditions, plus (13) 
for all #, as “10.1,“. 

10.2. Lemma. Let n be a jixed integer. Suppose IZF- p proves Conditions 10.1 ,, fir 
some formula R. DeJZ’ne App(f, x, y)-3uR(f, x, y, u). Then IZF- proves Condi- 
tions 9.1 n. 

Proof. We argue in IZF-Rep. We shall show 

R(f,x,y,u)nR(f,x,w,v) + u=v~\y=w. ( ) * 

We shall do so by induction on the definition of R. To be precise, we will apply 
clause (13) of 10.1, with # taken to be 

#(f;x,y,u) - Vw,v(R(cf;x,w,v)+u=v~y=w). 
The argument proceeds by cases. 

Case 1: R(f, x, y, u) because of (l)-(8) or (11) or (12). Then u = 0. Suppose 
R(f, x, W, v). Suppose, for example, that f = k*. Then w = (1, 0, x) = y and u = v = 0 
(as follows from clause (1)). Similarly for the eighteen other possible forms of J 

Case 2: R(f, x, y, u) because of (9). Let R(f, x, w, v). Then we apply the lemma, 
proved using clause (13), that R((1, 1, r, s), x, y, u) implies u = (u’, v’, a, b, c), where 
R(r, x, u’, a)n R(s,x, v’, b)h R(u’, v’,y, c). Let f =(l, 1, r, s). By the induction 
hypothesis, we have 

Hence, u’, a, v’, and b are uniquely determined by f and x. Hence, also y and c 
are uniquely determined by f and x. It follows that y and u are uniquely determined 
by f and x. HeLace, w = y and u = v as required. 

Case 3: R((I,7,a),f,u,(g,h)) because of (10). Suppose also R((1,7,a),f,u’, 
(g’, h’)). By (13) it can be shown that u’, g’, h’ are as in (10) as well; that is, both 
g and g’ are functions with domain a, as are h and h’, and for all x E a we have 
R(J; x, g(x), h(x)) and R(J x, g’(x), h’(x)). By induction hypothesis we then have 
g(x) = g’(x) and h(x) = h’(x) for all x E a. Hence, by extensionality, g = g’ and 
h = h’. That completes the proof of (*). 
NOW let App be defined as in the statement of the lemma. We shall prove that 

App satisfies Conditions 9.1,. All the conditions of 9.1 except (3) and (10) may be 
trivially verified by taking u = 0. Consider (3). Suppose App(x, z, u) A App(y, z, v) A 

App( u, v, w). Then there exist a, b, c such that 

(x, 3 4 a) A R(Y, 2, v, b) A RN, 0, w, c). 

by 10.1(9), 

w, 1,x, Y), 3 w, u3. 

ve R(0, 1, x, Y), 2, w, (u, v, a, b, 4). Hence, 

((1,1, x, y), z, w) as required by 9.1(3). 
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Now tort sick ( 10). Suppose 

Vdx E a3y E u App(J; x, yj ct Vy E u3x E a App(J; x, y). 

By (*) we hsve W’x L a3 !(.v, e)R(j, x, y, v). Applying replacement, there is a function 
Y and a function V, both with domain G$ such that Vx E aR(J; x, Y(x), V(X)). 
Then by (10) of 10.2, we have R((1,7, a),ef; Ran( Y),(Y, V)). Hence, 
App(( 1,7, a),f, ( Y)). But, by (*), we have Y(x) E u for all x E a. By extensional- 
ity, u= Ran(Y rice, App((l,7, a),J u) as required in 9.1(10). 0 

10.3. Lemma. IZF- p proves, for each al, . . . , a,,, that there is a least transitive set 
TC(a I,*‘*, a,) contaifling al,. . . , a,. 

Proof. Let a abbrevk:e a1, . . . , a, ; let a E w abbreviate aI E w A . . . A a, E w; let Wa 
abbreviate ‘da, . . . W a,. P% shall use E -induction to prove 

Wa3!w(Trans(w) II a E w A Wv(Trans(v) II a E v+ w c v)) 

where Tram(w) is Vu, U(U E v A v E w + u E w). Suppose 

Wx~a3!w(Trans(w)nx~wAWv(Trans(v)Ax~v+w~v)). 

By replacement, ‘there is a set b such that 

u=(a)u(wEb:~xEa(Trans(w)hxEwnWv(Trans(v)nxEv-,w~v))). 

Trans(u) A Wx E a(x E u) A a E u. Now TC(a) can be defined as the intersection 
transitive subsets of u that contain a. Cl 

Remark. The proof of the lemma uses powerset, replacement, and E-induction. 

10.4. Proposition. Let n be Jixed. 
proves Conditions 10.1 n. 

There is a formula R of IZF such that IZF- 

Proof. Conditions lO.l,, (1) through (12) can be written in the form 

for a suitable formula ?P in the language of with one additional four-place 

predicate symbol If A is a transitive set, we call the set w “A-closed” if w c A4 
and 

f~AI\XEQhyEUhUEAA~(f,X,y,U,W) + (f,X,y,U)Ew- 

We define R(f, x, y, u) to be a formula expressing “(f, x, y, u) belongs 
TC(f; x, y, u)-closed set.” 

to every 
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We have to prove that R satisfies the conditions 10.1”. A key observation is the 
following, which is an immediate consequence of the definitions involved: 

If A and B are transitive and B c A and w is A-closed, 
then w n B is B-closed. (**) 

Conditions lO.l( I) through (8), (ll), and (12), can all be treated simultaneously 
since they all have the form R( t, q, s, 0) for certain i, q, and s. Let W be A-closed, 
where A = TC( t, q, s, 0). Then, by the definition of A -closed, we have (t, q, s, 0) E W 
Hence, R( t, q, 0). Now consider (9). Suppose 

R(x, z, u, a) n R(y, 2, v, 6) A JO, v, w, d- 

Let A = TC((1, I, x, y), z, w, (u, v, a, 6, c)). Let W be A-closed. We have to show 
((I, I, X, y), Z, W, (u, v, a, 6, c)) E W. Note that x, y, z, w, u, v, a, 6, and c are all members 
of A. Since R(x, z, u, a), we have: (x, z, u, a) belongs to every TC(x, z, u, a)-closed 
set. Sy (**), Wn TC(x, z, u, a) is TC(x, z, u, a)-closed. Hence, (x, z, u, a) E W 
Similarly, since R(y, z, v, b), we have (y, z, v, 6) E w, and since R( u, v, w, c), we have 
(u, v, w, c> E II? Since W is A-closed, it follows that (( 1, 1, x, y), z, w, (a, 6, c)) E w as 
required. 

Now consider (10). Suppose Vx E aR(J; x, g(x), h(x)) where g and h are set- 
theoretic functions. (Since we are working in pure set theory, not in ZFR, there is 
theoretically no chance of confusing the abbreviation g(x) with the application in 
ZFR.) Suppose Dam(g) = Dam(h) = a. We have to show R((l, 7, a),f, u, (g, h)). Let 
A= TC((l, 7, a),J u, (g, h)), and let W be A-closed. We have to show 
{(1,7, a),_& u, (g, h)) E w. It will suffice to show Vx E a((X x, g(x), h(x)) E w). Let x E A. 

men RU x, g(x), h(x)); let B = TC(f, x, g(x), h(x)). men (f, x, g(x), h(x)) 
belongs to every B-closed set, and by (**), W n B is B-closed; hence, 

U x, g(x), h(x)) E w. 
Now consider (13). Suppose the formula $ satisfies (1).( 12) with # in place of 

R. Let R(f, x,y, u). We have to show JI(J x,y, u). Let A = TC(f, x,y, u). Let W= 
((a, 6, c, d) E A” : R (a, 6, c, d )}. Then W is A-closed and is a subset of every A-closed 
set, by definition of R. Define W’ = {(a, 6, c, d) E A : @(a, 6, c, d)}. Then, by 
hypothesis, W’ is A-closed. Hence, W c W’. Since R(f; x, y, u), we have (A x, y, u) E 
WK Hence, (f, x, y, U)E W’. Hence, #(f, x, y, u). El 

emark. Separation is used in the last paragraph to form W’. If we only wanted 
to verify R-induction for bounded formulae, we would need only bounded separation 
since R can be defined by a bounded formula. 

Every theorem of in the language of IZF is provable in 

Let R be as in Proposition 10.4. Define App(j; x, y)-3uR(f, x,y, u). By 
Lemma 10.2, proves Conditions 9.1,,. Now the translation (B* given at the 
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beginning of Section 9 is completely defined. (Technically, one may view the 
translation as going from Z to an extension of by suitable terms.) 
C s 9.1 make it clear that c$* is a theorem of for each axiom of 
Z of complexity less than n. By induction on ength of proofs, one 
shows that if p is a proof in Z each of whose lines is of complexity 
less than n, then #* is a theorem of IZ . Since n was arbitrary, we m oose 
it to exceed the maximum complexity es of a specific proof p in of a 
formula 4 in the language of IZF. Since t# is in the language of IZF, +* is just 4. 
Hence, 4 is a theorem of IZF-Rep. 0 

Remark. The theorem applies just as well to ZFR plus replacement as to ZFR. We 
conjecture that ZFR does not prove the replacement schema. The theorem leaves 
open the question of the exact proof-theoretic strength of ZFR. 

Il. Operational semantics of ZFR 

The m.Jdel constructed above is the natural set-theoretic model of Z 
the denotational semantics. But it includes many nonrecursive operations from N 
to N (at least if classical logic is used), and hence does not provide an operational 
semantics. Of course, using classical logic, there are bound to be nonrecursive 
functions, but as it turns out, it is o.ily possible to d recursive operations. We 
shall construct a natural recursion-theoretic model of , in which all operations 
from N to N are recursive. 

The model is constructed by the same technique as ve, that is, by inductively 
defining an application relation. We shall have to m two modifications in the 
construction. The first one is obvious: we shall leave out clause (11) in 9.1, which 
makes every set-theoretic function an operation. ith classical logic, that clause 
will lead to many nonrecursive functions. We want to construct instead the model 
which has only those operations that must be there on account of the axioms. 

The second modification we have to make is not quite so obvious. It has to do 
with the representation of the integers as the “Von Neumann integers” of set theory. 
ZFR takes integers as primitive, and does not use the Vow Neumann representation 
Our first model of ZFR did model the integers as Von Neumann integers, but we 
shall have to abandon the Von Neumann integers to get a model with only recursive 
operations. Here is why. 

When we ask our computation system to produce an integer, we want to get a 
numeral as answer, not a definition of some set like q = {x : x = 8 A P}, where P is 
an unsolved problem like Ferm,t y . 9 ‘c last themwn. One may belime-in fact, if XC 
takes classical logic, ene must believe-that this definition defines either zero or 
one, even though we do not know which. a Gzfinition is not the kind of 

answer we want from the computer as an f we accept the Van Neumann 

integers as the definition of “integer”, we will be stuck with “integers” like this one. 
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It is for this reason that ZF takes the integers as primitive, instead of as defined 
in set theory. If we accept the Von Neumann integers as the integers, then we will 
certainly have nonrecursive operations on the integers, for example, 

which defines the characteristic function of the halting problem if we use classical 
logic. (With only intuitionistic logic, we cannot prove that the values of fare Von 
Neumann integers; to do that we have to prove that f(n) is either zero or one.) 
Note that the definition off does not work if integers are primitive; it depends on 
the Von Neumann construction of integers as sets. 

One will naturally wonder at this point, “but are the Von Neumann integers not 
isomorphic to the integers ?’ The answer is that they are isomorphic by a set-theoretic 
function, but not necessarily by an operation. If we had an operation g that computed 
the integer equivalent to a given Von Neumann integer, we could solve Fermat’s 
last theorem by applying g to the set q constructed above. Of course, this remark 
will only become a precise theorem about the nonexistence of an isomorphism 
operation after we have constructed a model with only recursive operations. But it 
illustrates the situation. One can use the recursion theorem to embed the integers 
in the Von Neumann integers: 

f(n) =w, h 0,f(Pdo u {f(p!un))), 

but one cannot construct the inverse off and show it to be defined on all the Von 
Neumann integers. 

We are suggesting a viewpoint according to which, even with classical logic, the 
set q defined above does not count as an integer. This viewpoint is codified in ZFR. 

ds with the set-theoretic tradition, but it is the viewpoint suitable for 
computational mathematics, whether or not one accepts classical logic. The main 
theorem of this section, that there is a natural recursion-theoretic model of ZFR in 
which only recursive operations from N to N occur, shows that this viewpoint is 
coherent. 

With these explanations finished, we can proceed to the constructic 
This construction can best be understood if we think of it in two stages. First we 
have to define a model of the set-theoretic part of 2 in which there will be thrre 
kinds of things: sets, numbers, and other objects, which are clearly labelled. Having 
done that, we shall then give an inductive definition of the application relation, 
much as we did above. 

The model, which we shall call M, will be built of sets since set theory is the 
traditional metatheory of mathematics. It will contain only sets of the three forms 
(3, x), (2, x), and (1, x). That is, only ordered pairs whose first component is 0, 2, 
or I;, this number will tell us whether the object in question is a number, set, or 
other object. The exact definition of the universe of M is as follows. 

e universe, sets, and integers of are defined inductively by 
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the following clauses: 
(1) The elements of M are the sets in A& the numbers in A& and the objects in M. 

(2) The numbers of M are all sets of the form (0, n) with n E O. 
(3) If x is a set of elements of M, then (2, x) is a set in 
(4) k*, s*, p*, c$, u*, im*9 d*, s 8, 9*, as defined in Section 9, are objects in M. 
(5) If n and m are numbers in M, a is a set in M, and x and Y are any elements 

of M, then the following are objects in M; for intelligibility we also give their 
intended denotations: 

(l,O, x) to denote kx, 

(I, I, x) to denote sx, 

(I, I, x,v) to denote sxy, 

(I, 2, x) to denote px, 

0,4, n> to denote dn, 

(I,% n, m) to denote dnm, 
(1,4, n, m, x) to denote dmnx. 

(6) If 4 has x,yl,..., ym free with m > 0 and k + 1 c m, then the following are 
objects in M: 

(19% ‘4’9 a) to denote c4a, 
(1,6, ‘t#V, a, y, , . . . , yk) to denote c4ay1 . . . yk. 

As in Section 9, we can cast the construction of M c veniently as a trans- 

lation from IZFR* into a suitable extension by terms of F, in which the fact 
that M satisfies 4 will be expressed by a formula 4”. We define 0” = 
(2, N* = (2, ((0, n): n E o}), S(t)* is S*( t*), where S* is a formula defining the sets 
in M. We define (t = q)* to be t* = q*. 

efinition. Membership in M: (x E a)* is the formula 

S*(a) /\ 3b(a = (2, b) A x E b). 

It will also be convenient to write x eM a for (x E a)*. 

The above definitions suffice to determine #* for all formulae 4 not containing 
App. In addition we shall define, as in Section 9, 

APPO, a 4* is AM*, q*, r*) 

where App is a formula yet to be defined. We have to find a formula App satisfying 
the following inductive conditions. 

11.3. Definition. The application relation of is defined inductively by the follow- 

APPW, 0,x), Y, 4; 
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(5) 

(6) 

(7) 

(8) 

(9) 

00) 

(10 
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=@p(u*, (2,4, (2) u ix : (2,x) E a))); 

App(c$, (2, a), (2, {x E a : 4*(x)})) if # has only x free, 

App(c$, (2,4, (I,& V’, 4) if 9 has x, y1 ). . . 9 ym free, 
APPw, 6, ‘&, (2, a), YI, l l l 9 Yd, y&+1, (b6, ‘d: (2, a), Y,, l l 9 9 y&+1)) 

for k + 1 < m, including k = 0, where 4 has x, y,, . . . , y,,, free, 

APP((l, 69 ‘4’s (29 a), YI 9 l l l 9 Ym-I), Ym, (2, {Xc Q : @“(X3 YI 3 l l l 9 Ym)))); 

APPbzt;, (094, (0, n u W); 
API@*, (2, x), (2, K&z): 2 E Wx)H); 
N(n)* + APPW”, n, 0,4, n)), 
N(n)* A N(m)* + APPW, 4, nL m, (L4, n, m)), 
N(n)* n N(m)* + APPW, 4, n, m), x, 0,4, n, m, x)), 
N(n)*+ App(k4, n, n, x), Y, 4, 
N(n)* A N(m)* I\ n! = m + APPW, 4, n, m, x), Y, Y); 
WI* +* AppW*, b, (1,7, W, 
S*(b) Avx EM b3y EM ~4df; x, y) fi b? EM u3x 5 M b&p(f, x, y) 

+ APP(k7, kfz u) 
If + is any formula of IZF satisfying the above conditions with @ in place of 

APP, then APF!X x, Y) -) (X x, y)- 
. 

11.4. Theorem. A formula App meeting the above conditions can be constructed ; the 
resulting translation of 4 to #* is sound. Hence a model M of ZFR exists in which 
the application relation satisfies the above inductive conditions. 

f. The inductive definition can be formalized as in Section 9. We then check 
the axioms of ZFR are satisfied; this goes as in Section 9 except that the 

definition of membership in M is slightly different. Let us check, for example, the 
pairing axiom. Suppose M satisfies (z E pxy). That is, 

~u~v(APP(P, x, 4 A APP@, Y, 27) A 2 E 4. 

Then u = (1,2, x), and v = (2, {x, y}). But (z E (2, {x, y}))* is z E (x, y}. Hence, M 
xy) iff z=x or z=y, which is the same as (z=xvz=J)*. 

The axiom App(x, y, u) A App(x, yS v) + u = v holds in M, as one verifies by induc- 
tion on the definition of App, exactly as in Theorem 9.2. 

We now check the axioms of images. Suppose b is a set in M, and suppose f is 
an element of M such that fx is defined for every x EM b. Let u = 

(2,I.v: 3X EM WQp(x, J’))b Then VX EM bSJ/ EM UApp(X, JJ) and also 
vy EM u3x EM bApp(x, y). Hence, by the de&&ion of App, we have 
App((l,7, b),f, u). Note that the set u can be formed using replacement since App 
is single-valued. 

now check the axiom of separation. sider 
contains only x free. Suppose en in 

as (2, {x E a : d*(x)}), where 4*(x) is the formula expressing thai R4 
satisfies x E q,(a) if and only if satisfies x E a /\ 4(x). 
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We now check the axiom of union. Suppose (2, a) is a set in M. Th;ln ~(2, a) is 
interpreted in M as 2, U {x: (2, X)E a}). Thus M satisfies z E ~(2, Q) ifI ZE 
U b: (2,~k a) iff 3x(@, X)E a A z E X) iff 3~((2, X)E a A z Eni (2, x)). Since every 
set in M has the form (2, x), this is equivalent to 3 w( w E a A z EM x). This in turn 
Can be Written 3w( w EM (2, a) A z EM x), which is the condition mentioned in the 
union axiom. 

The other axioms can be checked similarly. q 

At this point it is instructive to see intuitively why the characteristic function of 
the halting problem cannot be defined in Mb Let us try defining f(n) = 
(0, {m : m = 0 A (n}( II)&}. That would be the object playing the role of characteristic 
function of the halting problem in M. But there is no operation fof M which has 
this behavior under the .+p relation. (That has not been proved yet, of course, but 
just try to construct one.) 

Our next goal is to actually prove that the application relation of M has the 
property that it introduces only recursive operations on the integers. One obviously 
has to prove something by induction on the definition of the application relation, 
and that something has to refer to arbitrary operations in the model, and not only 
to operations from N to N. 

The key tool in the proof is the notion of term reduction and the related notion 
of term models. The basic facts can be found in [4, Chapter V]. There one finds 
the reduction rules for the combinatory part of Z , and the definition of “inside-first 
reduction”, which is better-known in computer science as “call-by-value” reduction; 
it just means that one must evaluate all subterms of the term one is evaluating, even 
if they are only to be thrown away. 

We shall construct a combinatory algebra A from M, intuitively by identifying 
all the sets in M to a single object, and making the other identifications that this 
necessitates. It turns out to be easier to describe A directly, and then to give a 
homomorphism of combinatory algebras from M to A. A is constructed as follows: 
It is the normal-term model whose elements are closed normal terms in the language 
of ZFR augmented by a new constant a. The application relation in this model is 
defined by Ap( t, s) = RED( ts), where RED(t) is the result of reducing the term t 
by call-by-value term reduction, using the following reduction rules (here written 
as equations) : 

kxy = x, sxyz = xz(yz), 

nnxy =I x, Eixy=yifn#m, 

xy=a, 

ua=a, h=a, 

c4(a,yl,-.,yd=a 

The exact definition of 
reduction rules. 

if 4 contains exactly X, yl,. . . , y, free. 

can 
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1M. Lemma. A is a combinatory algebra. @‘we in&r-ret N(x) as the numerals, then 
A also satis$es the axioms for d, and all functions from N to N representable in A 
are recurs&e. 

f. The construction of normal-term models is carried out in detail in [4, Chapter 
VI]; nothing new is involved here. Since call-by-value reduction is recursive, if t 

represents a function from N to N, then the value of t at n can be computed just 
by reducing tn’ by call-by-value reduction. Cl 

We now define a homomorphism of combinatory algebras from M to A. The 
definition is by ind, u&n on the definition of elements of M. 

11.6. Definition. To each element x of M we associate an element x0 of A as follows: 
(1) if x is a set in M, then x0 is a. 
(2) if x is a number in M, say x = (0, n), then ,Y’ = 8. 
(3) if c* is an object in M, where c is a constant of ZFR, then c*O is c. 
(4) if x is in the first or third column below, then x0 is in the next column: 

!1,4, (0, 4, (O,mB d=, 

0,1,x) sx”, 

(I, I, x, Y) SXOYO, 

(I, 4, (0, n), (0, m), x) dEx3 

0,6, ‘#‘, 4 qa, 

(192, x) PXO, (1,6, ‘d’, a, y1 9 l . = 9 Y/J c&, y'i, . . . 9 yak), 

0,4, (0, 4) dfi, (1,7, a) im a. 

11.7. Theorem. The map O is a homomorphism of combinatory algebras, i.e., it preserves 

application. 

roof. The statement that it is a homomorphism also means that kM goes onto k 
and sM goes onto s, which is true by definition of O. We prove that it preserves 

aP shall prove by induction on the definition of the application relation 
in (x, y, z), then RED(x”y”) = z”, where, as above, RED is call-by-value 
term reduction. There are ten cases corresponding to the clauses (l)-(10) of 111.3. 

Case 1. We have App( *, x, (1, 0, x)); we have to show that A satisfies 

Both sides of this equation are equal to For the second part of (l), we have 
App((l, 0, x), y, x). Note that ((1, 0, x)) x0, so that what we must show is 

x0; but this is true since x0 and y” are normal terms. 
have App(s*, x, (1, 1, x)); we have to show that A satisfies 

uation are equal to 
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Case 3. Suppose we have App(x, z, u) I\ App(y, z, v) I\ A,9p(u, v. w). Then, by 
induction hypothesis, we have 

RED(x”z”) = u”, RED(y”z”) = v”, RED(u”v”) = w”. (h2,3) 

We must show RED( (( 1, 1, x, y))“z”) = w”. We have (( 1 , 1, x, y))” = sx”yo; now we 
calculate 

RED(sx”y”z”) = RED( RED(x”t”) RED(y”z”)) 

= RED(u”v”) by equations (1) and (2) 

= w”, 

which was what we had to show. 
Case 4. We have App(p*, x, (1,2, x)); we have to show that A satisfies 

RED(px”) = (( 1,2, x))“; 

but both sides of this equation are equal to px”. For the second part of (4), we have 
App((l,2, x), y, (2, {x, y})). Note that ((I, 2, x))O= px’, so that what we must show 
is RED(px”y”) = ((2, {x, y}))“. The right-hand side is equal to a by definition of On 
The inner terms on the left-hand side, namely x0 and y”, are normal; so the left-hand 
side is computed using the reduction rule pxy reduces to a. 

Case 5. We have App(u*, x, (2, w)) for a certain w (the exact value of w is given 
just before Definition 11.3, but does not matter); since ((2, w))” = a, what we must 
show is RED(ux”) = a. Since x0 is normal, this follows using the reduction rule ut 
reduces to a. 

Case 6. First assume 4 has only x free. Then we have App(c$, (2, a), (2, (w E 
a : 4*(w)})). We have to show RED(q(2, a}‘) = (2, (w E a : t$*(w)}}O. But both sides 
are equal to a. Next assume that 4 has exactly x, yl,. . . , ym free. Then we have 
App(c$, (2, a), (1,6, ‘#, a)). We must show RED(q,a) = (1,6, ‘#‘, a)? The left-hand 
side is equal to c+a since this term is normal (because m > 0), and the right-hand 
side is equal to c+a by definition of O. 

Similarly, we have AppW, 6, ‘4’, (2, a), yr) = . . v yd, ~k+~) (1,6, ‘46 (2, a), 

Yl , . *. , yk+J. We must show that 

RED(c4ayT,. . . ,Yok+1) = @,a), Y19 . l l 9 Y&+*)“e 

The term on the left side is normal, and by definition sf O, it is the value of the 
right-hand side also. We have 

APPUl9 6, ‘6, c&a), YIP l . l 9 Ym-A Yin, (2, ix E a : 4*(x, Yl¶ l l -9 Ynm* 

We must show RED&, y”,) = a. This follows from the fact that the subterms 
on the left are normal, together with one of the reduction rules. 

Case 7. We have App(s& (0, n), (0, n v {n}). We must show 
Since n + 1 is just another name for the term sNli, this follows 

umerals are rqrmal terms. 
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Case 8. We have App(P”, (2, x), (2, ((2,~): 2 E (41)). We must show 
RED( pa) = a, which follows since 9 and a are normal and kZ@a reduces to 

Case 9. We have N(n)* + Appld*, n, (1,4, n)). Suppose N(n)*, that is, n is an 
integer in M Then n has the form (0, n,), and no is fiI. SO what we have to show 
is RED@&) = ((1,4, n>o). Since dfi is normal, the left side is just d& . That is also 
the value of the right-side, by definition of O. 

We have N(n)* I\ N(m)* + App((l, 4, n), m, (1,4, n, m)). Suppose N(n)* and 
N(m)*. Then n has the form (0, n,), and m has the form (0, m,). What we have to 
show is RED(d&liil) = ((1,4, n, m))‘. Since the term on the left is normal, the left 
side is just dfi,@ . By definition of ‘, that is also the value of the right side. 

We have N(H)* A N(m)* + App(( 1,4, n, m), x, (1,4, n, m, x)). Suppose, as above, 
that n = (0, n,) and m = (0, m,). We have to show RED(dn’,fi,x”) = ((1,4, n, p?r, x))“. 
Since x0 is normal, the left side is just dn’lfilxo. But that is the value of the right 
side, by definition of O. 

Suppose n = (0, n,). We have App((l,4, n, m, x), y, x). We have to show 
RED(Jn’,n’,x”yo) = x0. But that follows from the facts that x0, y”, and numerals are 
normal terms, so the reduction rule for d applies. 

Similarly, suppose n = (0, n,) and m = (0, m,). Then we have 
App(( 1,4, n, m, x), y, y). We have to show RED(dn’, fi,x”y”) = y”. But that follows 
from the facts that x0, y”, and numerals are normal terms, so the reduction rule for 
d applies. 

Case 10. Suppose b is a set in M Then we have App(im*, b, (1,7, b)). We have 
to show that RED(im 6”) = (1,7, b)“. The right side is im a, by definition of O. The 
left side is the same since b” - - a and im a is a normal term. Now suppose that b is 
a set in MI Suppose furthermore that M satisfies 

Then we have App(( 1,7, b),_f, u). Note that (1,7, b)o = im a since b” = a. We must 
show 

RED(b(a, f )") = u". 

Since f O is normal, the reduction rule im(a, x) = a applies, so the left side is just a. 
Since u is a set in M, u” is also a. That completes the ten cases of the inductive 
proof. Cl 

. The model satisjes classical logic and also Church’s thesis in the 
rm, every operation from N to is recursive. 

Suppose f is an element of M such that satisfies Vn E N{ fn E IV). Let t 
y Theorem 11.7, if satisfies fii = fi, then tii reduces to fi by call-by-value 

n other words, f is extensionally equal to its image f ". 
11.5, this function is recursive. Cl 
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Another interesting consequence can be drawn from the model M: it is impossible 
to define an operation in which will take two distinct integer values on two 
different sets CL and b. Before proving this fact, we first make it plausible. Suppose 
s and b are two sets; then define u = {x: (x E a A P) v (x E b A lP)}, where P is an 
unsolved problem, say Fermat’s last theorem. Now suppose we have an operation 
f such that fa = 0 and fb = 1. Then we could settle Fermat’s problem by computing 
fu and seeing whether it is zero or one. This kind of example is familiar in constructive 
mathematics, but here we have classical logic; only the operations are to be con- 
structive. 

11.9. Theorem. Suppose a and b are two sets in M. Suppose f is an element of M such 
that M satisfies fa E N and fb E M. Then M satisjes fa = fb. 

Proof. Let m be the value of fa in M and n the value of fb. Then f”(a) reduces to 
fi since O is a homomorphism and a0 = a. But since also 6” = a, f”(a) reduces to Is. 
By the uniqueness of normal forms, n = m. Cl 

In particular, any integer-valued operations defined on P(N) mirst be constant. 
It is impossible to define nontrivial integer-valued operations on sets. It may seem 
paradoxical to propose a computation system based on set theory when such a 
simple function as count(x), the cardinality of a finite set x, cannot be computable. 
But as we have seen if count(x) were computable, then we could solve Fermat’s 
last theorem, by applying count to a suitable set. That set is not the sort of set we 
will deal with often in computer science since we cannot list its elements. There are 
two ways of saying what kinds of sets we will deal with in computer science: either 
use constructive logic, in which case “finite set” has a more restrictive meaning than 
it does in classical logic; it means we can explicitly count the elements of the set. 
Another approach is to restrict attention to representations of sets, e.g., by finite 
lists, which are operations with domain an initial segment of N. In any case, our 
inability to count the number of elements of sets with complicated definitions will 
not be a practical limitation on the usefulness of set theory as a computation system. 

emark. It is an open problem whether Church’s thesis plus classical logic plus 
Exp is consistent. 

tion syste 

We now return to the original theme of the paper, namely set theor:! as a 
computation system. We shall discuss the possibility of implementing as a 

computation system. The first step is to write the axioms of as rules of inference 

l a natural deduction system. Such a system ow to infer lines of the form 

: r from other such lines, where I’ is a list ssumptions on which the formula 
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A depends. The axioms of IZFR can be viewed as type-formation 

S(a) 

together 

S(cd,(a)) 

with introduction rules like 

xea 4(x) 
x-f@) 

and the elimination rules like 

x+4 =c&) 
xea ’ 4(x) . 

Note that the axiom of images can 
(natural) corresponding version of the 

S(a) S(fx): x f a 

Wm(a,f)) ’ 

S(a) S(fx): x E a zea 

rules, e.g., 

also be treated this way, while there is no 
collection axiom: 

fi E im(a,f) 

S(a) S(fx): xEa zEim(a,f) 

3xEa(z=fx) 
. 

These rules can be straightforwardly translated into PROLOG, producing a 
computation system that recognizes or finds proofs in IZFR. Of course, such a 
system could be implemented in any other programming language, too. 

What would such a computation system be good for? Consider Knuth’s example 
of an algorithm extracted from Bishop’s proof of the Weierstrass approximation 
theorem. We could write out the formal proof of the approximation theorem, feed 
it to a suitable (rather simple) program, and extract the algorithm implicit in the 
proof. We should be able, in fact, to use the computation system to fill in the most 
detailed steps of the proof if we provide the major steps. In other words, we should 
be able to extract algorithms from proofs; such algorithms would be automatically 
guaranteed to satisfy their specifications. 

An actual implementation would probably avoid existentially defined sets such 
(a, f) and work instead with a term for the graph off restricted to a; in this 

paper we have used im instead, in the belief it is more natural for humans. The 
computer, however, would have to keep track of the “witnesses” demonstrating 
membership in im( a, f), and it would be natural to do this explicitly. Such an 
implementation would probably restrict the separation axiom to formulae which 
are “almost-negative” in a suitable sense. This would permit the use of a simple 
form of q-realiz lity for the extraction of algorithms from proofs. On top of this 
internal system re would be a user interface which would translate certain 
existentially defined types into explicit, internal versions. Thus, for example, the 
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user could define a type as a union,, and the system would construct an internal 
type which would also keep track of the witness of membership in the union. 

We next discuss some examples of data types which are useful in computer 
science, as defined in such a computerized set theory. 

Example 1 (Lists). The programming language ML permits the polymorphic type 
Q! list, where a! is any type; this is the type of lists of objects of type cy. In ZF 
can be defined in the most mathematically natural way: a list of length n is a function 
from the first n integers to the set cy, and list( a ) is the union over all integers n of 
the set of lists of length n of members of cy. 

Example 2 (Sorting). 0ne wishes to be able to define a polymorphic sorting algorithm 
sort( a, R, x) which will take as arguments any set Q! with a linear order R on it, 
and a finite list x of elements of cy, and return the sorted list with the same elements 
as X, but in R-order. Here we assume that R is actually an operation that decides 
the order of any two elements of a! by returning 1 or 0. Several such algorithms are 
known and studied in elementary courses, yet many computer languages, even such 
advanced ones as ML, are unable to express such a polymorphic operation. Instead, 
you must wnte a new version of your sorting algorithm for each new type cy. (The 
reason is that sort(a, &R, x) is only defined when R satisfies a condition depending 
of (Y, and the type-formation mechanisms of ML do not allow for that.) Note that 
definitions of this sort are completely straightforward in ZFR. 

13. Church’s thesis and the axiom of choice 

The first model constructed above contains lots of nonrecursive functions from 
N to N, It therefore does not correspond to any sensible operational semantics for 
set theory considered as a computation system. We therefore constructed the second 
model M, in which only recursive operations occur, even if logic is taken to be 
classical. If we do take classical logic, then exactly as in ordinary set theory there 
will be many nonrecursive functions, in the set-theoretic sense of single-valued 
subsets of N x N. But the natural implementation of as a computation will 
make use of only the intuitionistic natural-deduction rules; the law of the excluded 
middle is an extra appendage in this context. 

Such considerations lead naturally to the formal question whether can prove 

the existence of any nonrecursive functions. In other words, is it consistent with 
to assume that all functions are recursive? Note that this is stronger than “ 

operations are recursive”; we already know that this is consistent, by the model 
of Section 11. 

Church’s thesis can be formulated in the language of as follows: 

(e is a recursive index off). 
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13.1. Tharem (Consistency of Church’; thesis). It is consistent with IZFR to assume 
all functions are recursive. What is more, every theorem of IZFR+ CT in the lat. wage 
of IZF is already provable in IZF+ CT. 

Proof. It is known (see, e.g., [4, Chapter VIII]), that IZF is consistent with CT. 
Now suppose that IZFR+ CT proves t$. Then, by the deduction theorem, IZFR 
proves Cl’+ 4. By Theorem 10.5, IZF proves 4, assuming 4 is in the language of 
IZF. 0 

The principle of countable choice can be naturally expressed in ZFR by 

(A&) Vn(N(n)~3xA(x,y)) + 3fVn(N(n)+A(n,fn)). 

Note that A& can be used to prove that every that every set-theoretic function 
on N is extensionally equivalent to some operation. Similarly, the following axiom 
of “unique choice” can be used to prove that every set-theoretic function (with 
whatever domain) is extensionally equivalent to some operation: 

Wx E a3 !yA(x, y) + 3f Wx E aA(x, fx). 

This axiom was first introduced by Myhill [41] who called it an axiom of 
“non-choice” since if f ranges over set-theoretic functions instead of operations, it 
is a triviality. Both the axioms of choice just mentioned are consistent with ZFR 
since they hold in the model constructed in Section 9. On the other hand, they fail 
in the model A4 of Section 11 since they imply FO, which fails in that model since 
there are nonrecursive functions but only recursive operations. It is therefore of 
interest to prove the following theorem. 

13.2. Theorem. IZFR+ CT+ A& + AC! is consistent, 

Proof. AC! is a consequence of FO, so it suffices to prove that IZFR+ FO + ACN 
is consistent. Suppose it is inconsistent. Then some finite conjunction B of instances 
of A& can be refuted in IZFR + FO. Note that using FO, the operation mentioned 
in AC.. can be replaced by a function, so that the formula B can be assumed to be 
a formula of IZF, i.e., not mentioning Ap. By Theorem 10.5, then B is refutable 
in IZF-Rep. But B is a finite conjunction of instances of countable choice in the 
version expressible in IZF, i.e., with functions instead of operations. Hence the 
refutation of B in IZF contradicts the known consistency of IZF with countable 
choice. (See, for example, [4, Chapter VIII].) q 

Appendix. The concepts of set, class, and data type 

The ideas of constructive mathematics and computer science prompt a re- 
examination of the concepts of “set” and “class”. In this appendix, we shall recall 
the ideas of Cantor, Dedekind and Frege, and compare them with those of Brouwer 
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and Bishop, and with the “data types” of computer science, as explained by 
Martin-Eiif and as used in modern programming languages. 

What is a set? 

Cantor addressed this fundamental question at the beginning of his seminal 
memoir (1895) on set theory: 

A set is a collection into a whole of definite, distinct objects of our intuition or thought.4 

Cantor was well aware that there are certain “inconsistent sets”, as he called them, 
which he regarded as “multiplicities” that could not be collected into “unities”. 
Thus the phrase “‘into a whole” was vital. 

Another person who was influential in the development of set theory was 
Dedekind, who used set theory to give a foundation to arithmetic in his essay, Was 
sind und was sollen die Zahlen. Here is his definition of a set (for whi& he used the 
word “system”): 

If different things a, b, c, . . . for some reason can be considered from a certain p int of view, 
can be associated in the mind, we say they form a system S.. . Such a system (an aggregate, a 
manifold, a totality) as an object of our thought is likewise a thing; it is completely determined 
when with respect to everything it is determined whether it is an element of S or not.5 

This definition, which nicely rules out the set occurring in Russell’s paradox, 
preceded Russell’s discovery of that paradox by more than two decades. In both 
Cantor’s and Dedekind’s definitions, there is an element of “mental collection” 
which must be present in order that elements constitute a set. Nevertheless, it seems 
to have been the intention of both that a set was determined by its elements. The 
very next sentence in Dedekind’s book makes this explicit, by formulating what is 
now known as the axiom of extensionality: 

The system S is hence the same as the system T, in symbols S = T, when every element of S is 
also an element of T, and every element of T is also an element of S. 

Independently of Dedekind and Cantor, Frege was developing his own theory 
of classes. His theory was based on the idea of a “concept” or property which an 
object might or might not have, and permitted the formation of what we would not 
write as (x: d(x)} for each concept 4. 4 was viewed as what today we would call 
a “Boolean-valued function”, associating to each x a truth-value “the True” or “the 
False”. In the introduction to his Grundgesetze (1893) [ 17, p. 1491, he criticizes 
Dedekind’s definition of set: 

. . . but the “considering”, “putting together in the mind”, is not an objective characteristic. In 
whose mind, may I ask? If they are put together in one mind and not in another, do they then 
form a system? What is to be put together in my mind must doubtless be in my mind. Then 
do things outside myself not form systems? 1s a system a subjective formation in eaCh singIl? 
mind? Is then the constellation Orion a system? 

4 “Unter einer ‘Menge’ verstehen wir, jede Zusamenfassung N unserer Anschauung oder unYew 
Denkens zu einem Ganzen.” The translation given in the text is Fraenkel’s [ 16, p. 91, 

’ Dedekind [3, p. 451. The original date of publication was 1887; however, the quotation is from the 
second edition, published in 1893. 
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Frege goes on to the example of the empty set, making the point that if it is the 
elements that determine a set, then it is hard to see how a set with no elements can 
be determined! Instead, he points out, the empty set is the set of all things falling 
under a concept which is always false! The intuitive appeal of this theory of concepts 
and classes was such that Frege was convinced of its value. He wrote [17, p. 1471: 

It is improbable that such an edifice could be erected on an unsound base. Those who have 
other convictions have only to try to erect a similar construction upon them, and they will soon 
be convinced that it is not possible, or at least it is not easy. As a proof of the contrary, I can 
only admit the production by some one of an actual demonstration that upon other fundamental 
convictions a better and more durable edifice can be erected, or the demonstration by some 
one that my premises lead to manifestly false conclusions. But nobody will be able to do that. 

0f course, this confidence was soon shattered by Russell’s paradox. The situation 
after this ‘paradox had been fully apprehended is aptly summarized by Zermelo 
(1908) [40], [26, p. 2001: 

Cantors original definition of a set.. . therefore certainly requires some restriction; it has not, 
however, been successfully replaced by one that is just as simple and does not give rise to such 
reservaticnzrs. Under these circumstances there is at this point nothing left for us to do but to 
proceed in the opposite direct;on, and, Ftarting from set theory as it is historically given, to 
seek out the principles required for establishing the foundations of this mathematical discipline. 
In solving the problem we must, on the one hand, restrict these principles sufficiently to exclude 
all contradictions and, on the other, take them sufficiently wide to retain all that is valuable in 
this theory. 

This ad hoc procedure, which after initial controversies became the dominant 
view of the mathematical community, and remains so to this day, is philosophically 
unsatisfying. Not everyone followed this path; in particular Whitehead and Russell 
attempted to repair Frege’s logical foundations by introducing the theory of types 
in Principia Mathematics.’ 

Both Russell-Whitehead and Zermelo gave formal systems which avoided the 
paradoxes while allowing ordinary mathematics, but their motivations differed: 
Zermelo looked to history and practice for his axioms, Russell and Whitehead 
looked for intuitively correct logical notions. At that time, the theory of classes was 
often viewed as logical in nature; even Cantor had considered such a deep mathemati- 
cal proposition as the well-ordering theorem as a “law of thought”. So it is not 
surprising that the paradoxes gave rise to a reexamination of the laws of logic. Such 
a “beginning again at the beginning” was undertaken by Brouwer! In 1918, in 

6 The empty set is nowhere to be found in Cantor, and is specifically eschewed by r,dekind for 
“certain reasons” which are left unspecified. So perhaps they were aware of this difficulty! 

7 The closeness of viewpoint in Prineipiu and in Frege can be seen for example in Principiu *20: “The 
characteristics of a class are that it consists of all the terms satisfying some propositional function, so 
that every pralpositional function determines a class, and two functions which are formally equivalent 
(i.e., such that whenever one is true, the other is true also) determine the same class, while conversel) 
two functions which determine the same class are formally equivalent.” 

8 It is worth noting that merely rejecting the law of the excluded middle does not stop Russell’s 
paradox, which can be carried out with intaitionistic logic. Frege seems to have been confused about 
this [17, p. 3251. 
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Begriindung der Mengenlehre unabhiingig vom log&hen Satz vom ausgeschlossenen 
Dritten (Foundations of set theory independent of the logical theorem of the excluded 
middle) [7], Brouwer addresses the problem of defining the fundamental notion of 
“set”. According to Brouwer, the natural numbers and the linear continuum are 
known to us by intuition; thus natural numbers and real numbers (given by what 
later came to be called “choice sequences”) will be the elements of the most 
fundamental kind of set. Brouwer defined a set (“Menge”) or spread to be (ignoring 
some minor technicalities) a rule associating a number to each sequence of natural 
numbers. “Eine Menge ist ein Gesetz . . . “; a set is a rule. More generally, Brouwer 
recognized the notion of a “species of first order”, whose members could be only 
numbers or spreads, ani which had to be defined by a property. Quite possibly 
influenced by ‘Whitehead and Russell’s theory of types, he went on to recognize 
“species of second order” whose elements could be species of first order, and so on. 

Brouwer’s approach was felt to be too radical by many mathematicians. For 
example, Von Neumann (1925) 1381, in introducing a new axiomatization of set 
theory, is at pains to separate his and Zermelo’s approach from that of Brouwer, 
which is “not a rehabilitation of set theory at all, but rather a very sharp critique 
of the modes of inference hitherto used in elementary logic. . . [Brouwer] systemati- 
cally rejects the larger part of mathematics and set theory as completely meaningless.” 
That this was, for Von Neumann, enough to vitiate the entire approach can be seen 
from these remarks: 

There will be no attempt to make derivations unobjectionable Aso in the sense of the intuitionism 
of Brouwer and Weyl. I would like to remark, nevertheless, that this, too, could be attained 
rather easily (through a few insignficant modifications); but I forgo this as a matter of principle, 
since the axiomatic method is in itself contrary to the essence of intuitionism. [26, p. 3961. 

Constructive axiomatic set theory thus missed a chance of being born in 1925; it 
had to wait almost half a century more. Brouwer’s intuitionistic set theory gained 
few followers, no doubt because of its wholesale rejection of classical concepts and 
methods. So far as the author is aware, nobody tried again to define the concept of 
“set” until Bishop (1967) [5]. There one finds the following definition (p. 13): 

The totality of all mathematical objects constructed in accordance with certain requirements if 
called a set. 

The word “requirements” reminds one of Frege’s “concepts”; but note the explicit 
provision that the elements must be constructed. The word “totality” reminds one 
of Cantor and Dedekind (in fact, it was given as a synonym for “system” by 
Dedekind); but the subjective nature of the process of “collecting” into a totality, 
which Frege criticized, is not present in Bishop’s definition. Bishop seems to have 
believed, or at least hoped, that he had done what Zermelo mentions above as not 
having been done: to successfully replace Cantor’s definition of set by one just as 
simple which does not give rise to paradoxes. In unpublished work, Bishop gave a 
quite attractive axiomatic theory in which his book could be formalized; but, 
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unfortunately, like Frege’s, it was inconsistent. (Presumably he was aware of the 
fact, which was why he did not publish his theory.)g 

Bishop’s explanation of “set”, however, is not at all what is taught in mathematics 
courses in graduate school. If the question of the nature of sets is taken up at all, 
the explanation offered is the “cumulative hierarchy” of sets. One starts with the 
empty set (or some individuals) and repeatedly collects the subsets of what one has 
so far: 

It is said that this is the “intend del” of the axioms of set theory. ft is interesting 
that this “standard model” wa iscussed at the time when ZF was created. The 

axiom of foundation was adde in 1928 by Von Neumann, who also introduced 
the cumulative hierarchy (alt at was presaged by Mirimanoff in 1917 [35]). 
ZF was not about any specific ion of set, such as the well-founded sets, when 
it was first given; it was only ho that the paradoxes would be avoided. 

We thus have (at least) two inct ideas of “set”: the Fregean notion of a set 
as an extension of a property, which is intuitively appealing but inconsistent, and 
the notion of well-founded set, which is de$ned in terms of the (presumably) more 
primitive notions of iteration and collection of subsets. Whether we adopt a construc- 
tive philosophy or not seems to make little difference: the cumulative hierarchy can 
be treated, at least formally, with intuitionistic logic (Friedman [ 18]), and in spite 
of hopes to the contrary, constructive set theory does no better at avoiding the 
paradoxes than classical set theory.” 

What is a type? 

By a “type” we mean what a computer scientist means by “data type”. These tell 
“what kind of an object” a given piece of data represents. In modem structured 
languages like Pascal, a program begins with “type declarations” in which certain 
variable names (identifiers) are reserved to name objects of the declared types. The 
history of the development of programming languages shows the continual search 
for more flexible and general type RTRAN had only two types: real and integer. 
Pascal allows more general type- ng operations, but still does not have a type 
A + B of operations from the typ to the type l3. In the future, languages will be 
created which are adequate both to the needs of programmers and to the expression 
of mathematics. A pioneering effort in this direction was the AUTOMATH project 
(see, e.g., [6]); some others have been surveyed in Section 4. 

’ For completeness one should note that Bishop felt that every set should be equipped with a relation 
of equality, and that one has not completely defined a set until one has also defined its equality relation. 
Although this is not part of the “definition” quoted, it occurs two sentences further on. 

lo Some may argue that Bishop’s definition constitutes a third “distinct idea” since it cannot easily 
be equated with either Frege’s notion or with Von Neumann%. Whether or not we so count it will not 
be essential to what follows. 



Towards a computation system based on set thepry 335 

By “data” we understand concrete objects which can be directly and completely 
represented in the computer; for example, strings of symbols. Data are to be 
contrasted with the abstract objects of mathematics, for example, infinite sets, which 
can be only indirectly represented in the computer, for example, by a program 

which decides membership in the set, or a string of symbols which defines the set 
in some language. 

As we shall use the terms, the difference between a type and 8 ,et is this: a type 

may have only concrete objects as its members, while a set may have concrete or 
abstract objects as its members. In particular, a type is itself not a concrete object 
(unless it is a finite type). In computer science, the i&a of a hierarchy of types does 
not arise. One specifies types by specifying what objects “have that type”, i.e., are 
members of the type. That is, types are typically defined in Fregean terms as 
extensions of a concept. 

Martin-L6f [33,34] develops a “theory of types” which permits more general 
type-forming operations than Pascal; in particular, the type-forming operation A + B 
is allowed, and its generalization to the type-formation operation 17(x E A) B(x), 
where B(x) is a type for each x E A. (-4 + B is the special case when B(x) is constant.) 
These type theories, as published, permit the creation of a hierarchy of types; there 
is a “small universe” U containing the basic types, and closed under the type-forming 
operations; U is itself a type. So the principle that types cannct be objects is violated. 
In unpublished lectures (but the formalism appears in Smith [42]), Martin-Liif 
rectifies this situation by emphasizing that only names of types can be objects. He 
introduces names for all the small types and makes these the elements of U. 

Martin-Liif gives an explanation of what he means by a “type”; his formal theories 
are supposed to reflect this informal notion. According to Martin-Liif, in order to 
specify a type X, you must tell 

(i) what the canonical objects of type X are 
(ii) when two canonical objects of type X are equal, and 

(iii) how to reduce an arbitrary object of type X to canonical form. 
For example, the canonical members of the type of integers are given by: 0 is a 

canonical element, and if n is a canonical element, so is sNn. Whenever we introduce 
an operation on the integers, such as addition or multiplication, we have to give 
the corresponding rules for evaluating expressions involving that operation. Thus 
10” is an integer, because there are rules for evaluating that expression. 

Let us compare Martin-Liif’s types with Bishops sets. According to Bishop, we 
have given a set X as soon as we have told what to do to construct an element of 
X, and when two elements of X are equal. To turn X into one of Martin-LSf’s 
types, -we still have to tell what the canonical elements are and how to reduce 
arbitrary elements to canonical form.* * Thus, for example, the set of all sets would 
appear to qualify as a Bishop set since he has just told us what to do to construct 

” Martin-Liif ignores the logical distinction between elements and expressions denoting elements, 
and speaks of reducing elements where a logician would insist that only expressions are reduced. 
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a set.‘* But it does not qualify as a data type since we do not have any idea what 
the canonical sets are, nor what reduction operations are appropriate. 

Feferman [ 14,15] introduces theories of operations and “classes” which are 
intended to express (and be obviously valid on) a philosophy according to which 
mathematical o ects are given by symbolic representations (i.e., data). His formal- 
ism permits classes to be objects, but it is easy to modify the formalism (see [3]) 
to permit only nmm of classes to be objects, without affecting any important 
properties of the system. In particular, the key axiom of Feferman’s systems is the 
“elementay comprehension axiom”, according to which we are allowed to form 
the class \X : 4(x)} for certain 4. One thereby has the existence of a ‘“universe” K 
The 4 which are allowed are called “elementary”; they are distinguished by the 
syntactic property that class variables occur only free (as parameters) and on the 
right of E in 4. This corresponds to the idea that types can be mentioned while 
defining new types only if they have been previously defined (so they can be 
substituted for the free class parameters in 4). Allowing them only on the right of 
E corresponds to the idea that they are not allowed to be objects themselves. 
ne &,tssell paradox is then neatly avoided since XE x is net an elementary 
formula. 

Graves [22] is developing a computation system based on category theory (more 
precisely, on topos theory). He considers the category whose objects are data types; 
the arrows of the category are procedures leading from inputs of the domain type 
to outputs of the codomain type. One object, the terminal object of the category, 
is the type ONE. ON. is thought of as the type of “environments”, i.e., maps which 
give values to variables. A data object is an arrow of type ONE + X. We would 
usually call this an object of type X. For instance, 5 is the map of type ONE + N 
with constant value 5. The computations in his system consist in the reductions or 
evaluations of terms in topos theory (enriched by a suitable collection of function 
symbols). Graves’ work shows how topos theory can be used as a foundation for 
the theory of data structures and algorithms, although it was originally developed 
as an alternate foundation for mathematics. 

One may ask: from the philosophical point of view, what does topos theory 
contribute to our understanding of the fundamental notion of data type? One answer 
is, it provides an operational semantics. A notion of data type is sound if the 
topos-theoretic formalism can define it; or perhaps, if a natural extension of the 
formalism can define it. Graves has shown that all the usual data types can be 
naturally defined in topos theory, which of course goes far beyond Pascal in its 
generality of type formation.‘3 

I2 Greenleaf [23, pp. 2242253, argues against this, on the grounds that the set of all sets does not 
qualify as a Bishop set until we have constructed an equality relation on it, which he thinks is not so easy. 

l3 There is, however, a technical problem suggested by this definition of soundness which is presently 
still open: how can we interpret Martin-Liif’s type-construction operations in topos theory? 
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Classes 

The word “set” can be used to refer either to a Fregean set, defined by the 
extension of a property, or to a well-founded set, i.e., one occurring in the cumulative 
hierarchy of sets. The word “class” refers to the extension of a property. If a class 
happens to be a well-founded set, then it is usually referred to as a set. Thus the 
word “class” is sometimes thought to be synonymous with “proper class”, which 
refers to a class which is not in the cumulative hierarchy, such as the class of all 
well-founded sets or the class of all ordinals. 

In the history of set theory, proper classes go back to Cantor, who recognized 
that certain “multiplicities” cannot be collected into a “unity”. He referred to such 
multiplicities as “inconsistent sets”. It seems to have been Von Neumann 1381 who 
first contemplated the consistent use of proper classes, though his theory is formu- 
lated in terms of functions rather than sets and classes. Later formulations, more 
familiar today, were given by Bernays and finally by G6del [43]. All these theories 
regard classes as being just like sets except that they are, in Von Neumann’s 
picturesque terminology, ‘“too big”. That is, “too big” to be a member of another 
class. In particular, they are viewed as abstract objects like sets, obeying the law of 
extensionality: two classes are equal if and only if they have the same members. 

This viewpoint is not philosophically sound. If a class is “too big” to be a set, 
that means it cannot be collected into a unity as an abstract object. The process of 
abstraction that leads to a set from a symbolic representation breaks down oft certain 
symbolic representations. A class is given to us by a symbolic representation, but 
it has no extension. Frege’s “second-level function” of abstraction that leads from 
properties to their extensions is not everywhere defined. (See [ 17, p. 2391 for Frege’s 
analysis of Russell’s paradox in exactly these terms.) A class, then, is a concrete 
object, not an abstract one. It is the extension of a class which is “too big” to exist; 
or rather, would be too big if it did exist. 

It follows that there is no justification for the principle of extensionality for 
classes, in spite of its formal consistency. Nor should we identify a class with the 
set, if it exists, which has the same members: one is a concrete object, the other is 
an abstraction. 

The way in which data types are used in computer science casts some light on 
the situation. A type can be used in two different ways: 

(i) as a classif’ier, for classifying objects according to what type they are, or 
(ii) as a data structure, i.e., an object, in its own right, which can be manipulated 

like any other piece of data. 
Data types as classifiers are like sets; data types as structures are like classes= 

Since this is rather a revolutionary view of the matter, perhaps we had better put 
it the other way around: sets are like data types as classifiers, while classes are like 
data types as structures. 

Some support for this view comes, quite independently of the ideas that led to 
it, from the work of Peter Aczel. Aczel has been trying to use set theory to describe 
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certain data structures used in computer science, for example streams. A stream is 
a (theoretically) infinite object, for example the stream of characters being printed 
on a terminal. Aczel [l] found that the well-founded sets are inadequate for this 
purpose, while the non-well-founded sets that he invented for the purpose (or should 

we say “discovered”?) worked marvelously. These non-well-founded sets are 
beautifully described by their merzbership diagrams, which are certain graphs. These 
non-sets, in the traditional view, would have to be called classes; but they do not 
even fit the usual view of classes as collections of well-founded sets. What are they? 
Structures which are used to describe classifiers. 

In this view, a proper Jass is simply a class whose structure is too rich to permit 
it to be abstracted away, leaving only an extensional shell. The question of its being 
“tad big” is not relevant; size is only oae aspect of structure, and not always the 
most important. Of course, it may be that certain classes are “too big” to be sets; 
but the assumption that excessive size is the only reason why the abstraction 
operation might be undefined appears to be completely unjustified. 

Hallett 1251 has written a book which explores the history of the “limitation of 
size hypothesis”, according to which every “incon,sistent set” is inconsistent because 
it is “too big”, i.e., contains a copy of the ordinals. He attributes this definition of 
“too big” to Jourdain, and the hypothesis itself to Russell [25, p. 1831, although 
precursors of the idea are to be found in Cantor. 

Once this misconception has been identified, one can see that it has pervaded the 
traditional interpretation of certain mathematical results. For example, Cantor’s 
diagonal method shows that if we are given a sequence of real numbers 3c,, we can 
construct another real number which is different from all the x,. Does that mean 
that the set of real numbers is larger than the set of integers? That is the usual 
interpretation placed on the result. But it might be interpreted to mean instead that 
the set of reals has a very rich structure, which does not permit it to be covered by 
the integers.14 This point of view finds some support from the fact that in constructive 
mathematics, for all we know every real number is recursive-and in that case, the 
reals would be in one-one correspondence with a subset of the integers (their 
recursive indices). They still could not be placed in recursive one-one correspondence 
with the integers, however, so Cantor’s theorem would not be violated. How do we 
know that the actual situation is not better described in these terms, than in terms 
of size? 

The theory formulated in the body of this paper, without the apparently artificial 
restriction that the formula in the separation axiom must not mention the application 
relation, is inconsistent. The contradiction appears to show that if we do not limit 
the axioms, the application relation, even restricted to sets of a fixed rank, cannot 
be a set. It is thus an example of a proper class which is not a set because of a 
structural complexity other than its size. Since the main piece of evidence for the 
“limitation of size hypothesis” seem to be Russell’s observation that all the contradic- 

l4 Sez [23, p. 2301. 
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tory classes are “too big”, we now have a specific reason for reconsidering that 
hypothesis. 

Classes may have a more complex structure than can be summed up by telling 
what size they are. If we abstract away everything but the membership structure, 
we get sets. Operations have a more complex structure than their input-output 
relation, which is usually called the “graph”. If we abstract that structure away, we 
get the usual set-theoretic representation. These abstractions have served mathe- 
Imatics well, but they may not be ideal for the foundations of computer science, and 
they may have led to mistakes in the foundations of mathematics. 
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