
Theoretical Computer Science 60 (1988) 297-340
Nonh-Holland

ichael .?. BEESON
Department of hfahemarics and Comprer scipnce, San Jose Stale Unitrersity, ,Qn Jose,
CA 95392, U.S.A.

Communicated by C. Biihm
Received March 1986
Revised December 1987

A ct. An axiomatic theory of sets and rules is formulated, which permits the use of sets as
data structures and allaws nrles to operate on rules. numbers, or sets. We might call it a
“polymorphic set theory”. Our theory combines the A-c&~lus with traditional set theories. A
natural set-theoretic model of the theory is constructed, establishing the consistency of the theory
and bounding its proof-theoretic strength, and giving in a sense its denotational semantics. Anothot
model, a natural recursion-theoretic model, is constructed, in which only recursive operations
from integers to integers are represented, even though the logic can be classical. Some related
philosophical considerationson the notions oiset, type,and data structure aregiven in an appendix.

1. Set theory and computer science ... 299
2. A paradox ... 299
3. Rules and sets: reflections on the foundations of mathematics 300
4. Related work .. 302
5. Preliminary description of ZFR .. 304
6. Fomtal specificationof ZFR .. 307
7. Axioms of set theory .. 308

8. Functions versus operations .. 309

9. Consistency of ZFR .. 310

10. 1ZFR is no stronger than IZF-Rep .. 315

11. Operational semantics of ZFR ... 319

12. IZFR as a computation system ... 321

13. Church’s thesis and the axiom of choice ... 329

Appendix. The concepts of set, class, and data type 330

References ... 339

1.

e evolution of p

ever more flexible and
~i~eteeRth centu~ by

3975/$8~$3.50 @ B Orlando

29s MJ. Beson

can be seen as an elaboration of data structufe3. first one had the integers, then
the rationals, the algebraic numbers, afket some st and complex
numbers, the general concept of function, etc. At last it was that set theory
could serve as a universal Iangua~e, in which all the ry data StNCtUfCS could
be constNded from the primitive data structure, set. perhaps computer science
could take advanrage o iminafy
investigation into what a be like.

On the other hand, in babe dtfintd functions
by identifying them with the sets which are their graphs. Rigor is identified with set
theory, so the definition of a function a rule has to 80. This is particularly
inappropriate for computer science, and even many mathematicians are more
interested than before in rub for eonrputiq tbt solutions or” problems. We shall
resuffuct functions- rules and five thtm fht place in M theory fhaf they deserve.
Thus this pet can also be viewed an investigation in the foundations of

hematics.
n order to be mmipalafd by a compufer, a set mua# be repmeafcd by a concrttt

objtu, ultimately by a sequence of zeroes and ones. Thar does sot mean, however,
can be manipulafed. For example, the data type 6&tum of
of arbitrary size is common; we shall dtn4Ht if mofe simply

tin# an infinite set by a (finite) name, in thii
perty enabling us to compurt membetship in fht stf.

in cummon use is adtqurft fo fht dtmands
2). making Ihe same poina uses “pid#n Pucrl”

a112 algorithm extracted from Bishop*& constructive proof of the Weiemtrass

r the modulus of continuify of X a third qumenl 6 of
tolerance of approximaGon, and outputs a polynomial,

ucnce of reals (of unknown ltn#h). Thlr trrunplt
for more gtntd typing facili&s. Althou@ many e#ofts wn

t means fhat data t
domains and run

Thii problem would

300 M. J. Beeson

down an axiomatic set theory simlar to that in use today. The operation by which
this set is produced from a is a first-rate example of a legitimate operation on sets;
there should be an operation c+ such that c+(a) = {x E a : d(x)}.

ursion. The operators we have been discussing are in general partially
defined, and should satisfy the recursion theorem, according to which for each
operation g there is an operation $ such f(x) f= g(~$ fi.,

But as it turns out, these three principles taken together are contradictory:

2.4. eorem (Gordeev). Extensionality, the recursion theorem, and the existence of
an operation q, corresponding to separation are contradictory.

roof. Let g(z, f) = {x E (0) : f (z) = x}, by separation, where $9 is the empty set.
Introduce f by the recursion theorem so that f(z) = g(zJ). Since g is total, so is f;
but then f(f) is a set, namely f(f)={xE{PJ}:f(f)=x}. If f(f)=@, then @of,
contradiction, so f (f) # 0. But if x E f (f), then x = $3 and x = f (f), contradiction.
Hence f(f) has no members. By extensionality then f(f) = 0, cpntradiction. Cl

This theorem was first discovered in connection with theories of sets and rules
developed by Feferman [141, in which extensionality is not an axiom. It was therefore
not regarded as a paradox, but simply as a refutation of extensionality in the context
of those theories. In the present context, however, Gordeev’s theorem does seem
paradoxical at first, and it prompts a closer examination of the foundational view-
point which must underlie the theories we intend to construct.

ules and sets: reflections on the foundations of mathematics

In mathematics we find two kinds of “mathematical entities”: the concrete and
the abstract. By concrete entities we mean objects which can be completely rep-
resented by a finite sequence of symbols, capable of being stored in a computer
(although no fixed bound on the size of concrete objects is imagined). By an abstract
entity, on the other hand, we mean an object which by its nature is infinite and can
never be completely displayed. An abstract entity may however be represented in
various ways; the example has already been discussed.

A discovery of the early axiomatizers of set theory was that concrete entities can
be represented or “coded” by suitable sets, so that from a formal point of view we
may pretend that “everything is a set”. The resulting axiomatizations have an
appealing simplicity, and no doubt it was partly due to this simplicity that set theory
came to be regarded as a “universal language” for mathematics, a status which it
enjoys to this day. Only certain dissenters from the mainstream of mathematics have
resisted the doctrine that “everything is a set”. We have in mind various schools of

Towards a computation system based on set theory 301

constructive thought, such as the intuitionists (followers of Brouwer); the Russian
constructivists (following Markov), who reject all abstract objects out of hand and
work only with symbolic representations; and more recently those working in the

style of Bishop [S], who accepte a notion of sets as abstract objects.
All of these schools regard the notion of rule or law as fundamental.

for Brouwer, “eine Menge ist ein Gesetz” (a set is a law). It is also interesting that

if we go back to the period before Zermelo’s axiomatization, the concept of ‘“law”
plays a role. For example, the notion of “transformation” (Abbildung) plays an
important role in Dedekind’s Was sind uns was sollen die Zahlen: he takes “transfer-
mations” as laws that transform elements s of a set S to “determinate things” 4(s).
He then anticipates Fraenkel’s principle of “replacement” by stating that the image
f$(S) of a set S is again a set.

The distinction made above between abstract and concrete entities opens the way
for another important distinction, that between rule and algorithm. An algorithm
operates on concrete objects and produces (if anything) concrete objects. A rule,
on the other hand, may operate on and produce either concrete or abstract objects.
For example, there is an o eration M such that U(X) is the set known as the union
of x, usually written U x, hose members are the members of the members of x.
The rule u is not representable in set theory in its usual formulation: it is not a set,
nor is its graph a set. It is a rule. Another example is the powerset operation 9.

One thesis of this paper is that rules as fundamental to mathematics and computer
science as sets are. For example, the concept of “‘function” has its roots in the idea
that “a function is a rule”. The gradual development of that idea into the definition
of a function as a single-valued set took a long time (see [36]), and perhaps ought
to be reconsidered for the foundations of computer science. Even in mathematics
the idea of “function-as-a-rule” retains a certain appeal, and the definition of
“function-as-a-set” is usually justified when first presented by reference to the
intuitive concept of a rule, which shows that the concept of a rule is actually more
fundamental.

Rules are supposed to be concrete objects, given by symbolic representations. A
question now arises: how does a rule operate on a set, which is an abstract object?
The operation u, for example, is supposed to operate on any set, not just on sets
which happen to have symbolic representations. There are various algorithms corre-
sponding to u, which enable US to compute symbolic representations of U x fro
specified kinds of symbolic replaesentations of X, but these algorithms are not to be
identified with the opeation u itself. We shall have to take the application operation
as primitive. When we give a rule, we must tell how to apply it, i.e., what the answer
is at a given argument. We may also define algorithms operating on symbolic
representations of sets. It may happen that such an algorithm is extensional, in the
~:e nse that it takes all representations of any given set x onto representations of the
same set. In that case, the algorithm can be counted as a rule, although it would
be defined only in those sets that have a symbolic representation of the kind involved
in the definition of the algorithm. There may also be algorithms which are not

302 M.J. Beeson

extensional; for example, if sets are represented by listing their members, then the
function which picks the first element of a list will not be extensional.

With these distinctions in hand, we can “resolve” the paradox posed by Gordeev’s
theorem. The proof constitutes the construction 06c a particular algorithm which is
demonstrably nonextensional. The author does not consider this “resolution” any
more definitive than the so-called resolutions of the paradoxes of classical set theory.
we shall proceed by retreating to axioms which block the contradiction, yet are
useful for practical purposes.

The main idea is to restrict the separation axiom to formulae 4 of ordinary set
theory, i.e., formulae which do not involve the application relation. This turns out
not to be very restrictive; in practice, we can often define sets that we need (including
the dependence on parameters), even when the definition appears to require separ-
ation for a formula involving the application of operations. The method is a process
of substitution. For example, suppose we want to define g(x, b) =
{u: 3x E b(u Ed)}. Th ere will be a certain operation c,,, such that C~ (4 w) =
{XE Q: XE w}. Then g(x, b) = c4(u(im(b,j’)),f(x)), where as above u is union and

(b,f) is the image of & under J
It is instructive to see why this method does not permit us to define the set used

in Gordeev’s proof. Try h(z, y) = {x E (46): y = x} and g(z,f) = h(z, f (2)). But now,
although h is total, there is no reason why g is total, and the argument in Gordeev’s
proof only shows that f(f) is undefined.

To avoid any confusion, one point should be reiterated. Gordeev’s theorem does
not show the inconsistency of extensionality, the recursion theorem, and separation.
Rather, it shows the inconsistency of extensionality, the recursion theorem, and the
dependence on parameters by a rule of sets defined by separation.

elated work

Zermelo [40] formulated axioms for set theory which form the basis of modern
set theory. Zermelo said that he was motivated by “set theory as it is historically
given”. That is, he cttempted to write down axioms which accounted for mathemati-
cal practice, and which he believed to be free of paradoxes. Let us call tLis the
“pragmatic” approach to axiomatization, as opposed to the “philosophical”
approach in which one attempts to justify one’s axioms. The philosophical approach
was taken by Cantor and Dedekind (see the Appendix of this paper), but Zermelo’s
main motivation was to convince people that he had really proved that the reals
could be well-ordered, which accounts for his pragmatism.

Von Neumann [38] showed that one could take the concept “function” as primitive
instead of “set”, and define “set” in terms of “function”. This was, however, a
theory of functions, not a theory of rules; no computability was implied.

ishop [S] viewed mathematics as a “high-level programming language”. In his
e made no attempt to formalize that programming language, although in

Towards a computation system based on set theory 303

unpublished work he did so. is formalization remained unpublished, because his
theory contained a paradox.

Martin-L6f [33,34] introduced “type theories”, in which one forms types which
are similar to (but not as general as) sets. In the most recent version of these theories,
Martin-L6f has explicitly forbidden the formation of types of types9 but allows only
the formation of types of names oftypes, espousing the principle that one may form
types only of concrete objects. Martin-Liif’s approach is philosophical as opposed
to pragmatic; he views his formal theories as an incomplete description. He clearly
believes he has replaced Cantor’s definition of a set with one which (if not equally
simple) is at least correct, and hence does not lead to paradoxes. (It is interesting
to note, however, that the earliest version of his theory was also inconsistent.) A
group in Giiteborg has implemented a system based on Martin-L6f’s theories on
the computer; it is called “Gsteborg LCF”.

Feferman [14, IS] introduced theories of operations and classes. These are based
on a philosophy that the “universe” V consists of objects representable by finite
symbolic expressions. One may form sets or “classes” of these objects. The objects
include names or representations of the classes. If we understand Feferman’s
viewpoint correctly, one is never forming sets of abstract entities; for example, one
never forms sets of sets. Instead, one forms sets of concrete representations of sets.
This viewpoint justifies Feferman’s “elementary comprehension axiom” that permits
the formation of a universe V of all objects. The Russell paradox is blocked by the
syntactic restriction to “elementary” formulae in the comprehension axiom. Hayashi
[27] has implemented a version of Feferman’s theory in LISP, in a program called
PX. His theory replaces the combinators in Feferman’s theory by the primitives of
LISP.

Myhill [42] and Friedman [19,201 introduced theories in the language of classical
set theory, but with intuitionistic logic. These theories, because of their intuitionistic
logic, are indirectly connected to rules.

Graves [22] designed and implemented a theory of types based on category theory,
more specifically on topos theory. Gordon, Milner, and Wadsworth [24] describe
a system with rather general typing facilities known as “Edinburgh LCF”, for which
a denotational semantics based on the Scott-Strachey formalism has been given.
Constable 193 has (with others) developed a system called NuPrl (two of whose
predecessors are described in [10,111). These systems include proof-checkers operat-
ing in a typed, functional environment, whose theoretical basis belongs to the lineage
of Martin-Liif’s theories.

Belonging to the same lineage are at least three typed, fully functional program-
languages. (This phrase means that procedures are data objects with types.)
are ML, Pebble, and QJ. ML was originally developed as a “metalanguage”

for LCF, which accounts for its name; its structure makes it appropriate that these
are also Martin-Liif’s initials. Pebble, which is being developed at
and Lampson [S], permits types as values and allows some rat
constructions; in particular bindings of variables are ordinary dat

304 M.3. Eeeson

created by Sato as a uniform environment for the specification, execution. and
verification of programs. The system Algos mentioned above is similar, but its lineage
is category theory.

After this summary, we shall attempt to place the present work in context. There
were three lines of development of theoretical, logical systems for constructive
mathematics in the seventies: Martin-LX’s type theories, Feferman’s not-strictly-
typed theorips, and Friedman-Myhill% constructive set theories. Each of these is
capable of being implemented as a programming language with sufficient power to
formalize mathematics in an interactive proof-checking environment. This line of
research is well-developed for Martin-L6f’s type theories, being developed for
Feferman’s theories by Hayashi, and so far untouched for the constructive set
theories. As they stand, the constructive set theories are too crude since they do not
allow a direct treatment of functional application. In this paper we correct this
defect, creating constructive set theories suitable for computerization.

5. Preliminary description of ZFR

We shall formulate a theory ZFR, the letters stand for “Zermelo-Fraenkel set
theory with Rules”. This section describes the thecry; the next section gives a list
of its axioms for reference.

In formulating theories of sets and rules, the first matter requiring attention is
the choice of language. In classical Zermeio-Fraenkel set theory ZF, the assumption
is made at the outset that every mathematical object is a set. This assumption is
actually false: the integers are not sets (New Math to the contrary). Formally
speaking, the Von Neumann integers-that is, the sets generated from the empty
by the operation x u {x)-are isomorphic to the integers, and can serve as representa-
tives of the integers. But to see that this is harmless, we must work outside the
conceptual framework of ZF. Our present object is to formulate theories which
more naturally reflect our intuitive views about the foundations of mathematics;
hence, we do not wish to begin by assuming everything is a set. Moreover, we wish
to leave the way open for computer-oriented versions of the theory in which there
may be other “atomic” data types such as, for example, the symbolic atoms of LISP.

We therefore include unary predicates “S(x)” and “N(x)” for “x is a set” and
“x is a nonnegative integer” respectively. It will not be necessary to include a
predicate for “x is a rule”. We shall not put into our theory any axioms restricting
the kinds of objects there are, such as “everything is either an integer or a set”. As
a matter of convenience, we shall use the letters a, b, u, 0, w (with or without
subscripts) for sets, and i, j, k, rr, m for integers. By this we mean that variables
denoted by these metavariables are implicitly restricted to the unary predicates S
and N. There will be a binary relation “E” for membership.

We shall need a means of speaking of the application of a rule to an object. There
are two ways to proceed:

Towards a computation system based on set theory 305

(i) We can introduce a 3-ary relation Ap (A x, y) for: the result of applying f to

x is y.
(ii) We can introduce a function symbol Ap so that Ap(_f, x) is the result of

applying f to x.
Approach (ii) seems more natural, but it necessitates a reformulation of logic

since Ap(J; x) will sometimes be undefined. One suitable reformulation of logic has
been given in 131, where it is called EPT (18gic of partial terms). There it is explained
how to interpret a thefjry formulated in LPT into a theory formulated in style (i)
above, with a 3-ary App relation. We shall formulate our theories in LIT. In practice,
we shall write fx, f(x), or (fx) instead of Ap(f, x), We follow the conventions of
combinatory logic: xyz abbreviates (xy)z (association to the left), and f(x, y)
abbreviates fxy.

Logic of partial terms

The following description of LPI’ is reproduced from [3], where further details
may be found. LPT is a logic in the same sense as the predicate calculus. If we are
given any collection of predicate symbols, function symbols, and constants as in
the usual predicate calculus, there will be a language in L based on these symbols.
The rules for forming terms are the same as in ordinary predicate calculus. Every
atomic formula in the usual sense is still an atomic formula; but there is one more
kind of atomic formula, namely: if t is a term, then tJ is an atomic formula. This
may be read “t is defined”. It should be emphasized, however, that the intended
meaning is that the term “t” denotes something. That is, one says of an object that
it exists, of a term that it denotes or is defined. All objects exist, of course, so to
say that something does not exist is a figure of speech; what is meant is that the
term one has mentioned does not denote.

In case equality is part of the language, we use t = s to abbreviate (& + t = S) A
(s& + t = s). In words: if either t or s denotes anything, then they both denote the
same thine. Note, however, that = is not an official part of the language.

We shall use the notation A[t/x] to mean the result of substituting t for the free
occurrences of x in A. The customary inference from VxA to A[t/x] is not valid
if t is a nondenoting term: “if everything exists, then the king of France exists” is
an invalid inference since the antecedent is true but the consequent is false. We are
now ready to set out a list of rules and axioms for making correct inferences in
LPT. In this list, t and s are terms, while x and y are variables.

Axioms and rules of L

B+A
B+VxA

if x is not free in B, (QU

A+B
xA+B

if x is not free in B,

306 M.J. Beeson

VxA A tJ + A[t/s], (43)

A[t/x] A tJ + 3xA;

t=sA+(t)+qb(s), (E2)

t=s-, tJhs&; (E3)

R(t I,..., tp+tJh’ l ‘At”&, (SO

c& for constants c, (S2)

x$ for variables x. (S3)

Note that E3 is a special case of Sl. Another special case of Sl worthy of mention
is

f(t ,,..,, tn)J+tlA***Atn&.

With a suitable logic at hand, we are now in a position to set down some axioms
about rules. Before doing this, we have to choose a suitable language in which to
express our rules. The proliferation of modern programming languages illustrates
the range of possibilities here. Since our present purpose is primarily theoretical,
as opposed to being aimed at a practicai implementation, it will be wise to choose
the simplest possible language, even if that makes it difficult in practice to write
down specific rules. We therefore choose the language of combinatory logic, which
is the simplest programming language in the world. Our theory will include two
constants k and s, with the axioms

These axioms permit the proof of the recursion theorem, according to which we
can find, given g, an f such that fx = g(x, f). In addition, they permit the construction
of A-terms: if t is any term, then there is another term Ax. t such that (Ax. t)x s t
(where x is a variable). Note that this is not a term-formation rule but a theorem.
See [2,12,15] for details of these results.

The remaining axioms about rules concern the existence of a certain specific rules.
First of all, there is a constant sN for the successor function on the integers. Second,
there are several axioms corresponding to the set-theoretic axioms of pairing,
separation, union, and powerset, which introduce constants as follows; p(x, y) is
the unordered pair of x and y; IL~X is the union of x; Px is the powerset of x, and

e formulation of the replacement axiom in our theory is simply that the image
et a under an operati n f such that f(defined for all x E a is a set im(a, f).

is itself a mathematical object. is is evidently what we try to express

Towards a computation system bused on set theory 307

in much less natural language in the usual formulation of the replacement axiom,

) VxE a3!y&(x, y) + 3WxE a3ye bf$(x, y).

Moreover, this version of the axiom is not self-evident; the version about i

self-evident version. can be derived from the axiom about ii using a &table

version of the axiom hoice, but then one has to justify that if one can.
The other two set-theoretical axioms, extensionality and E-induction, are not

about rules at all, but about the nature of sets.
The constants c+ are included only for formulae 4 which do not contain

do not contain any constants c clr ; this restriction will enable us to block the paradox
discussed above.

6, Formal specification of ZF

It is natural to use intuitionistic logic when contemplating a computation system;
but ZFR makes sense with or without the law of the excluded middle. To fix the
notation, we shall use ZFR for the version with classical (ordinary) logic, a
for the version with intuitionistic logic. Since ZFR can be obtained from
adding the law of the excluded middle, we specify IZ

Language of IZFR. Unary predicate symbols S and N for sets and numbers. Binary
relation symbols E and =. Function symbol Ap. Constants A, k, s, sN, 0,0, 9, d,
N, im, c4 for each primitive formula 4; the concept “primitive formula” is defined
next.

Primitive formula. One not containing Ap or any constant cdi.

Logic of IZFR. L as specified above, with intuitionistic logic and equality axioms.

Axioms of I
(Al) Extensionality :
(A2) Pairing:
(A3) Union:
(M) Empty set:
(As) InJinity:

(A6) Separation :

(A7) Images:

(A8) Powerset:
(A9) E -induction :

Vx(xEa-xEb)+a=b.
S(pyz) /\ VX(XE pyz-x = y v x = z).

u(uEaAxEz.4)).

N(x))

S(cfda, Yl, l l l ¶ Y”))

~~(~~c~(a,y,,=..,~.,~c+~~Q~~(~,Y*,...,Y*))~

308 MA Beeson

(BO
(B2) Cases:
(B3) Successor:
(B4) Induction :

zmc+S(x).
dnnxy = x A (n # m + &m.~y = y).
N(0) A N(sNn) A &a = &rn -) n = m) A sNn # 0.
#(o)AVn(dn)+ +(sNn))+Vn+(n), d!i formuhe (6.

Conventions. a, b, u, 0, w are (meta)variables for sets; i, j, k, n, m are for numbers.
These conventions have been used to abbreviate the axioms. Other variables such
as X, y, z are unrestricted.

Remark. Note that the pairing axiom permits us to form a set gxy, usually written
{x, y}, from any two objects x and y, not only from two sets.

7. Axioms of set theory

In this section we list for reference the axioms of Zermelo-Fraenkel set theory.
These axioms are formulated in a language with binary relation symbols E and =,
and no other constants, relation, or function symbols.
Extensionality : Vx(xEa-xEb)+a=b.
Pairing : 3a(xEahyEa).
Union : 3aVx(xE aG3bE a(xE 6)).
Separation : 3aVx(x E a -x E b A 4) (a not free in 4).
Infinity : 3a(3x E a A Vx E a3y E a(x E y)).
Powerset: 3a(Vz(zEx+zEb)+xEa).
E -induction : Vu(Vx E u&x) + (b(u)) + Vu~(u).

Empty set: 3aVx(x e a).
Replacement : VxEa3!y+3bVx~a3y&+.
Collection : Vx~a3y+4bVx~a3y~h$.

These are the versions of the axioms which Friedman [181 discovered were suitable
for use with intuitionistic logic; note that they are the same as the usual axioms
except that the axiom of foundation has been replaced by E-induction. Also, the
axioms of replacement and collection are equivalent if classical logic is allowed,
but not with intuitionistic logic [2!1]. We therefore have the following set
theories:

: all of the above axioms except collection, with intuitionistic logic,
_. CO]: all of the above axioms, with intuitionistic logic,

all of the above axioms, with classical logic.
Of course, collection implies replacement, so there is no need to include replace-

ment on the list of axioms of
This paper can be understoo wing anything about intuitionistic logic,

but it is intuitionistic logic that would be built into a computation system based on
and so a background in intuitionistic set theory is relevant. See [4, Chapter

Towards a computation system based on set theory 309

8. Functions versus operations

By a “function”, or sometimes for emphasis a “set-theoretic function”, we mean
as usual a single-valued set:

Func?(jJ C) s(f) A VZ E f 3X3y(z = (x, JJ))
A VxVyVz((x, y) E f A (x, 2) E f + y = 2).

Note that although ordered pairs may be defined using the operation symbols of
ZFR, the formula Funct is intended to abbreviate the usual formula of ZF which
does not mention Ap.

The author has discussed the differences between functions and operations before;
see, e.g., [4, pp. 40-421. There the case is given for making a careful distinction.
Nevertheless, one may consider the axiom asserting that every function is an
operation:

Here we have written Ap(f, x) = y instead off(x) = y to avoid any possible confusion
about what is meant. FO (which stands for “functions are operations”) is a rather
strong statement in that it requires that the domain of the operation be the same as
the domain of the function. Under Church’s thesis the domains of operations should
be r.e., while domains of functions could be arbitrary sets. If we use classical logic,
then FO conflicts with Church’s thesis for a more fundamental reason, namely that
there will be lots of nonrecursive set-theoretic functions. To put the matter in the
language of computer science: FO may be appropriate for denotational semantics,
but not for operational semantics.

One may say that acceptance of FO is a major point distinguishing classical
mathematics from constructive. It is not the only one, however, since
imply the law of the excluded middle. One might say instead that it is
point distinguishing the classical viewpoint from the computational viewpoint. A
function, in the classical sense, need not be computable ; but an operation must be
computable.

That viewpoint leads naturally enough to the desire ‘3 be able to form the set
op(a, 6) of all operations from Q to 6. Indeed, the designers of programming
languages want to have a type A+ B, and both Feferman and Martin-LX have
incorporated such a cons tion in their theories. One cannot, however, prove the
existence of op(a, 6) in Z Indeed, op(A, B) may contain aisitrarily complicated
procedures. For example, given any set cy, one can construct a procedure leading
from A to B which, although it incorporates a (in its “code”, so to speak), simply
ignores a! when it runs, and produces a constant value. Such procedures will have
arbitrary rank, and so, in a theory in which sets must be well-founded, one cannot
collect them all into a set.

Reflection will convince one that the exist
do not even know if it is consistent with

(a, b) is too much to as
(a, &) is surely not what the

310 M. J. Beeson

computer scientists mean when they talk about the type a + b. What one wants of
A + B is not that it contains all operations from A to B, but that there be an opera&m
A(a) which “abstracts” from the definition of an operation f and a set Q to another
operation A (a, f), such that A (u, f)x = fx for x E A. Usually we write A (a, j’)x as
Ax E a. fx. We now formulate a sensible axiom of exponentiation:

(Exp) S(a-*b)~(Vx~a(fx~b)~(A(a,f)~(a~b)~Vx~a(A(a,f)x=fx))

AfE(a+b)-*VxEa(fxEb).

This version of exponentiation is consistent with ZFR. In fact, it is implied by
the principle FO discussed above. A natural candidate for A is the “graph’” operation
Gr which associates to every set a and operation f the graph off on cr;: raamely
{(x, fx): x E a}. The operation Gr is easily defined in terms of im;

Gr(a, f) = im(a, hx.(x, fx)).

If one assumes FO, then the set of graphs of operations from a to b coincides with
the set of single-valued subsets of a x b, which can be formed by powerset and
separation.

Strictly speaking, we cannot say that FO implies the axiom of exponentiation
since that axiom involves a new symbol A. What we can prove can be precisely
stated as follows.

8.1. Lemma. IZFR + FO + Exp can be interpreted in IZFR + FO by interpreting A as
Gr. In particular, every model of IZFR + FO can be expanded to a model of Exp as well.

roof. We havti to tell how to interpret the two operations involved in Exg, namely
A and the operation + involved in forming a + b. The interpretation of A is Gr,
and the interpretation of -, is given by

is used in verifying the second part of Exp under this interpretation, namely
that every member of a + b is an operation from a to b. Cl

onsistency of

In this section we prove that is consistent. In essence we onstruct a model
he idea for the const n goes back to Feferman [5. 1: where models

constructed for the combinatory axioms whose universe is a model to set theory
and in which some prespecified functions + M are representable. The idea

is to assign some members of to serve as dices for the prespecified functions,

3 Feferman’s construction, in turn, can be traced back through [37] to its ultimate roots in Kleene
[30], where an inductive definition of an appplication relation is a key point of the theory.

Towards a computation system based on set theoy 31i

and define the application relation App on inductively, making x be some trivial
function such as (1, x) and Kay be y at the basis stage, along with making the co&s
of the prespecified functions behave as desired. We also make sx and SXJP equal to
some trivial values. Then at the inductive stages, suppose we have already put XY = u

and xz = t, and uv = w. Then we put sxyz = w. This inductive definition will close
nd produce a model of the combinatory axioms.
lies immediately to produce a model of some of the axioms of

ZFR since we can take union, pairing, powerset as prespecified functions, as well
as the operations c+ connected with separation (since the application relation is not
mentioned in 4). However, the operation im cannot be prespecified since it depends
on the application relation. Evidently, we cannot define im(a, f) until we have
defined f(x) for all x E Q. This means that our inductive definition may not close
off at any stage represented by an ordinal of A4 On the other hand, the application
relation we are defining has to be definable in M if the axioms of set theory (in
particular induction) are to be valid.

Nevertheless, if one pushes ahead with the plan of extending Feferman’s construc-
tion to the transfinite, it turns out to work. What follows are just the details of this
construction. Rather than present it model-theoretically, we prefer to define an
interpretation from IZFR into IZF, in order to determine an upper bound for the
proof-theoretic strength of IZFR as well a ve its consistency. Of tours
follows from such an interpretation that Z n be interpreted in classical
and hence is consistent.

It turns out to be just as easy to make the model satisfy the axiom F
in the previous section; this shows that our model is far from an “operational
semantics” of IZFR, in that (if interpreted classically) it will include nonrecursive
operations. By Lemma 8.1, this will automatically result in a model which also
satisfies the axiom of exponentiation.

Before beginning the proof, we need some techni 1 preparations. First, we
describe a theory IZFR*, which is a version of IZF formulated with. a 3-ary
predicate App instead of using the logic of partial terms. The passage from I
to IZFR* is a special case of the general method of Beeson [3] for interpreting any
theory in E into the first-order predicate calculus; the method associates to every
function symbol f of a theory in bol for the graph of the function.
Here we take f to be A We then have the axiom

Each of the axioms of * is the nAtural translation of the corres
For instance, for pair@; :dlr’e have

ing axio

c.0

have ths same theorems in t

. Conditions for App

(1)
(2)
(3)
(4)
(9
(6)

(7)
(8)

APP(*, x9 o,o, x)), APPW, 0,x), Y, 4;
APPb”, x9 (191, a, APPW, 1, x), Y, 0, 1, x9 Yk
APP~ 2, ~1 it APP(Y, 2,~) A APP(U, v, 4 + AppW, 1, x, YS, 2, v;

APPW, 2, XL Y, lx, Yk

App(c$, a, {x E a : 4*(x)}) if 4 has only x free,

APP($, Q, (1,6, ‘4’, 4) if 4 has x,y,,...,y, free,

APP((l, 6, ‘+‘, 4, YI, . . . 9 y&h y&+1 9 h6, ‘di’, a9 Yt 9 . . . 9 yk+l))

for k + 1 < na, including k = 0, where # has x, y,, . . . , y,,, free,

fi’b’,Q,Y*,~**, Ym-I)9 Ym9 Ix E d2 : 4*(X5 Yl, 9 l l 5 Ym)));

4 xv W);
9 -x,9(x));

312 M.J. Beeson

me second technical preparation we need is satisfaction relations for formulae
of bounded complexity. Let the “complexity” of a formula be defined so that the
complexity of atomic formulae is 0 and each logical operator or quantifier increases
the complexity by 1. Let n be a fixed integer. Then there is a definable satisfaction
relation for formulae of complexity not exceeding n. That is, there is a formula Sat
with two free variables such that if 4 is a formula with free variables among

X19xk. then

Sat@, (x b-,xd) * ddxw==,xd

is provable (in a weak set theory, say IZF without either collection or replacement).
These satisfaction relations are constructed explicitly in [4, Chapter XIV].

We now assign to each term t and formula 4 of IZFR*, a corresponding term
t* or formula 4” of T; * preserves the logical operations and quantifiers.

(tcq)* is t*Eq* N(t)” is t*cz o

(t = q)* is t* = q* S(t)* is t* = t*

k” is(l,O) 0* is (b
S* is (1,l) iv* is 0

P* is (1,2) ct is (1,6, ‘4’)
U” is (1,3) im* is (1,7)
d* is(l,4) P” is (1,B)
sx is (1,s) 0” is 0

The conditions given so far suffice to determine 4* if 4 does not contain App.
In addition we want

~094, r)* is AMt*, q”, r*)

where APP is a formula yet to be defined. We have to find a formula App satisfying
the following inductive conditions,

Towards a computal ion system based on set theory 313

(9)

(10)

(11)
(12)

APP($9 n, 094, n)), App(U,4, n), m, (L4, n, m)),
APPW, 4, n, m), x, (1,4, n, m, x)),
App((l,4,n,m,x),y,{z:(n=mAzE:x)A(n#mAz~y)});

APP(im*, a, 097, a)),
VxE a3u E ~APP(~ X, Y) h VY E u3x E aApp(f, x, y) + App((l,7, a),$, u);
Funct(f) A (x, y) Ef + App!A x, yk
If @ is any formula of IZF satisfying the above conditions with # in place of

APP, then APP(f, x9 Y) + NJ; x, Y)-

Clause (II) is needed only to model F ; otherwise it may be omitted. Clause
(12) says that App satisfies every instance of induction on the definition of App that
can be expressed in IZF.

9.2. Theorem. ZFR is consistent.

Proof. Fix an integer n. Restricting condition (6) to formulae of complexity less
than n, Conditions 9.1 can be expressed in IZF. By standard methods, we can find
a formula App satisfying these conditions. It is easy to verify that every axiom of
ZFR except the axiom of images is satisfied under the translation 4* (where
separation is restricted to formulae of complexity less than n). The axiom

APP(f,x,Y)~APPU&2) -+ Y=z

is verified by induction on the definition of App, using clause (12); note that we
have taken care that the f in various clauses have diRerent forms to prevent a
conflict; in particular none of the “codes” in clauses (1) to (10) is a function, so
there is no conflict with clzDuse (11). Similarly, the combinatorial axioms are satisfied
because App is solution of the inductive conditions (1) to (3).

Now consider the axiom of images. Suppose Vx E a3y App(f, x, y). By collection
we can find a set 11 such that Vx E a3y E v App(f, x, y). By separation we can form
u = {y E o : 3x E a App(J; x, y)}. It follows from clause (10) that App((l, 7, a), a, u)
and App(im*, a, (1,7, a)), verifying the axiom of images. Cl

The reader who finds the treatment of inductive definitions in this proof somewhat
sketchy will find sufficient detail in the next section, where we refine the construction
to show it can be done using only replacement.

Every formula in the language of tvhid:! is provable in is

Let 4 be a formula in the language of which is a theorem of
n integer large en0 that there is a der ion of 4 involving on1

of complexity less than n. erivations, ever

314 M. J. Beeson

involving only formulae of complexity less than n of a fo ula A can be transformed
into a derivation in ZF of A*. But in case A is in the language of ,A* isjust A. Cl

In the remainder of this section, we shall consider several possible extensions of

9. verything is an integer or a nd not both. The consistency proof above
actually shows the consistency of Z with the collection schema and the axiom
VxS(x). Should we require the consistency of ZFR with Vx((N(x) v S(X)) A
l(N(X) A S(X))), the proof may be supplemented by the methods of the exercises
of [4, Chapter VIII].

9.5. Pairing and projection functions. One may, of course, define ordered pairs as
usual from the unordered pairing function p, namely (x, y) = ({x}, {x, y }}. Define
p. = hz.u(n (2)) where n (z) = {x E u(z) : Vy E 2.x E y}. (This definition of intersec-
tion is all right for nonempty sets.) Then po((x, y)) = X, so we have defined a left
projection function. The right projection can be defined as po=
AZ.{ w E U(W) : Vy E uz(z = (poz, y) + w E y)}. These definitions are intuitionistically
correct; some simpler definitions work classically but not intuitionistically. Hence,
it was theoretically unnecessary to include constants for pairing and projection in
IZFR.

9.6. Adding constants for specific set-theoretically definable operations. In this case
the consistency proof will still apply; there are just more basis clauses in the inductive
definition. For example, by 9.5 we could add constants w, jo, and j. with the axioms
jo(nxy) = x and jo(my) = y.

.7. Strong exponentiation. We might wish to assert the existence of the set op(A, B)
of all operations from A to B. Note that this is not the same as the set of all functions
from A to B, which can be defined using powerset and separation. Neither is it the
same as the set A + B, as discussed in Section 8. To be precise, we consider the axiom

(QPEXP) S(op(0, b)) A Vf(fE 3p(u, b) @ vx E a(fx E 6)).

Note that P fygils in the model of ZFR constructed above, since even
op(N, N) does not exist, in view of the fact that An.kOx (which is actually

ould ilave to belong to Q (N, N) for every set x; but this is
ave arbitrarily large rank, as it is interpreted in the model.

We do not known i is consistent.
This may seem like a drawback from the point of view of computer science since

the type construction A + B is important. However, the version of exponentiation
just considered is too strong. The right version of exponentiation, similar to t

artin-Liif’s theories, is th discussed in Section 8; and we
een that this follows fro e holds in the model constructed

above.

Towards a computation system based on set theory 315

is no stronger t

This section has two purposes:
(1) for those readers not on intimate terms with definition by transfinite induction

in set theory, it will provide complete details of our consistency proof; and
(2) for those readers interested in constructive set theory, we present a refinement

of the proof which shows that we can get by with only replacement, instead of
collection, which was needed in the proof presented above. (The two are not
constructively equivalent, as discussed in Section 7.)

The idea of the proof is to replace the definition of App by an inductive definition
of a four-place relation R, where intuitively, if R(f, x, y, u), then u is the “reason”
why App(J x, y). We will write down suitable conditions for the definition of R,
and afterwards define App(f, x, y)-3uR(f; x, y, u). The reason this is useful is that
the definition of R is essentially by induction on E, while that of App is not. In
formalizing the definition of App, we need collection to collect together the u values
such that R(f, X, y, u) for x E a, in order to define im(f, a). Defining R instead
permits us to get by with replacement.

10.1. Conditions for R

(1) R(k*, x, (l,O, x), O),
(2) w*, 4 (1, 1, a 01,

(3) R(P*, x, {L&4 0)s

(4) w*, x, u (x), 0);

R((L 0, XL Y, 4 0);

RW, 1, Jd, Y, 0, 1, x, Y), 0);

R(O, 2, x), Y, 1% VI, 0);

(5) R(c*,, a, {XE a : 4*(x)}, 0) if 4 has only x free,

R(c$, a, {I, 6, ‘4’9 a), 0) if 4 has x,yl,...,ym free,

WI, 6, V’, Q, YI 9 . l . 9 Y&L Yk+l 9 (196, ‘6’9 Q, Y19 l l l 9 Y&+1), 0) fQr k + 1< m9

including k = 0, where + has X, yl,. . . , y,,, free,

R((l, 6, ‘4’9 Q, Y19 l l .9 Ym-dr Ym, Ix E a : #(% Yl9 l l l 9 Yrn)), 0);

(63 Rbff, x, x v bL0);

(7) RW”, 4 WJd, 0);

(8) R@*, n, il,% 4, 01, WL %n), m, 0,4, n, m), 0)s

NO, 4, n, 4,x, 0,4, n, m, x),0),
R((1,4,n,m,x),y,(z:(n=m~z~x)v(n#m~z~y)},O);

(9) R(x, 2, u, a) A R(y, 2, 0, 6) A R(u, v, w, c)+ R((1, 1, x, Y), 2, w, h, v, a, 6, d):,

(10) Funct(g)A Funct(h)~Vx~a3u,v((x,u)~g~(x,v)~h ~R(f,x,u,v))
h a = Dam(g) A a = Dam(h) + R((l,7, a),& Ran(g), (g, h));

(11) R(im*, a, (1,7, a)- 0);

(12) Funct(fi JI (x9 Ykf + Nf, x, y, 0);
(13) If * is any formula of satisfying the above conditions with +!j in place of

R, then Nf, x, Y, u)-, 44x JG Y, 4.

The last condition says that R satisfies every instance of induction on the definition
of that can be expressed in e least

316 M.J. Beeson

solution of the inductive condition 1.) Note that if we restrict the complexity of 4
in (5) to be less than a fixed integer n, then conditions (I)-(12) can be expressed
by a single formula of IZF, with an addition predicate symbol R by means of the
satisfaction-definitions discussed above. We shall refer to these conditions, plus (13)
for all #, as “10.1,“.

10.2. Lemma. Let n be a jixed integer. Suppose IZF- p proves Conditions 10.1 ,, fir
some formula R. DeJZ’ne App(f, x, y)-3uR(f, x, y, u). Then IZF- proves Condi-
tions 9.1 n.

Proof. We argue in IZF-Rep. We shall show

R(f,x,y,u)nR(f,x,w,v) + u=v~\y=w. () *

We shall do so by induction on the definition of R. To be precise, we will apply
clause (13) of 10.1, with # taken to be

#(f;x,y,u) - Vw,v(R(cf;x,w,v)+u=v~y=w).
The argument proceeds by cases.

Case 1: R(f, x, y, u) because of (l)-(8) or (11) or (12). Then u = 0. Suppose
R(f, x, W, v). Suppose, for example, that f = k*. Then w = (1, 0, x) = y and u = v = 0
(as follows from clause (1)). Similarly for the eighteen other possible forms of J

Case 2: R(f, x, y, u) because of (9). Let R(f, x, w, v). Then we apply the lemma,
proved using clause (13), that R((1, 1, r, s), x, y, u) implies u = (u’, v’, a, b, c), where
R(r, x, u’, a)n R(s,x, v’, b)h R(u’, v’,y, c). Let f =(l, 1, r, s). By the induction
hypothesis, we have

Hence, u’, a, v’, and b are uniquely determined by f and x. Hence, also y and c
are uniquely determined by f and x. It follows that y and u are uniquely determined
by f and x. HeLace, w = y and u = v as required.

Case 3: R((I,7,a),f,u,(g,h)) because of (10). Suppose also R((1,7,a),f,u’,
(g’, h’)). By (13) it can be shown that u’, g’, h’ are as in (10) as well; that is, both
g and g’ are functions with domain a, as are h and h’, and for all x E a we have
R(J; x, g(x), h(x)) and R(J x, g’(x), h’(x)). By induction hypothesis we then have
g(x) = g’(x) and h(x) = h’(x) for all x E a. Hence, by extensionality, g = g’ and
h = h’. That completes the proof of (*).
NOW let App be defined as in the statement of the lemma. We shall prove that

App satisfies Conditions 9.1,. All the conditions of 9.1 except (3) and (10) may be
trivially verified by taking u = 0. Consider (3). Suppose App(x, z, u) A App(y, z, v) A

App(u, v, w). Then there exist a, b, c such that

(x, 3 4 a) A R(Y, 2, v, b) A RN, 0, w, c).

by 10.1(9),

w, 1,x, Y), 3 w, u3.

ve R(0, 1, x, Y), 2, w, (u, v, a, b, 4). Hence,

((1,1, x, y), z, w) as required by 9.1(3).

Let

Then
of all

317 Towards a computation system based on set theory

Now tort sick (10). Suppose

Vdx E a3y E u App(J; x, yj ct Vy E u3x E a App(J; x, y).

By (*) we hsve W’x L a3 !(.v, e)R(j, x, y, v). Applying replacement, there is a function
Y and a function V, both with domain G$ such that Vx E aR(J; x, Y(x), V(X)).
Then by (10) of 10.2, we have R((1,7, a),ef; Ran(Y),(Y, V)). Hence,
App((1,7, a),f, (Y)). But, by (*), we have Y(x) E u for all x E a. By extensional-
ity, u= Ran(Y rice, App((l,7, a),J u) as required in 9.1(10). 0

10.3. Lemma. IZF- p proves, for each al, . . . , a,,, that there is a least transitive set
TC(a I,*‘*, a,) contaifling al,. . . , a,.

Proof. Let a abbrevk:e a1, . . . , a, ; let a E w abbreviate aI E w A . . . A a, E w; let Wa
abbreviate ‘da, . . . W a,. P% shall use E -induction to prove

Wa3!w(Trans(w) II a E w A Wv(Trans(v) II a E v+ w c v))

where Tram(w) is Vu, U(U E v A v E w + u E w). Suppose

Wx~a3!w(Trans(w)nx~wAWv(Trans(v)Ax~v+w~v)).

By replacement, ‘there is a set b such that

u=(a)u(wEb:~xEa(Trans(w)hxEwnWv(Trans(v)nxEv-,w~v))).

Trans(u) A Wx E a(x E u) A a E u. Now TC(a) can be defined as the intersection
transitive subsets of u that contain a. Cl

Remark. The proof of the lemma uses powerset, replacement, and E-induction.

10.4. Proposition. Let n be Jixed.
proves Conditions 10.1 n.

There is a formula R of IZF such that IZF-

Proof. Conditions lO.l,, (1) through (12) can be written in the form

for a suitable formula ?P in the language of with one additional four-place

predicate symbol If A is a transitive set, we call the set w “A-closed” if w c A4
and

f~AI\XEQhyEUhUEAA~(f,X,y,U,W) + (f,X,y,U)Ew-

We define R(f, x, y, u) to be a formula expressing “(f, x, y, u) belongs
TC(f; x, y, u)-closed set.”

to every

318 M.J. Beeson

We have to prove that R satisfies the conditions 10.1”. A key observation is the
following, which is an immediate consequence of the definitions involved:

If A and B are transitive and B c A and w is A-closed,
then w n B is B-closed. (**)

Conditions lO.l(I) through (8), (ll), and (12), can all be treated simultaneously
since they all have the form R(t, q, s, 0) for certain i, q, and s. Let W be A-closed,
where A = TC(t, q, s, 0). Then, by the definition of A -closed, we have (t, q, s, 0) E W
Hence, R(t, q, 0). Now consider (9). Suppose

R(x, z, u, a) n R(y, 2, v, 6) A JO, v, w, d-

Let A = TC((1, I, x, y), z, w, (u, v, a, 6, c)). Let W be A-closed. We have to show
((I, I, X, y), Z, W, (u, v, a, 6, c)) E W. Note that x, y, z, w, u, v, a, 6, and c are all members
of A. Since R(x, z, u, a), we have: (x, z, u, a) belongs to every TC(x, z, u, a)-closed
set. Sy (**), Wn TC(x, z, u, a) is TC(x, z, u, a)-closed. Hence, (x, z, u, a) E W
Similarly, since R(y, z, v, b), we have (y, z, v, 6) E w, and since R(u, v, w, c), we have
(u, v, w, c> E II? Since W is A-closed, it follows that ((1, 1, x, y), z, w, (a, 6, c)) E w as
required.

Now consider (10). Suppose Vx E aR(J; x, g(x), h(x)) where g and h are set-
theoretic functions. (Since we are working in pure set theory, not in ZFR, there is
theoretically no chance of confusing the abbreviation g(x) with the application in
ZFR.) Suppose Dam(g) = Dam(h) = a. We have to show R((l, 7, a),f, u, (g, h)). Let
A= TC((l, 7, a),J u, (g, h)), and let W be A-closed. We have to show
{(1,7, a),_& u, (g, h)) E w. It will suffice to show Vx E a((X x, g(x), h(x)) E w). Let x E A.

men RU x, g(x), h(x)); let B = TC(f, x, g(x), h(x)). men (f, x, g(x), h(x))
belongs to every B-closed set, and by (**), W n B is B-closed; hence,

U x, g(x), h(x)) E w.
Now consider (13). Suppose the formula $ satisfies (1).(12) with # in place of

R. Let R(f, x,y, u). We have to show JI(J x,y, u). Let A = TC(f, x,y, u). Let W=
((a, 6, c, d) E A” : R (a, 6, c, d)}. Then W is A-closed and is a subset of every A-closed
set, by definition of R. Define W’ = {(a, 6, c, d) E A : @(a, 6, c, d)}. Then, by
hypothesis, W’ is A-closed. Hence, W c W’. Since R(f; x, y, u), we have (A x, y, u) E
WK Hence, (f, x, y, U)E W’. Hence, #(f, x, y, u). El

emark. Separation is used in the last paragraph to form W’. If we only wanted
to verify R-induction for bounded formulae, we would need only bounded separation
since R can be defined by a bounded formula.

Every theorem of in the language of IZF is provable in

Let R be as in Proposition 10.4. Define App(j; x, y)-3uR(f, x,y, u). By
Lemma 10.2, proves Conditions 9.1,,. Now the translation (B* given at the

Towards a computation system based on set theory 319

beginning of Section 9 is completely defined. (Technically, one may view the
translation as going from Z to an extension of by suitable terms.)
C s 9.1 make it clear that c$* is a theorem of for each axiom of
Z of complexity less than n. By induction on ength of proofs, one
shows that if p is a proof in Z each of whose lines is of complexity
less than n, then #* is a theorem of IZ . Since n was arbitrary, we m oose
it to exceed the maximum complexity es of a specific proof p in of a
formula 4 in the language of IZF. Since t# is in the language of IZF, +* is just 4.
Hence, 4 is a theorem of IZF-Rep. 0

Remark. The theorem applies just as well to ZFR plus replacement as to ZFR. We
conjecture that ZFR does not prove the replacement schema. The theorem leaves
open the question of the exact proof-theoretic strength of ZFR.

Il. Operational semantics of ZFR

The m.Jdel constructed above is the natural set-theoretic model of Z
the denotational semantics. But it includes many nonrecursive operations from N
to N (at least if classical logic is used), and hence does not provide an operational
semantics. Of course, using classical logic, there are bound to be nonrecursive
functions, but as it turns out, it is o.ily possible to d recursive operations. We
shall construct a natural recursion-theoretic model of , in which all operations
from N to N are recursive.

The model is constructed by the same technique as ve, that is, by inductively
defining an application relation. We shall have to m two modifications in the
construction. The first one is obvious: we shall leave out clause (11) in 9.1, which
makes every set-theoretic function an operation. ith classical logic, that clause
will lead to many nonrecursive functions. We want to construct instead the model
which has only those operations that must be there on account of the axioms.

The second modification we have to make is not quite so obvious. It has to do
with the representation of the integers as the “Von Neumann integers” of set theory.
ZFR takes integers as primitive, and does not use the Vow Neumann representation
Our first model of ZFR did model the integers as Von Neumann integers, but we
shall have to abandon the Von Neumann integers to get a model with only recursive
operations. Here is why.

When we ask our computation system to produce an integer, we want to get a
numeral as answer, not a definition of some set like q = {x : x = 8 A P}, where P is
an unsolved problem like Ferm,t y . 9 ‘c last themwn. One may belime-in fact, if XC
takes classical logic, ene must believe-that this definition defines either zero or
one, even though we do not know which. a Gzfinition is not the kind of

answer we want from the computer as an f we accept the Van Neumann

integers as the definition of “integer”, we will be stuck with “integers” like this one.

320 M.J. Beeson

It is for this reason that ZF takes the integers as primitive, instead of as defined
in set theory. If we accept the Von Neumann integers as the integers, then we will
certainly have nonrecursive operations on the integers, for example,

which defines the characteristic function of the halting problem if we use classical
logic. (With only intuitionistic logic, we cannot prove that the values of fare Von
Neumann integers; to do that we have to prove that f(n) is either zero or one.)
Note that the definition off does not work if integers are primitive; it depends on
the Von Neumann construction of integers as sets.

One will naturally wonder at this point, “but are the Von Neumann integers not
isomorphic to the integers ?’ The answer is that they are isomorphic by a set-theoretic
function, but not necessarily by an operation. If we had an operation g that computed
the integer equivalent to a given Von Neumann integer, we could solve Fermat’s
last theorem by applying g to the set q constructed above. Of course, this remark
will only become a precise theorem about the nonexistence of an isomorphism
operation after we have constructed a model with only recursive operations. But it
illustrates the situation. One can use the recursion theorem to embed the integers
in the Von Neumann integers:

f(n) =w, h 0,f(Pdo u {f(p!un))),

but one cannot construct the inverse off and show it to be defined on all the Von
Neumann integers.

We are suggesting a viewpoint according to which, even with classical logic, the
set q defined above does not count as an integer. This viewpoint is codified in ZFR.

ds with the set-theoretic tradition, but it is the viewpoint suitable for
computational mathematics, whether or not one accepts classical logic. The main
theorem of this section, that there is a natural recursion-theoretic model of ZFR in
which only recursive operations from N to N occur, shows that this viewpoint is
coherent.

With these explanations finished, we can proceed to the constructic
This construction can best be understood if we think of it in two stages. First we
have to define a model of the set-theoretic part of 2 in which there will be thrre
kinds of things: sets, numbers, and other objects, which are clearly labelled. Having
done that, we shall then give an inductive definition of the application relation,
much as we did above.

The model, which we shall call M, will be built of sets since set theory is the
traditional metatheory of mathematics. It will contain only sets of the three forms
(3, x), (2, x), and (1, x). That is, only ordered pairs whose first component is 0, 2,
or I;, this number will tell us whether the object in question is a number, set, or
other object. The exact definition of the universe of M is as follows.

e universe, sets, and integers of are defined inductively by

Towards a computation system based on set theory 321

the following clauses:
(1) The elements of M are the sets in A& the numbers in A& and the objects in M.

(2) The numbers of M are all sets of the form (0, n) with n E O.
(3) If x is a set of elements of M, then (2, x) is a set in
(4) k*, s*, p*, c$, u*, im*9 d*, s 8, 9*, as defined in Section 9, are objects in M.
(5) If n and m are numbers in M, a is a set in M, and x and Y are any elements

of M, then the following are objects in M; for intelligibility we also give their
intended denotations:

(l,O, x) to denote kx,

(I, I, x) to denote sx,

(I, I, x,v) to denote sxy,

(I, 2, x) to denote px,

0,4, n> to denote dn,

(I,% n, m) to denote dnm,
(1,4, n, m, x) to denote dmnx.

(6) If 4 has x,yl,..., ym free with m > 0 and k + 1 c m, then the following are
objects in M:

(19% ‘4’9 a) to denote c4a,
(1,6, ‘t#V, a, y, , . . . , yk) to denote c4ay1 . . . yk.

As in Section 9, we can cast the construction of M c veniently as a trans-

lation from IZFR* into a suitable extension by terms of F, in which the fact
that M satisfies 4 will be expressed by a formula 4”. We define 0” =
(2, N* = (2, ((0, n): n E o}), S(t)* is S*(t*), where S* is a formula defining the sets
in M. We define (t = q)* to be t* = q*.

efinition. Membership in M: (x E a)* is the formula

S*(a) /\ 3b(a = (2, b) A x E b).

It will also be convenient to write x eM a for (x E a)*.

The above definitions suffice to determine #* for all formulae 4 not containing
App. In addition we shall define, as in Section 9,

APPO, a 4* is AM*, q*, r*)

where App is a formula yet to be defined. We have to find a formula App satisfying
the following inductive conditions.

11.3. Definition. The application relation of is defined inductively by the follow-

APPW, 0,x), Y, 4;

322

(5)

(6)

(7)

(8)

(9)

00)

(10

M. J. Beeson

=@p(u*, (2,4, (2) u ix : (2,x) E a)));

App(c$, (2, a), (2, {x E a : 4*(x)})) if # has only x free,

App(c$, (2,4, (I,& V’, 4) if 9 has x, y1). . . 9 ym free,
APPw, 6, ‘&, (2, a), YI, l l l 9 Yd, y&+1, (b6, ‘d: (2, a), Y,, l l 9 9 y&+1))

for k + 1 < m, including k = 0, where 4 has x, y,, . . . , y,,, free,

APP((l, 69 ‘4’s (29 a), YI 9 l l l 9 Ym-I), Ym, (2, {Xc Q : @“(X3 YI 3 l l l 9 Ym))));

APPbzt;, (094, (0, n u W);
API@*, (2, x), (2, K&z): 2 E Wx)H);
N(n)* + APPW”, n, 0,4, n)),
N(n)* A N(m)* + APPW, 4, nL m, (L4, n, m)),
N(n)* n N(m)* + APPW, 4, n, m), x, 0,4, n, m, x)),
N(n)*+ App(k4, n, n, x), Y, 4,
N(n)* A N(m)* I\ n! = m + APPW, 4, n, m, x), Y, Y);
WI* +* AppW*, b, (1,7, W,
S*(b) Avx EM b3y EM ~4df; x, y) fi b? EM u3x 5 M b&p(f, x, y)

+ APP(k7, kfz u)
If + is any formula of IZF satisfying the above conditions with @ in place of

APP, then APF!X x, Y) -) (X x, y)-
.

11.4. Theorem. A formula App meeting the above conditions can be constructed ; the
resulting translation of 4 to #* is sound. Hence a model M of ZFR exists in which
the application relation satisfies the above inductive conditions.

f. The inductive definition can be formalized as in Section 9. We then check
the axioms of ZFR are satisfied; this goes as in Section 9 except that the

definition of membership in M is slightly different. Let us check, for example, the
pairing axiom. Suppose M satisfies (z E pxy). That is,

~u~v(APP(P, x, 4 A APP@, Y, 27) A 2 E 4.

Then u = (1,2, x), and v = (2, {x, y}). But (z E (2, {x, y}))* is z E (x, y}. Hence, M
xy) iff z=x or z=y, which is the same as (z=xvz=J)*.

The axiom App(x, y, u) A App(x, yS v) + u = v holds in M, as one verifies by induc-
tion on the definition of App, exactly as in Theorem 9.2.

We now check the axioms of images. Suppose b is a set in M, and suppose f is
an element of M such that fx is defined for every x EM b. Let u =

(2,I.v: 3X EM WQp(x, J’))b Then VX EM bSJ/ EM UApp(X, JJ) and also
vy EM u3x EM bApp(x, y). Hence, by the de&&ion of App, we have
App((l,7, b),f, u). Note that the set u can be formed using replacement since App
is single-valued.

now check the axiom of separation. sider
contains only x free. Suppose en in

as (2, {x E a : d*(x)}), where 4*(x) is the formula expressing thai R4
satisfies x E q,(a) if and only if satisfies x E a /\ 4(x).

Towards a computation system based on set theory 323

We now check the axiom of union. Suppose (2, a) is a set in M. Th;ln ~(2, a) is
interpreted in M as 2, U {x: (2, X)E a}). Thus M satisfies z E ~(2, Q) ifI ZE
U b: (2,~k a) iff 3x(@, X)E a A z E X) iff 3~((2, X)E a A z Eni (2, x)). Since every
set in M has the form (2, x), this is equivalent to 3 w(w E a A z EM x). This in turn
Can be Written 3w(w EM (2, a) A z EM x), which is the condition mentioned in the
union axiom.

The other axioms can be checked similarly. q

At this point it is instructive to see intuitively why the characteristic function of
the halting problem cannot be defined in Mb Let us try defining f(n) =
(0, {m : m = 0 A (n}(II)&}. That would be the object playing the role of characteristic
function of the halting problem in M. But there is no operation fof M which has
this behavior under the .+p relation. (That has not been proved yet, of course, but
just try to construct one.)

Our next goal is to actually prove that the application relation of M has the
property that it introduces only recursive operations on the integers. One obviously
has to prove something by induction on the definition of the application relation,
and that something has to refer to arbitrary operations in the model, and not only
to operations from N to N.

The key tool in the proof is the notion of term reduction and the related notion
of term models. The basic facts can be found in [4, Chapter V]. There one finds
the reduction rules for the combinatory part of Z , and the definition of “inside-first
reduction”, which is better-known in computer science as “call-by-value” reduction;
it just means that one must evaluate all subterms of the term one is evaluating, even
if they are only to be thrown away.

We shall construct a combinatory algebra A from M, intuitively by identifying
all the sets in M to a single object, and making the other identifications that this
necessitates. It turns out to be easier to describe A directly, and then to give a
homomorphism of combinatory algebras from M to A. A is constructed as follows:
It is the normal-term model whose elements are closed normal terms in the language
of ZFR augmented by a new constant a. The application relation in this model is
defined by Ap(t, s) = RED(ts), where RED(t) is the result of reducing the term t
by call-by-value term reduction, using the following reduction rules (here written
as equations) :

kxy = x, sxyz = xz(yz),

nnxy =I x, Eixy=yifn#m,

xy=a,

ua=a, h=a,

c4(a,yl,-.,yd=a

The exact definition of
reduction rules.

if 4 contains exactly X, yl,. . . , y, free.

can

324 A&J. Beeson

1M. Lemma. A is a combinatory algebra. @‘we in&r-ret N(x) as the numerals, then
A also satis$es the axioms for d, and all functions from N to N representable in A
are recurs&e.

f. The construction of normal-term models is carried out in detail in [4, Chapter
VI]; nothing new is involved here. Since call-by-value reduction is recursive, if t

represents a function from N to N, then the value of t at n can be computed just
by reducing tn’ by call-by-value reduction. Cl

We now define a homomorphism of combinatory algebras from M to A. The
definition is by ind, u&n on the definition of elements of M.

11.6. Definition. To each element x of M we associate an element x0 of A as follows:
(1) if x is a set in M, then x0 is a.
(2) if x is a number in M, say x = (0, n), then ,Y’ = 8.
(3) if c* is an object in M, where c is a constant of ZFR, then c*O is c.
(4) if x is in the first or third column below, then x0 is in the next column:

!1,4, (0, 4, (O,mB d=,

0,1,x) sx”,

(I, I, x, Y) SXOYO,

(I, 4, (0, n), (0, m), x) dEx3

0,6, ‘#‘, 4 qa,

(192, x) PXO, (1,6, ‘d’, a, y1 9 l . = 9 Y/J c&, y'i, . . . 9 yak),

0,4, (0, 4) dfi, (1,7, a) im a.

11.7. Theorem. The map O is a homomorphism of combinatory algebras, i.e., it preserves

application.

roof. The statement that it is a homomorphism also means that kM goes onto k
and sM goes onto s, which is true by definition of O. We prove that it preserves

aP shall prove by induction on the definition of the application relation
in (x, y, z), then RED(x”y”) = z”, where, as above, RED is call-by-value
term reduction. There are ten cases corresponding to the clauses (l)-(10) of 111.3.

Case 1. We have App(*, x, (1, 0, x)); we have to show that A satisfies

Both sides of this equation are equal to For the second part of (l), we have
App((l, 0, x), y, x). Note that ((1, 0, x)) x0, so that what we must show is

x0; but this is true since x0 and y” are normal terms.
have App(s*, x, (1, 1, x)); we have to show that A satisfies

uation are equal to

Towards a computation system based on set theory 325

Case 3. Suppose we have App(x, z, u) I\ App(y, z, v) I\ A,9p(u, v. w). Then, by
induction hypothesis, we have

RED(x”z”) = u”, RED(y”z”) = v”, RED(u”v”) = w”. (h2,3)

We must show RED(((1, 1, x, y))“z”) = w”. We have ((1 , 1, x, y))” = sx”yo; now we
calculate

RED(sx”y”z”) = RED(RED(x”t”) RED(y”z”))

= RED(u”v”) by equations (1) and (2)

= w”,

which was what we had to show.
Case 4. We have App(p*, x, (1,2, x)); we have to show that A satisfies

RED(px”) = ((1,2, x))“;

but both sides of this equation are equal to px”. For the second part of (4), we have
App((l,2, x), y, (2, {x, y})). Note that ((I, 2, x))O= px’, so that what we must show
is RED(px”y”) = ((2, {x, y}))“. The right-hand side is equal to a by definition of On
The inner terms on the left-hand side, namely x0 and y”, are normal; so the left-hand
side is computed using the reduction rule pxy reduces to a.

Case 5. We have App(u*, x, (2, w)) for a certain w (the exact value of w is given
just before Definition 11.3, but does not matter); since ((2, w))” = a, what we must
show is RED(ux”) = a. Since x0 is normal, this follows using the reduction rule ut
reduces to a.

Case 6. First assume 4 has only x free. Then we have App(c$, (2, a), (2, (w E
a : 4*(w)})). We have to show RED(q(2, a}‘) = (2, (w E a : t$*(w)}}O. But both sides
are equal to a. Next assume that 4 has exactly x, yl,. . . , ym free. Then we have
App(c$, (2, a), (1,6, ‘#, a)). We must show RED(q,a) = (1,6, ‘#‘, a)? The left-hand
side is equal to c+a since this term is normal (because m > 0), and the right-hand
side is equal to c+a by definition of O.

Similarly, we have AppW, 6, ‘4’, (2, a), yr) = . . v yd, ~k+~) (1,6, ‘46 (2, a),

Yl , . *. , yk+J. We must show that

RED(c4ayT,. . . ,Yok+1) = @,a), Y19 . l l 9 Y&+*)“e

The term on the left side is normal, and by definition sf O, it is the value of the
right-hand side also. We have

APPUl9 6, ‘6, c&a), YIP l . l 9 Ym-A Yin, (2, ix E a : 4*(x, Yl¶ l l -9 Ynm*

We must show RED&, y”,) = a. This follows from the fact that the subterms
on the left are normal, together with one of the reduction rules.

Case 7. We have App(s& (0, n), (0, n v {n}). We must show
Since n + 1 is just another name for the term sNli, this follows

umerals are rqrmal terms.

326 M.J. Beeson

Case 8. We have App(P”, (2, x), (2, ((2,~): 2 E (41)). We must show
RED(pa) = a, which follows since 9 and a are normal and kZ@a reduces to

Case 9. We have N(n)* + Appld*, n, (1,4, n)). Suppose N(n)*, that is, n is an
integer in M Then n has the form (0, n,), and no is fiI. SO what we have to show
is RED@&) = ((1,4, n>o). Since dfi is normal, the left side is just d& . That is also
the value of the right-side, by definition of O.

We have N(n)* I\ N(m)* + App((l, 4, n), m, (1,4, n, m)). Suppose N(n)* and
N(m)*. Then n has the form (0, n,), and m has the form (0, m,). What we have to
show is RED(d&liil) = ((1,4, n, m))‘. Since the term on the left is normal, the left
side is just dfi,@ . By definition of ‘, that is also the value of the right side.

We have N(H)* A N(m)* + App((1,4, n, m), x, (1,4, n, m, x)). Suppose, as above,
that n = (0, n,) and m = (0, m,). We have to show RED(dn’,fi,x”) = ((1,4, n, p?r, x))“.
Since x0 is normal, the left side is just dn’lfilxo. But that is the value of the right
side, by definition of O.

Suppose n = (0, n,). We have App((l,4, n, m, x), y, x). We have to show
RED(Jn’,n’,x”yo) = x0. But that follows from the facts that x0, y”, and numerals are
normal terms, so the reduction rule for d applies.

Similarly, suppose n = (0, n,) and m = (0, m,). Then we have
App((1,4, n, m, x), y, y). We have to show RED(dn’, fi,x”y”) = y”. But that follows
from the facts that x0, y”, and numerals are normal terms, so the reduction rule for
d applies.

Case 10. Suppose b is a set in M Then we have App(im*, b, (1,7, b)). We have
to show that RED(im 6”) = (1,7, b)“. The right side is im a, by definition of O. The
left side is the same since b” - - a and im a is a normal term. Now suppose that b is
a set in MI Suppose furthermore that M satisfies

Then we have App((1,7, b),_f, u). Note that (1,7, b)o = im a since b” = a. We must
show

RED(b(a, f)") = u".

Since f O is normal, the reduction rule im(a, x) = a applies, so the left side is just a.
Since u is a set in M, u” is also a. That completes the ten cases of the inductive
proof. Cl

. The model satisjes classical logic and also Church’s thesis in the
rm, every operation from N to is recursive.

Suppose f is an element of M such that satisfies Vn E N{ fn E IV). Let t
y Theorem 11.7, if satisfies fii = fi, then tii reduces to fi by call-by-value

n other words, f is extensionally equal to its image f ".
11.5, this function is recursive. Cl

Ttiwards a computation system based on set theory 327

Another interesting consequence can be drawn from the model M: it is impossible
to define an operation in which will take two distinct integer values on two
different sets CL and b. Before proving this fact, we first make it plausible. Suppose
s and b are two sets; then define u = {x: (x E a A P) v (x E b A lP)}, where P is an
unsolved problem, say Fermat’s last theorem. Now suppose we have an operation
f such that fa = 0 and fb = 1. Then we could settle Fermat’s problem by computing
fu and seeing whether it is zero or one. This kind of example is familiar in constructive
mathematics, but here we have classical logic; only the operations are to be con-
structive.

11.9. Theorem. Suppose a and b are two sets in M. Suppose f is an element of M such
that M satisfies fa E N and fb E M. Then M satisjes fa = fb.

Proof. Let m be the value of fa in M and n the value of fb. Then f”(a) reduces to
fi since O is a homomorphism and a0 = a. But since also 6” = a, f”(a) reduces to Is.
By the uniqueness of normal forms, n = m. Cl

In particular, any integer-valued operations defined on P(N) mirst be constant.
It is impossible to define nontrivial integer-valued operations on sets. It may seem
paradoxical to propose a computation system based on set theory when such a
simple function as count(x), the cardinality of a finite set x, cannot be computable.
But as we have seen if count(x) were computable, then we could solve Fermat’s
last theorem, by applying count to a suitable set. That set is not the sort of set we
will deal with often in computer science since we cannot list its elements. There are
two ways of saying what kinds of sets we will deal with in computer science: either
use constructive logic, in which case “finite set” has a more restrictive meaning than
it does in classical logic; it means we can explicitly count the elements of the set.
Another approach is to restrict attention to representations of sets, e.g., by finite
lists, which are operations with domain an initial segment of N. In any case, our
inability to count the number of elements of sets with complicated definitions will
not be a practical limitation on the usefulness of set theory as a computation system.

emark. It is an open problem whether Church’s thesis plus classical logic plus
Exp is consistent.

tion syste

We now return to the original theme of the paper, namely set theor:! as a
computation system. We shall discuss the possibility of implementing as a

computation system. The first step is to write the axioms of as rules of inference

l a natural deduction system. Such a system ow to infer lines of the form

: r from other such lines, where I’ is a list ssumptions on which the formula

325 M. J. Beeson

A depends. The axioms of IZFR can be viewed as type-formation

S(a)

together

S(cd,(a))

with introduction rules like

xea 4(x)
x-f@)

and the elimination rules like

x+4 =c&)
xea ’ 4(x) .

Note that the axiom of images can
(natural) corresponding version of the

S(a) S(fx): x f a

Wm(a,f)) ’

S(a) S(fx): x E a zea

rules, e.g.,

also be treated this way, while there is no
collection axiom:

fi E im(a,f)

S(a) S(fx): xEa zEim(a,f)

3xEa(z=fx)
.

These rules can be straightforwardly translated into PROLOG, producing a
computation system that recognizes or finds proofs in IZFR. Of course, such a
system could be implemented in any other programming language, too.

What would such a computation system be good for? Consider Knuth’s example
of an algorithm extracted from Bishop’s proof of the Weierstrass approximation
theorem. We could write out the formal proof of the approximation theorem, feed
it to a suitable (rather simple) program, and extract the algorithm implicit in the
proof. We should be able, in fact, to use the computation system to fill in the most
detailed steps of the proof if we provide the major steps. In other words, we should
be able to extract algorithms from proofs; such algorithms would be automatically
guaranteed to satisfy their specifications.

An actual implementation would probably avoid existentially defined sets such
(a, f) and work instead with a term for the graph off restricted to a; in this

paper we have used im instead, in the belief it is more natural for humans. The
computer, however, would have to keep track of the “witnesses” demonstrating
membership in im(a, f), and it would be natural to do this explicitly. Such an
implementation would probably restrict the separation axiom to formulae which
are “almost-negative” in a suitable sense. This would permit the use of a simple
form of q-realiz lity for the extraction of algorithms from proofs. On top of this
internal system re would be a user interface which would translate certain
existentially defined types into explicit, internal versions. Thus, for example, the

Towards a computation qyrtern based on set theory 329

user could define a type as a union,, and the system would construct an internal
type which would also keep track of the witness of membership in the union.

We next discuss some examples of data types which are useful in computer
science, as defined in such a computerized set theory.

Example 1 (Lists). The programming language ML permits the polymorphic type
Q! list, where a! is any type; this is the type of lists of objects of type cy. In ZF
can be defined in the most mathematically natural way: a list of length n is a function
from the first n integers to the set cy, and list(a) is the union over all integers n of
the set of lists of length n of members of cy.

Example 2 (Sorting). 0ne wishes to be able to define a polymorphic sorting algorithm
sort(a, R, x) which will take as arguments any set Q! with a linear order R on it,
and a finite list x of elements of cy, and return the sorted list with the same elements
as X, but in R-order. Here we assume that R is actually an operation that decides
the order of any two elements of a! by returning 1 or 0. Several such algorithms are
known and studied in elementary courses, yet many computer languages, even such
advanced ones as ML, are unable to express such a polymorphic operation. Instead,
you must wnte a new version of your sorting algorithm for each new type cy. (The
reason is that sort(a, &R, x) is only defined when R satisfies a condition depending
of (Y, and the type-formation mechanisms of ML do not allow for that.) Note that
definitions of this sort are completely straightforward in ZFR.

13. Church’s thesis and the axiom of choice

The first model constructed above contains lots of nonrecursive functions from
N to N, It therefore does not correspond to any sensible operational semantics for
set theory considered as a computation system. We therefore constructed the second
model M, in which only recursive operations occur, even if logic is taken to be
classical. If we do take classical logic, then exactly as in ordinary set theory there
will be many nonrecursive functions, in the set-theoretic sense of single-valued
subsets of N x N. But the natural implementation of as a computation will
make use of only the intuitionistic natural-deduction rules; the law of the excluded
middle is an extra appendage in this context.

Such considerations lead naturally to the formal question whether can prove

the existence of any nonrecursive functions. In other words, is it consistent with
to assume that all functions are recursive? Note that this is stronger than “

operations are recursive”; we already know that this is consistent, by the model
of Section 11.

Church’s thesis can be formulated in the language of as follows:

(e is a recursive index off).

330 M.J. Beeson

13.1. Tharem (Consistency of Church’; thesis). It is consistent with IZFR to assume
all functions are recursive. What is more, every theorem of IZFR+ CT in the lat. wage
of IZF is already provable in IZF+ CT.

Proof. It is known (see, e.g., [4, Chapter VIII]), that IZF is consistent with CT.
Now suppose that IZFR+ CT proves t$. Then, by the deduction theorem, IZFR
proves Cl’+ 4. By Theorem 10.5, IZF proves 4, assuming 4 is in the language of
IZF. 0

The principle of countable choice can be naturally expressed in ZFR by

(A&) Vn(N(n)~3xA(x,y)) + 3fVn(N(n)+A(n,fn)).

Note that A& can be used to prove that every that every set-theoretic function
on N is extensionally equivalent to some operation. Similarly, the following axiom
of “unique choice” can be used to prove that every set-theoretic function (with
whatever domain) is extensionally equivalent to some operation:

Wx E a3 !yA(x, y) + 3f Wx E aA(x, fx).

This axiom was first introduced by Myhill [41] who called it an axiom of
“non-choice” since if f ranges over set-theoretic functions instead of operations, it
is a triviality. Both the axioms of choice just mentioned are consistent with ZFR
since they hold in the model constructed in Section 9. On the other hand, they fail
in the model A4 of Section 11 since they imply FO, which fails in that model since
there are nonrecursive functions but only recursive operations. It is therefore of
interest to prove the following theorem.

13.2. Theorem. IZFR+ CT+ A& + AC! is consistent,

Proof. AC! is a consequence of FO, so it suffices to prove that IZFR+ FO + ACN
is consistent. Suppose it is inconsistent. Then some finite conjunction B of instances
of A& can be refuted in IZFR + FO. Note that using FO, the operation mentioned
in AC.. can be replaced by a function, so that the formula B can be assumed to be
a formula of IZF, i.e., not mentioning Ap. By Theorem 10.5, then B is refutable
in IZF-Rep. But B is a finite conjunction of instances of countable choice in the
version expressible in IZF, i.e., with functions instead of operations. Hence the
refutation of B in IZF contradicts the known consistency of IZF with countable
choice. (See, for example, [4, Chapter VIII].) q

Appendix. The concepts of set, class, and data type

The ideas of constructive mathematics and computer science prompt a re-
examination of the concepts of “set” and “class”. In this appendix, we shall recall
the ideas of Cantor, Dedekind and Frege, and compare them with those of Brouwer

Towards a computation system based on set theory 331

and Bishop, and with the “data types” of computer science, as explained by
Martin-Eiif and as used in modern programming languages.

What is a set?

Cantor addressed this fundamental question at the beginning of his seminal
memoir (1895) on set theory:

A set is a collection into a whole of definite, distinct objects of our intuition or thought.4

Cantor was well aware that there are certain “inconsistent sets”, as he called them,
which he regarded as “multiplicities” that could not be collected into “unities”.
Thus the phrase “‘into a whole” was vital.

Another person who was influential in the development of set theory was
Dedekind, who used set theory to give a foundation to arithmetic in his essay, Was
sind und was sollen die Zahlen. Here is his definition of a set (for whi& he used the
word “system”):

If different things a, b, c, . . . for some reason can be considered from a certain p int of view,
can be associated in the mind, we say they form a system S.. . Such a system (an aggregate, a
manifold, a totality) as an object of our thought is likewise a thing; it is completely determined
when with respect to everything it is determined whether it is an element of S or not.5

This definition, which nicely rules out the set occurring in Russell’s paradox,
preceded Russell’s discovery of that paradox by more than two decades. In both
Cantor’s and Dedekind’s definitions, there is an element of “mental collection”
which must be present in order that elements constitute a set. Nevertheless, it seems
to have been the intention of both that a set was determined by its elements. The
very next sentence in Dedekind’s book makes this explicit, by formulating what is
now known as the axiom of extensionality:

The system S is hence the same as the system T, in symbols S = T, when every element of S is
also an element of T, and every element of T is also an element of S.

Independently of Dedekind and Cantor, Frege was developing his own theory
of classes. His theory was based on the idea of a “concept” or property which an
object might or might not have, and permitted the formation of what we would not
write as (x: d(x)} for each concept 4. 4 was viewed as what today we would call
a “Boolean-valued function”, associating to each x a truth-value “the True” or “the
False”. In the introduction to his Grundgesetze (1893) [17, p. 1491, he criticizes
Dedekind’s definition of set:

. . . but the “considering”, “putting together in the mind”, is not an objective characteristic. In
whose mind, may I ask? If they are put together in one mind and not in another, do they then
form a system? What is to be put together in my mind must doubtless be in my mind. Then
do things outside myself not form systems? 1s a system a subjective formation in eaCh singIl?
mind? Is then the constellation Orion a system?

4 “Unter einer ‘Menge’ verstehen wir, jede Zusamenfassung N unserer Anschauung oder unYew
Denkens zu einem Ganzen.” The translation given in the text is Fraenkel’s [16, p. 91,

’ Dedekind [3, p. 451. The original date of publication was 1887; however, the quotation is from the
second edition, published in 1893.

332 M. J. Beeson

Frege goes on to the example of the empty set, making the point that if it is the
elements that determine a set, then it is hard to see how a set with no elements can
be determined! Instead, he points out, the empty set is the set of all things falling
under a concept which is always false! The intuitive appeal of this theory of concepts
and classes was such that Frege was convinced of its value. He wrote [17, p. 1471:

It is improbable that such an edifice could be erected on an unsound base. Those who have
other convictions have only to try to erect a similar construction upon them, and they will soon
be convinced that it is not possible, or at least it is not easy. As a proof of the contrary, I can
only admit the production by some one of an actual demonstration that upon other fundamental
convictions a better and more durable edifice can be erected, or the demonstration by some
one that my premises lead to manifestly false conclusions. But nobody will be able to do that.

0f course, this confidence was soon shattered by Russell’s paradox. The situation
after this ‘paradox had been fully apprehended is aptly summarized by Zermelo
(1908) [40], [26, p. 2001:

Cantors original definition of a set.. . therefore certainly requires some restriction; it has not,
however, been successfully replaced by one that is just as simple and does not give rise to such
reservaticnzrs. Under these circumstances there is at this point nothing left for us to do but to
proceed in the opposite direct;on, and, Ftarting from set theory as it is historically given, to
seek out the principles required for establishing the foundations of this mathematical discipline.
In solving the problem we must, on the one hand, restrict these principles sufficiently to exclude
all contradictions and, on the other, take them sufficiently wide to retain all that is valuable in
this theory.

This ad hoc procedure, which after initial controversies became the dominant
view of the mathematical community, and remains so to this day, is philosophically
unsatisfying. Not everyone followed this path; in particular Whitehead and Russell
attempted to repair Frege’s logical foundations by introducing the theory of types
in Principia Mathematics.’

Both Russell-Whitehead and Zermelo gave formal systems which avoided the
paradoxes while allowing ordinary mathematics, but their motivations differed:
Zermelo looked to history and practice for his axioms, Russell and Whitehead
looked for intuitively correct logical notions. At that time, the theory of classes was
often viewed as logical in nature; even Cantor had considered such a deep mathemati-
cal proposition as the well-ordering theorem as a “law of thought”. So it is not
surprising that the paradoxes gave rise to a reexamination of the laws of logic. Such
a “beginning again at the beginning” was undertaken by Brouwer! In 1918, in

6 The empty set is nowhere to be found in Cantor, and is specifically eschewed by r,dekind for
“certain reasons” which are left unspecified. So perhaps they were aware of this difficulty!

7 The closeness of viewpoint in Prineipiu and in Frege can be seen for example in Principiu *20: “The
characteristics of a class are that it consists of all the terms satisfying some propositional function, so
that every pralpositional function determines a class, and two functions which are formally equivalent
(i.e., such that whenever one is true, the other is true also) determine the same class, while conversel)
two functions which determine the same class are formally equivalent.”

8 It is worth noting that merely rejecting the law of the excluded middle does not stop Russell’s
paradox, which can be carried out with intaitionistic logic. Frege seems to have been confused about
this [17, p. 3251.

Towards a computation system based on set theory 333

Begriindung der Mengenlehre unabhiingig vom log&hen Satz vom ausgeschlossenen
Dritten (Foundations of set theory independent of the logical theorem of the excluded
middle) [7], Brouwer addresses the problem of defining the fundamental notion of
“set”. According to Brouwer, the natural numbers and the linear continuum are
known to us by intuition; thus natural numbers and real numbers (given by what
later came to be called “choice sequences”) will be the elements of the most
fundamental kind of set. Brouwer defined a set (“Menge”) or spread to be (ignoring
some minor technicalities) a rule associating a number to each sequence of natural
numbers. “Eine Menge ist ein Gesetz . . . “; a set is a rule. More generally, Brouwer
recognized the notion of a “species of first order”, whose members could be only
numbers or spreads, ani which had to be defined by a property. Quite possibly
influenced by ‘Whitehead and Russell’s theory of types, he went on to recognize
“species of second order” whose elements could be species of first order, and so on.

Brouwer’s approach was felt to be too radical by many mathematicians. For
example, Von Neumann (1925) 1381, in introducing a new axiomatization of set
theory, is at pains to separate his and Zermelo’s approach from that of Brouwer,
which is “not a rehabilitation of set theory at all, but rather a very sharp critique
of the modes of inference hitherto used in elementary logic. . . [Brouwer] systemati-
cally rejects the larger part of mathematics and set theory as completely meaningless.”
That this was, for Von Neumann, enough to vitiate the entire approach can be seen
from these remarks:

There will be no attempt to make derivations unobjectionable Aso in the sense of the intuitionism
of Brouwer and Weyl. I would like to remark, nevertheless, that this, too, could be attained
rather easily (through a few insignficant modifications); but I forgo this as a matter of principle,
since the axiomatic method is in itself contrary to the essence of intuitionism. [26, p. 3961.

Constructive axiomatic set theory thus missed a chance of being born in 1925; it
had to wait almost half a century more. Brouwer’s intuitionistic set theory gained
few followers, no doubt because of its wholesale rejection of classical concepts and
methods. So far as the author is aware, nobody tried again to define the concept of
“set” until Bishop (1967) [5]. There one finds the following definition (p. 13):

The totality of all mathematical objects constructed in accordance with certain requirements if
called a set.

The word “requirements” reminds one of Frege’s “concepts”; but note the explicit
provision that the elements must be constructed. The word “totality” reminds one
of Cantor and Dedekind (in fact, it was given as a synonym for “system” by
Dedekind); but the subjective nature of the process of “collecting” into a totality,
which Frege criticized, is not present in Bishop’s definition. Bishop seems to have
believed, or at least hoped, that he had done what Zermelo mentions above as not
having been done: to successfully replace Cantor’s definition of set by one just as
simple which does not give rise to paradoxes. In unpublished work, Bishop gave a
quite attractive axiomatic theory in which his book could be formalized; but,

334 M.J. Beeson

unfortunately, like Frege’s, it was inconsistent. (Presumably he was aware of the
fact, which was why he did not publish his theory.)g

Bishop’s explanation of “set”, however, is not at all what is taught in mathematics
courses in graduate school. If the question of the nature of sets is taken up at all,
the explanation offered is the “cumulative hierarchy” of sets. One starts with the
empty set (or some individuals) and repeatedly collects the subsets of what one has
so far:

It is said that this is the “intend del” of the axioms of set theory. ft is interesting
that this “standard model” wa iscussed at the time when ZF was created. The

axiom of foundation was adde in 1928 by Von Neumann, who also introduced
the cumulative hierarchy (alt at was presaged by Mirimanoff in 1917 [35]).
ZF was not about any specific ion of set, such as the well-founded sets, when
it was first given; it was only ho that the paradoxes would be avoided.

We thus have (at least) two inct ideas of “set”: the Fregean notion of a set
as an extension of a property, which is intuitively appealing but inconsistent, and
the notion of well-founded set, which is de$ned in terms of the (presumably) more
primitive notions of iteration and collection of subsets. Whether we adopt a construc-
tive philosophy or not seems to make little difference: the cumulative hierarchy can
be treated, at least formally, with intuitionistic logic (Friedman [18]), and in spite
of hopes to the contrary, constructive set theory does no better at avoiding the
paradoxes than classical set theory.”

What is a type?

By a “type” we mean what a computer scientist means by “data type”. These tell
“what kind of an object” a given piece of data represents. In modem structured
languages like Pascal, a program begins with “type declarations” in which certain
variable names (identifiers) are reserved to name objects of the declared types. The
history of the development of programming languages shows the continual search
for more flexible and general type RTRAN had only two types: real and integer.
Pascal allows more general type- ng operations, but still does not have a type
A + B of operations from the typ to the type l3. In the future, languages will be
created which are adequate both to the needs of programmers and to the expression
of mathematics. A pioneering effort in this direction was the AUTOMATH project
(see, e.g., [6]); some others have been surveyed in Section 4.

’ For completeness one should note that Bishop felt that every set should be equipped with a relation
of equality, and that one has not completely defined a set until one has also defined its equality relation.
Although this is not part of the “definition” quoted, it occurs two sentences further on.

lo Some may argue that Bishop’s definition constitutes a third “distinct idea” since it cannot easily
be equated with either Frege’s notion or with Von Neumann%. Whether or not we so count it will not
be essential to what follows.

Towards a computation system based on set thepry 335

By “data” we understand concrete objects which can be directly and completely
represented in the computer; for example, strings of symbols. Data are to be
contrasted with the abstract objects of mathematics, for example, infinite sets, which
can be only indirectly represented in the computer, for example, by a program

which decides membership in the set, or a string of symbols which defines the set
in some language.

As we shall use the terms, the difference between a type and 8 ,et is this: a type

may have only concrete objects as its members, while a set may have concrete or
abstract objects as its members. In particular, a type is itself not a concrete object
(unless it is a finite type). In computer science, the i&a of a hierarchy of types does
not arise. One specifies types by specifying what objects “have that type”, i.e., are
members of the type. That is, types are typically defined in Fregean terms as
extensions of a concept.

Martin-L6f [33,34] develops a “theory of types” which permits more general
type-forming operations than Pascal; in particular, the type-forming operation A + B
is allowed, and its generalization to the type-formation operation 17(x E A) B(x),
where B(x) is a type for each x E A. (-4 + B is the special case when B(x) is constant.)
These type theories, as published, permit the creation of a hierarchy of types; there
is a “small universe” U containing the basic types, and closed under the type-forming
operations; U is itself a type. So the principle that types cannct be objects is violated.
In unpublished lectures (but the formalism appears in Smith [42]), Martin-Liif
rectifies this situation by emphasizing that only names of types can be objects. He
introduces names for all the small types and makes these the elements of U.

Martin-Liif gives an explanation of what he means by a “type”; his formal theories
are supposed to reflect this informal notion. According to Martin-Liif, in order to
specify a type X, you must tell

(i) what the canonical objects of type X are
(ii) when two canonical objects of type X are equal, and

(iii) how to reduce an arbitrary object of type X to canonical form.
For example, the canonical members of the type of integers are given by: 0 is a

canonical element, and if n is a canonical element, so is sNn. Whenever we introduce
an operation on the integers, such as addition or multiplication, we have to give
the corresponding rules for evaluating expressions involving that operation. Thus
10” is an integer, because there are rules for evaluating that expression.

Let us compare Martin-Liif’s types with Bishops sets. According to Bishop, we
have given a set X as soon as we have told what to do to construct an element of
X, and when two elements of X are equal. To turn X into one of Martin-LSf’s
types, -we still have to tell what the canonical elements are and how to reduce
arbitrary elements to canonical form.* * Thus, for example, the set of all sets would
appear to qualify as a Bishop set since he has just told us what to do to construct

” Martin-Liif ignores the logical distinction between elements and expressions denoting elements,
and speaks of reducing elements where a logician would insist that only expressions are reduced.

336 M. J. Beeson

a set.‘* But it does not qualify as a data type since we do not have any idea what
the canonical sets are, nor what reduction operations are appropriate.

Feferman [14,15] introduces theories of operations and “classes” which are
intended to express (and be obviously valid on) a philosophy according to which
mathematical o ects are given by symbolic representations (i.e., data). His formal-
ism permits classes to be objects, but it is easy to modify the formalism (see [3])
to permit only nmm of classes to be objects, without affecting any important
properties of the system. In particular, the key axiom of Feferman’s systems is the
“elementay comprehension axiom”, according to which we are allowed to form
the class \X : 4(x)} for certain 4. One thereby has the existence of a ‘“universe” K
The 4 which are allowed are called “elementary”; they are distinguished by the
syntactic property that class variables occur only free (as parameters) and on the
right of E in 4. This corresponds to the idea that types can be mentioned while
defining new types only if they have been previously defined (so they can be
substituted for the free class parameters in 4). Allowing them only on the right of
E corresponds to the idea that they are not allowed to be objects themselves.
ne &,tssell paradox is then neatly avoided since XE x is net an elementary
formula.

Graves [22] is developing a computation system based on category theory (more
precisely, on topos theory). He considers the category whose objects are data types;
the arrows of the category are procedures leading from inputs of the domain type
to outputs of the codomain type. One object, the terminal object of the category,
is the type ONE. ON. is thought of as the type of “environments”, i.e., maps which
give values to variables. A data object is an arrow of type ONE + X. We would
usually call this an object of type X. For instance, 5 is the map of type ONE + N
with constant value 5. The computations in his system consist in the reductions or
evaluations of terms in topos theory (enriched by a suitable collection of function
symbols). Graves’ work shows how topos theory can be used as a foundation for
the theory of data structures and algorithms, although it was originally developed
as an alternate foundation for mathematics.

One may ask: from the philosophical point of view, what does topos theory
contribute to our understanding of the fundamental notion of data type? One answer
is, it provides an operational semantics. A notion of data type is sound if the
topos-theoretic formalism can define it; or perhaps, if a natural extension of the
formalism can define it. Graves has shown that all the usual data types can be
naturally defined in topos theory, which of course goes far beyond Pascal in its
generality of type formation.‘3

I2 Greenleaf [23, pp. 2242253, argues against this, on the grounds that the set of all sets does not
qualify as a Bishop set until we have constructed an equality relation on it, which he thinks is not so easy.

l3 There is, however, a technical problem suggested by this definition of soundness which is presently
still open: how can we interpret Martin-Liif’s type-construction operations in topos theory?

Towards a computation system based on set theory 337

Classes

The word “set” can be used to refer either to a Fregean set, defined by the
extension of a property, or to a well-founded set, i.e., one occurring in the cumulative
hierarchy of sets. The word “class” refers to the extension of a property. If a class
happens to be a well-founded set, then it is usually referred to as a set. Thus the
word “class” is sometimes thought to be synonymous with “proper class”, which
refers to a class which is not in the cumulative hierarchy, such as the class of all
well-founded sets or the class of all ordinals.

In the history of set theory, proper classes go back to Cantor, who recognized
that certain “multiplicities” cannot be collected into a “unity”. He referred to such
multiplicities as “inconsistent sets”. It seems to have been Von Neumann 1381 who
first contemplated the consistent use of proper classes, though his theory is formu-
lated in terms of functions rather than sets and classes. Later formulations, more
familiar today, were given by Bernays and finally by G6del [43]. All these theories
regard classes as being just like sets except that they are, in Von Neumann’s
picturesque terminology, ‘“too big”. That is, “too big” to be a member of another
class. In particular, they are viewed as abstract objects like sets, obeying the law of
extensionality: two classes are equal if and only if they have the same members.

This viewpoint is not philosophically sound. If a class is “too big” to be a set,
that means it cannot be collected into a unity as an abstract object. The process of
abstraction that leads to a set from a symbolic representation breaks down oft certain
symbolic representations. A class is given to us by a symbolic representation, but
it has no extension. Frege’s “second-level function” of abstraction that leads from
properties to their extensions is not everywhere defined. (See [17, p. 2391 for Frege’s
analysis of Russell’s paradox in exactly these terms.) A class, then, is a concrete
object, not an abstract one. It is the extension of a class which is “too big” to exist;
or rather, would be too big if it did exist.

It follows that there is no justification for the principle of extensionality for
classes, in spite of its formal consistency. Nor should we identify a class with the
set, if it exists, which has the same members: one is a concrete object, the other is
an abstraction.

The way in which data types are used in computer science casts some light on
the situation. A type can be used in two different ways:

(i) as a classif’ier, for classifying objects according to what type they are, or
(ii) as a data structure, i.e., an object, in its own right, which can be manipulated

like any other piece of data.
Data types as classifiers are like sets; data types as structures are like classes=

Since this is rather a revolutionary view of the matter, perhaps we had better put
it the other way around: sets are like data types as classifiers, while classes are like
data types as structures.

Some support for this view comes, quite independently of the ideas that led to
it, from the work of Peter Aczel. Aczel has been trying to use set theory to describe

338 h&J. Beeson

certain data structures used in computer science, for example streams. A stream is
a (theoretically) infinite object, for example the stream of characters being printed
on a terminal. Aczel [l] found that the well-founded sets are inadequate for this
purpose, while the non-well-founded sets that he invented for the purpose (or should

we say “discovered”?) worked marvelously. These non-well-founded sets are
beautifully described by their merzbership diagrams, which are certain graphs. These
non-sets, in the traditional view, would have to be called classes; but they do not
even fit the usual view of classes as collections of well-founded sets. What are they?
Structures which are used to describe classifiers.

In this view, a proper Jass is simply a class whose structure is too rich to permit
it to be abstracted away, leaving only an extensional shell. The question of its being
“tad big” is not relevant; size is only oae aspect of structure, and not always the
most important. Of course, it may be that certain classes are “too big” to be sets;
but the assumption that excessive size is the only reason why the abstraction
operation might be undefined appears to be completely unjustified.

Hallett 1251 has written a book which explores the history of the “limitation of
size hypothesis”, according to which every “incon,sistent set” is inconsistent because
it is “too big”, i.e., contains a copy of the ordinals. He attributes this definition of
“too big” to Jourdain, and the hypothesis itself to Russell [25, p. 1831, although
precursors of the idea are to be found in Cantor.

Once this misconception has been identified, one can see that it has pervaded the
traditional interpretation of certain mathematical results. For example, Cantor’s
diagonal method shows that if we are given a sequence of real numbers 3c,, we can
construct another real number which is different from all the x,. Does that mean
that the set of real numbers is larger than the set of integers? That is the usual
interpretation placed on the result. But it might be interpreted to mean instead that
the set of reals has a very rich structure, which does not permit it to be covered by
the integers.14 This point of view finds some support from the fact that in constructive
mathematics, for all we know every real number is recursive-and in that case, the
reals would be in one-one correspondence with a subset of the integers (their
recursive indices). They still could not be placed in recursive one-one correspondence
with the integers, however, so Cantor’s theorem would not be violated. How do we
know that the actual situation is not better described in these terms, than in terms
of size?

The theory formulated in the body of this paper, without the apparently artificial
restriction that the formula in the separation axiom must not mention the application
relation, is inconsistent. The contradiction appears to show that if we do not limit
the axioms, the application relation, even restricted to sets of a fixed rank, cannot
be a set. It is thus an example of a proper class which is not a set because of a
structural complexity other than its size. Since the main piece of evidence for the
“limitation of size hypothesis” seem to be Russell’s observation that all the contradic-

l4 Sez [23, p. 2301.

Towards a Computation system based on set theory 339

tory classes are “too big”, we now have a specific reason for reconsidering that
hypothesis.

Classes may have a more complex structure than can be summed up by telling
what size they are. If we abstract away everything but the membership structure,
we get sets. Operations have a more complex structure than their input-output
relation, which is usually called the “graph”. If we abstract that structure away, we
get the usual set-theoretic representation. These abstractions have served mathe-
Imatics well, but they may not be ideal for the foundations of computer science, and
they may have led to mistakes in the foundations of mathematics.

References

[l] P. Aczel, Lectures on Non- Well-Founded Sets (Center for the Study of Language and Information,
Stanford, CA, 1988).

[2] H.P. Barendregt, The Lumbda Calculus: Its §yn:ax and Semantks (North-Holland, Amsterdan,,
1981).

[3] M. Beeson, Proving programs and prcgramming proofs, in. Logic, Methodology, and Philosophy of
Science VII, Proceedings of the meeting in Salzbuig, Austria, July, 1983 (North-Holland, Amsterdam,
1986).

241 M. Beeson, Foundations of Construcfiue Mathematics: Metamathematical Studies (Springer, Berlin,
1?85).

[SJ E. Bishop, Foundations of Constructke Apaalysis (McGraw-Hill, New York, 1967).
[C] N.G. de Pruijn, The mathematical language AUTOMATH, its usage and some of its extensions,

in: &oc. Symp. on Automatic Demonstration, IRAI, “Jersaillles i968, Lecture Notes in Mathematics
125 (Sprirzger, Rerlin, 1970) 29-61.

[7] L.E.J. Brouwer, Begriindung der Mengenlehre unabhiingig vom logischen Sate vom ausge-
schlossenen Dritten. Erster Teil: Aligemeine Mengenlehre, Origin&l date 1918, in: A. Heyting, ed.,
L.E.J. Brouwer, Collected Works, Vol. I (North-Holland, Amsterdam, 1975).

[8! K. Bursrall and B. Lampson, A kernel language for modules and abstract data types, TI:ch. Rept.,
DEC Systems Research Center, Palo Alto, CA94301, 1984.

[9] R. Constable et al., Implementing Mathematics with thz NuPrl Proof Development System <Prentice-
Hall, Englewood Cliffs, NJ, 1986).

[lo] R. Constable, S. Johnson and C. Eichenlamb, Introduction to the PL/CV2 Programming Logic,
Lecture Notes in Computer Science 135 (Springer, 6, .;‘ York, 1982).

[ll] R. Constable and D. Zlatin, The type theory of PL/CV3, in: Pror. IBM Logic of Programs ConjI,
Lecture Notes in Computer Science 131 (Springer, Berlin, 1982) 72-93.

[121 H.B. Curry and R. Feys, Combinatory Logic (North-Holland, .%mstzrdam, 1958).
[13] R. Dedekind, Essays on the Theory of Numbers (Dover, New York, 1963) (Translations of: Stetrgkeit

und irrationale Zahlen, and: Was sind und was sollen die Zahlen).
[14] S. Feferman, A language and axioms for explicit mathematics, in; J. Crossley, ed., Algebra and

Logic, Lecture Notes in Mathematics 450 (Springer, Berlin, 1975) ei7-139.
[15] S. Feferman, Constructive theories of functions and classes, in: M. Boffa, D. van Dalen and

K. McAloon, eds., Logic Colloquium ‘78: Proc. Logic Cbll. at Mons, 1978 (North-Holland, Ams’zr-
dam, 1979) 159-224.

[I6] A. Fraenkel and Y. Bar-Hillel, Foundations of Set Theory (North-Holland, Amsterdam, 1958).
[171 G. Frege, Grundgesetze der Arithmetik, begrZ$sschrijtlich abgeleitet (Verlag Hermann Pohle, Jena,

1893 (Band I), 1903 (Band II)), partial English translation in: P. Geach and M. Black, Translations
from the Philosophical Writings of Gottlieb Frege (Blackwell, Oxford, 1980).

[I$] H. Friedman, Some applications of Kleene’s methods for intuitionistic systems, in: A. Mathias and
H. Rogers, eds., Cambridge Summer School in Marhematical Logic, Lecture Notes in Mathematics
337 (Springer, Berlin, 1973) 113-170.

340 M.J. Beeson

[lg] H. Friedman, The consistency of classical set theory relative to a set theory with intuitionistic logic,

_I. Symbolic Logic 38 (1973) 315-319.
[20] H. Friedman, Set theoretic foundations for constructive analysis, Ann. of Math. 105 (1977) l-28.
[21] H. Friedman and A. SEedrov, The lack of definable witnesses and provably recursive functions in

intuitionistic set theories, Adv. in Math. 57 (1985) l-13.
[22] H. Graves, The Algos system, Tech. Rept., Language of Data Project, Los Altos, CA, 1985.
~231 N. GreenEeaf, Liberal constructive set theory, in: Proc. Constructive Mathematics, New Mexico,

1980, Lecture Notes in Mathematics 873 (Springer, Berlin, 1981) 213-240.
[24] M. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF: A Mechanized Logic of Computation,

Lecture Notes in Computer Science 78 (Springer, Berlin, 1979).
[25] M. Hallett, Cantorian Set Theory and Limitation of Size (Clarendon Press, Oxford, 1984).
[26] J. van Heijenoort, ed., From Frege to Gsdel: A Source Book in Mathematical Logic, 1878-1931

(Cambridge University Press, Cambridge, MA, 1967).
[27] S. Hayashi, Extracting Lisp programs from constructive proofs: a formal theory of constructive

mathematics based on Lisp, Publ. Res. Inst. Math. Sci. 19 (1983) 161-191.
1281 D. Hilbert, On the foundations of logic and arithmetic, in: [26] (original date 1904) 129-138.
[29] D. Hilbert, On the infinite, in: [26] (original date 1925) 367-392.
[30] S.C. Kleene, Recursive functionals and quantifiers of finite types I, Trans. Amer. Math. Sot. 91

(1959) l-52.
[31] A.N. Kolmogorov, 0 principe tertium non datur (On the principle of tertium non datur), Mat. Sb.

32 (1925) 646-667 (Russian); English translation in: [26] 414-437.
[32] D.E. Knuth, Algorithmic thinking and mathematical thinking, Amer. Math. Monthly 92 (1985)

170-182.
[33] P. Martin-LGf, An intuitionistic theory of types: predicative part, in: H.E. Rose and J.C. Shepherdson,

Logic Colloquium ‘73 (North-Holland, Amsterdam, 1975) 73-75.
[34] P. Martin-LSf, Constructive mathematics and computer programming, in: L.J. Cohen, J. Los,

H. Pfeiffer and K.P. Podewski, eds., Logic, Methodology, and Philosophy of Science VI (North-
Holland, Amsterdam, 1982) 153- 175.

[35] D. Mirimanoff, Les antinomies de Russell et de Burali-Forti et le probleme fondamental de la
thCories des ensembles, Enseign. Math. 19 (1917) 37-52.

[36] A.F. Monna, The concept of function in the 19th and 20th centuries, in particular with regard to
the discussions between Baire, Bore], and Lebesgue, Arch. Ifist. Exact Sci. 9 (1972) 57-84.

[37] Y. Moschovakis, Axioms for computation theoties-first draft, in: R. Gandy and M. Yates, eds.,
Logic Colloquium ‘69 (North-Holland, Amsterdam, 1971) 199-256.

1381 L. von Neumann, An axiomatization of set theory, in: [26] pp. 393-413 (English translation of
German original).

[39] G. Peano, The principles of arithmetic, presented by a new method, in: [26] (original date 1899)
83-97.

1401 E. Zermelo, Untersuchungen iiber die Grundlagen der Mengenlehre, Math. Ann. 65 (1908) 261-281:
English translation: Investigations in the foundations of set theory I, in: [26], 199-215.

WI J. M&ill, Qmtmtive set theory, .I. Symbolic Logic 40 (1975) 347-382.
[42] J. Smith, An interpretation of Marti-Liif’s type theory in a type-free theory of propositions,

.f. Symbolic Logic 49 (1984) 730-753.

[43] K. GGdeL The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis
with the Axioms of Set Theory, Annals of Mathematical Studies 3 (Princeton Univ. Press, 1940).

